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1 WHY MUTATIONS DECREASE COVARIANCE
We present an argument for why mutating samples after temporal
reuse reduces covariance in the final image. We study the problem
in a simplified setting, which we believe captures the essence.
In particular, we study the covariance between two pixels with

target functions 𝑝1 and 𝑝2, with pixels 1 and 2 spatially reusing
samples from random neighbors. We model random neighbor selec-
tion as follows: the input samples for pixel 𝑖 ∈ {1, 2} are 𝑋 𝑖

𝑗
where 𝑗

ranges from 1 to𝑀 , and their contribution weights are𝑊 𝑖
𝑗
. Super-

scripts denote the target pixel and subscripts the index of its 𝑗 ’th
input; input samples for the pixels are assumed to be distinct. As
in ReSTIR DI, we assume samples lie in the same domain Ω and
share the support (i.e., agree on visibility), with shift mappings not
needed for reuse between pixels (i.e., the identity shift mapping
is used with light vertices as they are). We also use constant MIS
weights 1/𝑀 . With this setup, we show a reduction in covariance
in the limit case as the number of mutations approaches infinity
(assuming good importance sampling), and argue that benefits in
the finite case arise from approximating the limit case.
We interpret the input samples 𝑋 𝑖

𝑗
as the results of temporal re-

sampling, and denote the final mutation results before spatial reuse
𝑌 𝑖
𝑗
and their contribution weights𝑊 ′𝑖

𝑗 . The assumption of good
importance sampling means that𝑊 𝑖

𝑗
≈ 1/𝑝𝑖

𝑗
(𝑋 𝑖

𝑗
), where 𝑝𝑖

𝑗
is the
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Table 1. Summary of notation

𝑋 𝑖
𝑗
,𝑊 𝑖

𝑗
Pixel 𝑖’s original input sample 𝑗 and its contribution weight

𝑌 𝑖
𝑗
,𝑊 ′𝑖

𝑗 Pixel 𝑖’s mutated input sample 𝑗 and its contribution weight
𝑍 𝑖 ,𝑊 𝑖 Sample chosen for pixel 𝑖 from the 𝑌 𝑖

𝑗
and its contribution weight

𝑤𝑖
𝑗

Resampling weight for choosing 𝑌 𝑖
𝑗
as the new 𝑍 𝑖

𝑝𝑖 , 𝑝𝑖 Target function of pixel 𝑖 and its normalized target PDF
𝑝𝑖
𝑗
, 𝑝𝑖

𝑗
Target function of pixel 𝑖’s input 𝑗 and its target PDF

𝑓 𝑖 The integrand in pixel 𝑖 , here 𝑓 𝑖 = 𝑝𝑖

𝑍̃ 𝑖 ,𝑊̃ 𝑖 Sample chosen for pixel 𝑖 from the 𝑋 𝑖
𝑗
and its contribution weight

𝑤̃𝑖
𝑗

Resampling weight for choosing 𝑋 𝑖
𝑗
as the new 𝑍̃ 𝑖

∥ · ∥ The 1-norm, ∥𝑔 ∥ =
∫
Ω
|𝑔 (𝑥) | d𝑥 , e.g., 𝑝 = 𝑝/∥𝑝 ∥

normalized version of the target function 𝑝𝑖
𝑗
, i.e., 𝑝𝑖

𝑗
= 𝑝𝑖

𝑗
/∥𝑝𝑖

𝑗
∥. We

again denote the target pixel in the superscript and the index of
its 𝑗 ’th input pixel in the subscript. Assuming a large number of
mutations implies that we can treat the mutation results 𝑌 𝑖

𝑗
as inde-

pendent of each other, the input samples 𝑋 𝑖
𝑗
, and their contribution

weights𝑊 𝑖
𝑗
. The contribution weight of a mutated sample 𝑌 𝑖

𝑗
is

𝑊 ′𝑖
𝑗 =

𝑝𝑖
𝑗
(𝑋 𝑖

𝑗
)

𝑝𝑖
𝑗
(𝑌 𝑖

𝑗
)
𝑊 𝑖

𝑗 , (1)

while the resampling weight for choosing sample 𝑌 𝑖
𝑗
for pixel 𝑖 is

𝑤𝑖
𝑗 =

1
𝑀
𝑝𝑖 (𝑌 𝑖

𝑗 )𝑊
′𝑖
𝑗 (2)

=
1
𝑀

𝑝𝑖 (𝑌 𝑖
𝑗
)

𝑝𝑖
𝑗
(𝑌 𝑖

𝑗
)
𝑝𝑖𝑗 (𝑋

𝑖
𝑗 )𝑊

𝑖
𝑗 . (3)

The sample 𝑍 𝑖 selected for pixel 𝑖 by resampling proportionally to
𝑤𝑖
𝑗
has the contribution weight

𝑊 𝑖 =
1

𝑝𝑖 (𝑍 𝑖 )

𝑀∑︁
𝑗=1

𝑤𝑖
𝑗 (4)

=
1

𝑝𝑖 (𝑍 𝑖 )

𝑀∑︁
𝑗=1

1
𝑀

𝑝𝑖 (𝑌 𝑖
𝑗
)

𝑝𝑖
𝑗
(𝑌 𝑖

𝑗
)
𝑝𝑖𝑗 (𝑋

𝑖
𝑗 )𝑊

𝑖
𝑗 . (5)

Using the integrand of the rendering equation 𝑓 𝑖 as our target
function 𝑝𝑖 , the pixel estimate 𝑓 𝑖 (𝑍 𝑖 )𝑊 𝑖 is

𝑝𝑖 (𝑍 𝑖 )𝑊 𝑖 =
1
𝑀

𝑀∑︁
𝑗=1

𝑝𝑖 (𝑌 𝑖
𝑗
)

𝑝𝑖
𝑗
(𝑌 𝑖

𝑗
)
𝑝𝑖𝑗 (𝑋

𝑖
𝑗 )𝑊

𝑖
𝑗 , (6)
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and the covariance between estimates for pixels 1 and 2 becomes

Cov
(
𝑝1 (𝑍 1)𝑊 1, 𝑝2 (𝑍 1)𝑊 2

)
=

1
𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1

Cov

(
𝑝1 (𝑌 1

𝑗
)

𝑝1
𝑗
(𝑌 1

𝑗
)
𝑝1
𝑗 (𝑋

1
𝑗 )𝑊

1
𝑗 ,

𝑝2 (𝑌 2
𝑘
)

𝑝2
𝑘
(𝑌 2

𝑘
)
𝑝2
𝑘
(𝑋 2

𝑘
)𝑊 2

𝑘

)
. (7)

Since we study the limit case in which the mutated samples 𝑌 𝑖
𝑗

are independent of other random variables, we can rewrite this
expression using the relation Cov(𝑋𝑌,𝑍 ) = E[𝑋 ] Cov(𝑌, 𝑍 ), which
assumes that 𝑋 is independent of 𝑌 and 𝑍 . Applying this relation
to both parameters of the covariance yields

=
1
𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1
E

[
𝑝1 (𝑌 1

𝑗
)

𝑝1
𝑗
(𝑌 1

𝑗
)

]
E

[
𝑝2 (𝑌 2

𝑘
)

𝑝2
𝑘
(𝑌 2

𝑘
)

]
Cov

(
𝑝1
𝑗 (𝑋

1
𝑗 )𝑊

1
𝑗 , 𝑝

2
𝑘
(𝑋 2

𝑘
)𝑊 2

𝑘

)
.

(8)

We now simplify the expression above by first writing E
[
𝑝𝑖 (𝑌 𝑖

𝑗
)

𝑝𝑖
𝑗
(𝑌 𝑖

𝑗
)

]
as

∥𝑝𝑖 ∥
∥𝑝𝑖

𝑗
∥ E

[
𝑝𝑖 (𝑌 𝑖

𝑗
)

𝑝𝑖
𝑗
(𝑌 𝑖

𝑗
)

]
, where we move the norms of the target functions

outside the expectation. Since we study the limit case of near-infinite

mutations, 𝑌 𝑖
𝑗
has PDF 𝑝𝑖

𝑗
(𝑌 𝑖

𝑗
), and E

[
𝑝𝑖 (𝑌 𝑖

𝑗
)

𝑝𝑖
𝑗
(𝑌 𝑖

𝑗
)

]
=

∫
Ω 𝑝𝑖 (𝑦) d𝑦 = 1,

which simplifies the expression for covariance to

=
1
𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1

∥𝑝1∥
∥𝑝1

𝑗
∥
∥𝑝2∥
∥𝑝2

𝑘
∥

Cov
(
𝑝1
𝑗 (𝑋

1
𝑗 )𝑊

1
𝑗 , 𝑝

2
𝑘
(𝑋 2

𝑘
)𝑊 2

𝑘

)
. (9)

Here the norms of 𝑝1
𝑗
and 𝑝2

𝑘
normalize 𝑝 into 𝑝 inside the covariance,

yielding

=
∥𝑝1∥∥𝑝2∥

𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1

Cov
(
𝑝1
𝑗 (𝑋

1
𝑗 )𝑊

1
𝑗 , 𝑝

2
𝑘
(𝑋 2

𝑘
)𝑊 2

𝑘

)
. (10)

Finally, we use the definition of covariance, Cov(𝑋,𝑌 ) = E[(𝑋 −
𝜇𝑋 ) (𝑌 − 𝜇𝑌 )], and the relation E[𝑝𝑖𝑗 (𝑋

𝑖
𝑗
)𝑊 𝑖

𝑗
] =

∫
Ω 𝑝𝑖

𝑗
(𝑥) d𝑥 = 1 (by

the way unbiased contribution weights transform expectations into
integrals) to evaluate 𝜇𝑋 and 𝜇𝑌 and reach the final form for the
covariance of the pixel estimates,

=
∥𝑝1∥∥𝑝2∥

𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1
E

[
(𝑝1

𝑗 (𝑋
1
𝑗 )𝑊

1
𝑗 − 1) (𝑝2

𝑘
(𝑋 2

𝑘
)𝑊 2

𝑘
− 1)

]
. (11)

This final expression for the covariance shows that when the input
samples 𝑋 𝑖

𝑗
are importance sampled well at their original pixels,

i.e.,𝑊 𝑖
𝑗
≈ 1/𝑝𝑖

𝑗
(𝑋 𝑖

𝑗
), then both factors in the expectation tend to be

small, yielding a small covariance as well.
We now consider the case without mutations, deriving covariance

when𝑍 1 and𝑍 2 are resampled directly from the samples𝑋 𝑖
𝑗
without

mutations. The resampling weights are

𝑤̃𝑖
𝑗 =

1
𝑀
𝑝𝑖 (𝑋 𝑖

𝑗 )𝑊
𝑖
𝑗 , (12)

while the chosen sample 𝑍 𝑖 has contribution weight

𝑊̃ 𝑖 =
1

𝑝𝑖 (𝑍 𝑖 )

𝑀∑︁
𝑗=1

𝑤̃𝑖
𝑗 =

1
𝑝𝑖 (𝑍 𝑖 )

𝑀∑︁
𝑗=1

1
𝑀
𝑝𝑖 (𝑋 𝑖

𝑗 )𝑊
𝑖
𝑗 . (13)

We again set 𝑝𝑖 = 𝑓 𝑖 , which yields the pixel contribution

𝑝𝑖 (𝑍 𝑖 )𝑊̃ 𝑖 =
1
𝑀

𝑀∑︁
𝑗=1

𝑝𝑖 (𝑋 𝑖
𝑗 )𝑊

𝑖
𝑗 . (14)

The pixel covariance then is

Cov
(
𝑝1 (𝑍 1)𝑊̃ 1, 𝑝2 (𝑍 2)𝑊̃ 2

)
=

1
𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1

Cov
(
𝑝1 (𝑋 1

𝑗 )𝑊
1
𝑗 , 𝑝

2 (𝑋 2
𝑘
)𝑊 2

𝑘

)
, (15)

which we simplify to

=
∥𝑝1∥∥𝑝2∥

𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1

Cov
(
𝑝1 (𝑋 1

𝑗 )𝑊
1
𝑗 , 𝑝

2 (𝑋 2
𝑘
)𝑊 2

𝑘

)
. (16)

As before, we finally express covariance with expectations,

=
∥𝑝1∥∥𝑝2∥

𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1
E

[
(𝑝1 (𝑋 1

𝑗 )𝑊
1
𝑗 − 1) (𝑝2 (𝑋 2

𝑘
)𝑊 2

𝑘
− 1)

]
. (17)

We immediately observe the critical difference between Equation 11
and Equation 17: the inputs 𝑋 𝑖

𝑗
are in both cases distributed approxi-

mately proportionally to 𝑝𝑖
𝑗
, where with good importance sampling

we have𝑊 𝑖
𝑗
≈ 1/𝑝𝑖

𝑗
(𝑋 𝑖

𝑗
); without mutations, the expressions inside

the expectations approximately equal(
𝑝1 (𝑋 1

𝑗
)

𝑝1
𝑗
(𝑋 1

𝑗
)
− 1

) (
𝑝2 (𝑋 2

𝑘
)

𝑝2
𝑗
(𝑋 2

𝑘
)
− 1

)
, (18)

which have no guarantees of being small if the target functions of
the pixels and their inputs are not similar. In fact, these ratios may
be arbitrarily large. However, by applying many mutations, these
expressions typically become much smaller, yielding(

𝑝1
𝑗
(𝑋 1

𝑗
)

𝑝1
𝑗
(𝑋 1

𝑗
)
− 1

) (
𝑝2
𝑘
(𝑋 2

𝑘
)

𝑝2
𝑘
(𝑋 2

𝑘
)
− 1

)
≈ 0. (19)

This implies that mutations help bring covariance closer to zero
even when the target functions are different.

We have demonstrated that with well-distributed input samples,
a large number of mutations help decorrelate the inputs to reservoir
sampling during spatial reuse, effectively making input paths inde-
pendent. The resulting independence of the mutated paths suggests
that covariance results merely from bad importance sampling of the
original pixels, not from incompatibility between close-by pixels.

Pixels whose covariance is minimized should share as few input
samples as possible—the proof requires a complete separation. In
practice, we only apply a small number of mutations, which does
not completely decorrelate the input samples. We also randomize
the input pixels for each target pixel, leading to a small probability
of overlap between input samples. While we cannot realize the ideal
in practice, we aim for it as much as possible—every mutation is a
step closer to the limit, and heuristically we expect some decrease
in covariance with a smaller number of mutations.

Covariance does not go to zero simply by increasing the number
of mutations. We are still bounded by random overlaps between
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input pixels and the quality of importance sampling as seen in
Equation 11.
In practice, proper MIS weights also protect the renderer from

the most terrible correlations and can be used to guarantee eventual
convergence (see Lin et al. [2022]). A performance-optimized im-
plementation that greedily neglects MIS weights is however much
more prone to high covariance—this analysis predicts that muta-
tions are especially effective at removing correlation artifacts in
such use cases. It also predicts that covariance will be present espe-
cially between close-by pixels with very different target functions.
ReSTIR implementations (such as ours) try to defend against such
cases by using expensive MIS weights and/or careful neighbor se-
lection; this analysis, together with our empirical results, suggests
that mutations are a useful addition for further robustness.

2 WHY MUTATIONS DO NOT DECREASE VARIANCE
(MUCH)

Variance can be studied as a pixel’s covariance with itself, Var(𝑋 ) =
Cov(𝑋,𝑋 ). We do not prove that variance reduction cannot happen
when mutations are used—in some cases, it can. However, as we
noted earlier, the two pixels’ input samples should be different to
minimize covariance. This is not true in the case of variance: a
pixel, tautologically, has the same input samples as itself, and the
mechanism to reduce covariance does not apply to variance—the
corresponding inputs have 100% correlation. This is in line with our
empirical findings: mutations have little impact on variance.
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