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Error Modeling in Stereo Navigation 
LARRY MATTHIES AND STEVEN A. SHAFER, MEMBER, IEEE 

Absrrclct-In stereo navigation, a mobile robot estimates its position by 
tracking landmarks with on-board cameras. Previous systems for stereo 
navigation have suffered from poor accuracy, in part because they relied 
on scalar models of measurement error in triangulation. Using thm-  
dimensional (3D) Gaussian distributions to model triangulation error is  
shown lo lead lo much better performance. How to compute the error 
model from image correspondences. estimate robot motion between 
frames, and update the global positions of the robot and the hndm8rks 
over time are discussed. Simulations show that, compared to scalar error 
models, the 3D Gaussian reduces the variance in robot position estimates 
and better distinguishes rotational from translational motion. A short 
indoor run with real images supported these conclusions and computed 
the final robot position to within two percent of distance and one degree 
of orientation. These results illustrate the importance of error modeling in 
stereo vision for this and other applications. 

I. INTRODUCTION 

ONSIDER a robot given the task of going from A to B. C At a coarse level its route is planned from a prestored 
map. while at a fine level the route is determined by sensor 
information gathered along the way. Incremental motion 
estimates are integrated to keep track of the robot’s position in 
the map, which in turn is used to predict upcoming landmarks, 
hazards, or arrival at the destination. 

To realize this scenario, a robot needs sensors that can 
measure its position and detect the presence of three- 
dimensional (3D) objects nearby. Stereo vision can provide 
both kinds of information. Stereo matching at one point in time 
provides a local 3D model for route planning and obstacle 
avoidance. Selected points in this model become landmarks 
that are tracked by the stereo system to monitor the robot’s 
progress. Using stereo in this way, to detect nearby objects 
and to estimate the motion of the robot, is what we refer to as 
stereo navigation. 

We are interested in stereo in this scenario for a number of 
reasons. First, other motion sensors can be in error, such as 
shaft encoders when wheels slip or lose contact with the 
ground. Second, other sensors, such as sonar and radar, can be 
inappropriate for reasons of concealment, possible confusion 
with the broadcasts of other robots nearby, or because color 
and retlectivity information are important. Lastly, we are 
interested in stereo per se and believe that methods developed 
for this domain can be transferred to other applications. 
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Methods for extracting shape and motion information from 
image sequences can be classified as correspondence-based or 
flow-based. Correspondence methods [7], [ 1 1 I ,  [ 181, [241 
track distinct features such as comers and lines through the 
image sequence and compute 3D structure by triangulation. 
Flow-based methods [I], [25] treat the image sequence as 
function f (x ,  y, f) of row, column, and time, restrict the 
motion between frames to be small, and compute shape and 
motion in terms of differential changes in I. This paper deals 
with error modeling issues in the correspondence paradigm. 

One of the first systems for correspondence-based \rere3 
navigation was that built by Moravec [ 181. This system moved 
a robot in a stop-go-stop fashion, digitizing and analyzing 
images at every stop. Features were matched in stereo images 
to build a world model consisting of 3D points. After moving 
and acquiring more images, the points in the world model 
were matched in the new images to find their coordinates 
relative to the new robot location. A least squares procedure 
was applied to the differences between the new and old point 
locations to infer the actual motion of the robot. The 
contribution of each landmark point to this motion estimate 
was multiplied by a scalar weight that varied inversely with the 
distance to the point. 

In earlier work with Moravec [17], we found the motion 
solving part of this system to be somewhat inaccurate and 
unstable. This has Seen a common experience with visual 
motion solving algorithms in general. In the case of correspon- 
dence-based algorithms, this can partly be attributed to 
inadequate modeling of measurement error in triangulation. In 
triangulation, 3D coordinates are computed by intersecting 
rays projected through corresponding points in two images. 
Errors in locating the image points induce errors in the 3D 
coordinates, which in turn cause errors in motion estimates 
based on the 3D information. Modeling the measurement 
errors can reduce their effect on motion estimates. However. 
we will demonstrate that using scalar weights to model 
uncertainty in 3D coordinates leads to poor performance. 

More sophisticated methods have been used in a number of 
places. In photogrammetry [20], two-dimensional (2D) nnd 
3D normal distributions are used to model error in image 
coordinates and 3D point locations, respectively. Gcnnery 
[ 11) has used 2D normal distributions of image coordinates in 
camera calibration for computer vision. Hallam [ 151 used 
normal error models in conjunction with Kalman filters to 
track points and estimate robot motion from sonar data. Broida 
and Challeppa [5 ]  used similar methods to track a known 
object in monocular image sequences, and Faugeras [9] has 
discussed the application of these methods to stereo. 

This paper shows how these methods can be applied to 
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Fig. 1. System block diagram. 

stereo navigation and demonstrates by results with real images 
that they lead to markedly better performance. The system we 
will describe has evolved from Moravec’s [ 181 and is shown in 
Fig. 1. The main data structures are a set of 3D points Pi, 

called the local model and described in robotcentered 
coordinates, and the robot’s current estimate of its position in 
some fixed global reference frame. The points in the local 
model are obtained by stereo matching and are used as 
landmarks. When a new stereo pair is digitized, points from 
the local model are matched in the images to determine their 
current locations Qi relative to the robot. A motion solving 
algorithm estimates the rotation and translation (R and T) 
relating the new and old coordinates. The model updating 
system transforms the old local model into the current 
coordinate frame and combines it with the new points to create 
a new local model. Finally, the motion estimate is used to 
update the robot’s global position. The cycle then repeats with 
the acquisition of a new pair of images. 

Section I1 shows how to model triangulation error in the 
stereo matcher with 3D normal distributions. In Section III this 
is incorporated in an algorithm for finding the rotation and 
translation between successive stereo pairs. The covariance 
matrix of this transformation is used in Section IV to update 
the local model with Kalman filters and in Section V to 
estimate the robot’s global position uncertainty. Simulations 
described in Section VI show that compared to scalar error 
models this system reduces the variance of position estimates 
and better distinguishes rotational motion from translation. An 
experiment with real images, using 54 stereo pairs covering 
5.4 m and fully automatic feature tracking, supported these 
conclusions and computed the final robot position to within 

two percent of distance and one degree of orientation. 
Conclusions are summarized in Section VII. 

II. MODELING STEREO TRIANGULATION ERROR 
The geometry of stereo triangulation is shown schematically 

in Fig. 2 for the case of 2D points projecting onto one- 
dimensional (1D) images. The tick marks on the image planes 
denote pixel boundaries, and the radiatine lines extend these 
boundaries into space. Suppose point P projects onto the left 
image at .q and the right image at x,. Because of errors in 
measurement, the stereo system will determine xl and x, with 
some error, which in turn causes error in the estimated 
location of P. Fig. 2 illustrates this for errors caused by image 
quantization; because of resolution limits, the estimated 
location of P can lie anywhere in the shaded region surround- 
ing the true location [22]. Random contributions to measure- 
ment error will blur the boundaries of this region, but the 
qualitative shape will be similar. We want to take this 
uncertainty into account in any reasoning based on measure- 
ments of P. 

Three approaches to modeling such uncertainty are discrete 
tolerance limits, scalar weights, and multidimensional proba- 
bility distributions. Tolerance regions have been used in object 
recognition to test candidate model to image matches [ 141 and 
to constrain three-dimensional relationships between objects 
[4], [6]. For example. Baird [4] used tolerance regions in 
finding the transformation between a two-dimensional set of 
model points and their measured image positions. Uncertainty 
was represented with convex polygons surrounding the mea- 
sured point locations, and the transformed model points were 
required to lie within these polygons. Acceptab!e transforma- 
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Fig. 2. Stereo geometry showing triangulation uncertainty. 

tions were found by linear programming. In our application, 
statistical minimization and methods are more appropriate 
because of the stochastic nature of measurement errors and the 
need to filter time sequences of measurements. 

The motivation for using scalar weights is that uncertainty 
grows with distance, so it can be modeled by weighting points 
inversely with distance [18]. However, as Fig. 2 shows, the 
uncertainty induced by triangulation is not a simple scalar 
function of distance to the point; it is also skewed and oriented. 
Nearby points have a fairly compact uncertainty, whereas 
distant points have a more elongated uncertainty that is 
roughly aligned with the line of sight to the point. Scalar error 
measures do not capture these distinctions in shape. 

These distinctions can be captured by using 3D probability 
distributions to characterize the uncertainty in point locations. 
Our approach is to assume 2D, normally distributed (;.e., 
Gaussian) error in the measured image coordinates and to 
derive 3D Gaussian distributions describing the error in the 
inferred 3D coordinates. Similar approaches have been used in 
photogrammetry [20] and elsewhere in computer vision [l 11, 
[5 ] ,  [12], [15], [9]. The use of Gaussian distributions to model 
image coordinate error is a common Ell], [5] ,  convenient 
approximation that gives adequate performance, as will be 
seen in Section VI. For the 3D coordinates, the true 
distribution will be non-Gaussian because triangulation is a 
nonlinear operation; we approximate this as Gaussian for 
simplicity and because it gives an adequate approximation 
when the distance to points is not extreme. We will discuss 
shortly the cases where this breaks down. 

24 1 

We will now show the details of the triangulation and error 
model calculation for the general case of 3D points projecting 
onto 2D images. We assume a camera geometry with parallel 
image planes, aligned epipolar lines, and image coordinate 
systems centered at the piercing point of each camera. Let the 
image coordinates be given by I = [x/, y / ]  and r = [x,, y,] in 
the left and right image, respectively. Consider these as 
normally distributed random vectors with means p! and p, and 
covariance matrices VI and V,. From I and r we need to 
estimate the coordinates [X, Y, Z ]  of the 3D point P. We 
take the simple approach of using the ideal noise-free 
triangulation equations P = [X, Y ,  Z] = f ( / ,  r ) ,  or 

x = b ( X /  + x,) / (  X, - x,) 

(assuming a unit focal length and a baseline of Zb) and 
inferring the distributions of X, Y, and Z as functions of 
random vectors I and r. If (1) was linear, P would be normal 
[8] with mean pp = f(p,, p r )  and covariance 

where J is the matrix of first partial derivatives off  or the 
Jacobian. Since f is nonlinear these expressions do not hold 
exactly, but we use them as satisfactory approximations. 

The true values of the means and covariances of the image 
coordinates needed to plug into (1) and (2) are unknown. We 
approximate the means with the coordinates returned by the 
stereo matcher and the covariances with identity matrices. 
This is equivalent to treating the image coordinates as 
uncorrelated with variances of one pixel. Better covariance 
approximations can be obtained by several methods [2], [ 1 I]. 

What does this error model mean geometrically? Constant 
probability contours of the distribution of P describe ellipsoids 
about the nominal mean that approximate the true error 
distribution. This is illustrated in Fig. 3 where the ellipse 
represents the contour of the error model and the diamond 
represents quantization error of Fig. 2. For nearby points the 
contours will be close to spherical; the farther the points. the 
niore eccentric they become. A covariance matrix with 
structure V = w/,  equal to a scalar times the identity matrix. 
describes only spherical contours. This is the difference 
between attaching scalar weights to 3D coordinate vectors and 
using the full 3D distribution: that is, scalar weights are 
equivalent to spherical covariances whereas the full distribu- 
tion permits ellipsoidal covariances. In the balance of the 
paper we will often refer to scalar weights as a spherical error 
model and the full distribution as an ellipsoidal error model. 

Where the Gaussian approximation breaks down is in failing 
to represent the longer tails of the true error distribution. The 
true distribution is skewed not unlike the diamond in Fig. 3. 
whereas normal distributions are symmetric. The skew is not 
significant when points are close, but becomes more pro- 
nounced the more distant the points. A possible consequence is 
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Fig. 3 .  Quantization error with normal approximation. 

biased estimation of point locations, which may lead to biased 
motion estimates. We will return to these issues in Section VI. 

111. SOLVING FOR ROBOT MOTION 
The previous section showed how to model measurement 

error in stereo triangulation. In this section we show how to 
incorporate the error model into an algorithm for estimating 
the motion between successive stereo pairs. We will begin by 
showing how motion is computed with scalar weights, then 
derive an algorithm based on the 3D Gaussian error model, 
and finally give this algorithm a geometric interpretation. 

Referring back to Fig. 1, at this stage in the cycle the robot 
has two sets of 3D points that have been obtained by stereo 
matching: a local model of points Pi defined relative to its 
previous position and the coordinates Q; of these points 
relative to its current position. The correspondences between 
PI and Q; are known, but the motion between them is not. Thus 
we have a set of equations 

Q;=RP,+ T 

in which Pi and Q; are known point vectors, R is the matrix of 
the unknown rotation, and T i s  the unknown translation. 

Using scalar weights, one finds R and T by expressing the 
errors of fit by 

= Qi- RP,- T 

and minimizing the weighted sum of squares 

2 W;€ [ E ;  
I =  I 

(3) 

where wi are the weights. Although the rotation makes this 
optimization problem nonlinear, two methods are known that 
give the solution essentially in closed form. The method we 
have used is due to Schonemann [19]. It treats the nine 
elements of R as unknowns and applies Lagrange multipliers 
to force R to be orthogonal. The only iterative part of the 
algorithm involves taking the singular value decomposition of 
a 3 x 3 matrix. Readers are referred to [19] for details. The 
alternate method, described in [16] and [26, p. 4261, parame- 
terizes the rotation as a quaternion and obtains the quaternion 
elements as the eigenvector corresponding to the largest 
eigenvalue of a 4 x 4 matrix. 

As will be shown in Section VI, the scalar model of 
uncertainty embodied in (3) leads to poor performance. Using 

the 3D Gaussian error model the solution takes a similar, but 
more complicated form. For simplicity we begin with the case 
of translational motion. In this case the motion equation is 

k 

Q,= P;+ T 

which we may rewrite as 

Q , - P I = M l =  T 

to emphasize the role of MI = Q, - P, as measurements of T. 
From Section 11, Pi and QI are modeled as normally 
distributed, uncorrelated random vectors with covariances U, 
and V,, respectively. Therefore, Mi will also be normally 
distributed with covariance U, + Vi.  Now if we consider Mi 
to be a sequence of noisy measurements of T, each corrupted 
by noise with zero mean and covariance U, + V, ,  application 
of the maximum likelihood method leads to minimizing the 
following expression over possible values of T [ 81 : 

, = I  

where E; = Mi - T and Wi = (Vi + Vi) - I .  The solution to 
this is 

- I  n 

T=( 9 W;) I3 W,M; 
i =  I i =  I 

and the covariance matrix of the estimation errors is 

v,= w; . CI ) - I  

The covariance matrix can be analyzed to assess the quality of 
the motion estimate. It is also used later in modeling the 
uncertainty of the robot's global position estimate. 

An intuitive interpretation of (4) is shown in Fig. 4. The 
weight matrices W; function as norms that measure distance 
differently for each point. Error vectors making equal contri- 
butions to the total error of fit lie on ellipsoidal contours. For 
example, in Fig. 4, residuals and f b  contribute equally to the 
total error, but contributes more because E ~ W E ,  = Wfb 
< ETWE,. This effectively gives more weight to errors 
perpendicular to the line of sight than parallel to it, which, 
given the nature of stereo, is what we would like to do. The 
"spherical" error model obtained by using the scalar weights 
of (3) has the obvious mnemonic meaning that residual vectors 
making equal contributions to the total error lie on spherical 
contours. This distinction is what gives the ellipsoid model its 
power. 

Generalizing this method to handle rotation is complicated 
by the fact that the equations become nonlinear. The function 
to be optimized takes the form 

r = I  

with E; = Q; - RP; - T and W; = (RUjRr  + V , ) - I .  
We have not been able to find direct solutions to this 

problem or even to approximations in which Wi is not a 
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Fig. 4. Interpretation of (4): W, scales residual vectors. lengthening them 
parallel 10 line of sight and shortening them perpendicularly to it. 

function of R . Our approach has been to use the direct solution 
of Schonemann [ 191 for scalar weights to get an initial estimate 
of the transformation and to apply the Gauss-Newton method 
[13. p. 1341 to (5) to refine iteratively the estimate. Conver- 
gence behavior is good unless all points are very distant; for 
example, in the experiments with real data described later, the 
final estimates were obtained after four to eight iterations. 

To recap, this section incorporated the error model of 
Section 11 in an algorithm for finding the rotation and 
translation between two 3D points sets. The algorithm replaces 
the scalar weights of (3) with weight matrices based on the 
covariances of corresponding points. When the motion is 
purely translational, the problem is linear and has a direct 
solution, but when the motion involves rotation we resort to an 
iterative solution. The error covariance of the motion solution 
will be used in the following two sections in updating the 
robot’s local model and global position estimate. 

IV. UPDATING THE LXKAL MODEL 
So far we have described how to model error in uiangula- 

tion and how to solve for the motion between two successive 
stereo pairs. This section deals with how to process a long 
sequence of stereo pairs. At issue is how to average informa- 
tion from successive images to achieve more accurate land- 
mark localization and consequently more accurate estimates of 
robot position. 

An appropriate tool for this is the Kalman filter [IO]. In 
filtering terminology the quantity to be estimated is called the 
“state,” and when a measurement is taken the filter updates 
the current estimate of the state. Kalman filters incorporate 
known statistical properties of the measurements into the 
update process and produce error covariances for the state 
estimate. They are widely used in terrestrial and aerospace 
navigation and guidance applications [ 101, [26]. In computer 
vision they have been used in object recognition [3], tracking 
of known objects with monocular image sequences [ 5 ] ,  [12], 
and for robot navigation and object tracking with sonar data 
WI. 

In our application, the state consists of the locations of the 
landmark points in the local model. A question arises as to 
whether the landmarks should be represented in a global 
stationary frame of reference or in a local moving robot- 
centered frame. In either case, the update involves transform- 

ing coordinates from one frame to the other and applying the 
filter. If a fixed number of landmarks are being tracked, there 
is no difference in cost between the two. There will be a 
difference in the uncertainty of the resulting model; this 
difference depends on the relative uncertainties of the old 
model, the new measurements, and the intervening motion. 
We have not completed an analysis of this situation, but are 
currently keeping the landmark model in robot-centered 
coordinates. 

The update involves transforming the old local model to the 
current coordinate frame, inflating its uncertainty to account 
for the uncertainty of the transformation, and filtering the old 
model with the new measurements to create the updated 
model. Let P, - I be the coordinate vector of a single point in 
the old local model at time ( I  - 1). and let V , - l  be its 
covariance. For purely translational motion, PI - I is trans- 
formed to the current frame by 

6 , _ l = P , - I + T  (6)  

where T is the translation from time (t - 1) to time 1. The 
translation has an error covariance matrix Vr so the trans- 
formed point has covariance 

9,-, = vr- I + v,. (7) 

Equation (6) introduces some correlation between points that 
is not accounted for in (7). but we assume this is small enough 
to ignore. To extend this to rotation, we rewrite (6) as 

6,- I = RP,- 1 + T. (8) 

This is nonlinear, so to compute V,- I we proceed by analogy 
to (2); that is, we premultiply the covariance of R, T, and P, - I 

by the Jacobian of the transformation and postmultiply by the 
Jacobian transposed. Since we treat PI-  I as uncorrelated with 
R and T, this leads to 

V, - 1 = J m  Vm J i +  R Vr - 1 R 

where J,,, contains the derivatives of (8) with respect to the 
motion parameters and Vm is the covariance of the motion 
parameters. 

Now let Q, be the measurement of the same point at time t, 
and let Ul be the Covariance of this measurement. Some 
manipulation of the basic Kalman filter equations leads to the 
following estimates of the updated point location and covari- 
ance: 

(9) v, = (9 ,II + u; 1)- I 

The intuition behind (10) is as follows. The second term takes 
the difference (Q, - 6, - I )  of the new measurement from the 
old estimate, weights the difference by VI U; I ,  and applies the 
result as an update to the old estimate 6, - I .  Matrix U; I will 
be “larger” the more precise the new measurement, giving it 
more weight in the update, and smaller the less precise the 
measurement, giving it less weight. Conversely, VI will be 
small if the old estimate is precise and large otherwise. Hence 
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if the old estimate is already good, the new measuremenl 
receives little weight; if it is poor, the new measurement 
receives more weight. 

The procedure we have described assumes that the error in 
the motion estimate is uncorrelated with the error in the 
landmark points. When the motion estimate is obtained by 
using the methods of the previous section this will not be true, 
although if other sensors are also contributing to the motion 
estimate, it will be approximately true. This is an issue we are 
investigating. 

V. UPDATING THE GLOBAL ROBOT POSITION 
By using the modules discussed in the previous sections, the 

robot computes estimates of its motion between successive 
stereo pairs. Combining these to estimate its global position is 
a simple matter of concatenating the transformation matrices. 
It may also be desirable to estimate the uncertainty of the 
global position, which can be done by propagating the 
covariance matrices of the incremental motions into a covari- 
ance of the global position. For translation this is also very 
simple. If the global position at time ( t  - 1) is T,, - ,  and the 
next incremental translation is T,, then the next global position 
is 

T g , = T g ( - , + T .  (1 1) 

Since this is linear, if the incremental translation estimates 
have uncorrelated zero-mean Gaussian errors, then T,, will 
also have zero-mean, Gaussian error with covariance given by 

vg, = &,- + r / ,  

where V,, - and U, are the covariances of Tgr -,  and T,, 
respectively. The case of motion in the plane, where there are 
two parameters for translation and one for rotation, has been 
dealt with by Smith and Cheeseman 1211. In summary, one 
obtains an equation analogous to ( I  1) in which the three 
parameters of the global position are expressed as functions of 
the previous position and the incremental motion. These are 
nonlinear and error propagation is done by linearization. For 
general motion in three dimensions, this is not straightforward 
with the Euler angle representation of rotation we have used to 
date. In this case other parameterizations of rotation, such as 
quaternions. may be preferable [9], [26]. We are exploring 
this further. 

VI. PERFORMANCE 
Our evaluation to date has concentrated on comparing the 

use of the spherical and ellipsoidal error models in the motion 
solving methods of Section 111. Results of tests with simulated 
and real data are described below. 

A. Simdatiom 
Three sets of simulation data will be presented. The first is a 

base case that compares the standard deviations of position 
estimates obtained with each error model for a single step of 
vehicle motion. That is, it considers motion between only two 
consecutive stereo pairs. It illustrates the difference in the 
variability of position estimates with each model and reveals 

the effects on the motion estimates of coupling between the 
translational and rotational degrees of freedom. The second set 
also considers only two consecutive stereo pairs and tests 
limiting performance by tracking progressively more distant 
points. The last set examines both long-range performance 
over many images and the effect on performance of different 
stereo baselines. 

The simulations were generated as follows. The "scene" 
consisted of random points uniformly distributed in a 3D 
volume in front of the simulated cameras. For the first set of 
simulations, this volume extended 5 m to either side of the 
cameras, 5 m above and below the cameras, and from 2 to 10 
m in front of the cameras. The cameras themselves were 
simulated as having 512 x 512 pixels and a field of view of 
53". The stereo baseline was 0.5 m. Image coordinates were 
obtained by projecting the points onto the images. adding 
Gaussian noise to the floating point image coordinates. and 
rounding to the nearest pixel. These coordinates were input to 
the triangulation and motion solving algorithms. For the 
ellipsoidal error model, covariance matrices were computed as 
described in Section 11. In the scalar case. weights were 
derived by taking the 2 variance from the covariance matrix. 
Scalars obtained by several other methods were tried and 
found to give very similar results. These include the volume 
and length of the major axis of the standard error ellipsoid and 
Moravec's half-pixel shift rule [ 181. 

The first set of simulations determined the standard devia- 
tion of the estimated motion between two consecutive stereo 
pairs when the true motion was 1 m. The results are given in 
Figs. 5 and 6, plotted against the number of points used to 
compute the motion estimate. For any given number of points 
tracked, the standard deviations are taken over 5000 random 
trials with entirely new points generated for each trial. In both 
figures, the top three curves were obtained with spherical 
modeling and the bottom three with ellipsoidal. Tilt implies 
rotation of the camera up or down, pan is the rotation about the 
vertical axis, and roll the rotation about the camera axis. The 
most significant thing to note is that the standard deviations 
obtained with the ellipsoidal model are a factor of 5-10 less 
than those of the spherical model. The size of the difference 
will vary with the distance to the points; for example, when 
they are within 1-2 m of the cameras the factor is 2-4, and 
when they are within 2-5 m it is 3-6. The case shown in the 
figures (points from 2-10 m away) approximates the condi- 
tions of the indoor run with real data described later. Another 
point to note is that with the spherical model the estimates of 
roll and forward translation show less variation than the 
remaining parameters. This is because lateral translations and 
panning rotations have coupled effects on the errors of fit, as 
do vertical translations and tilting rotations. This shows up in 
the covariance matrix of the computed motion parameters as 
larger correlations between these pairs of parameters than 
other pairs. These correlations are present with both error 
models, but the effects on the variance of the individual 
parameters are greater in the spherical case. Lastly, note that 
for a given level of performance fewer points are needed with 
the ellipsoidal model than the spherical, offsetting the greater 
expense of the iterative motion solution needed in the 

, 
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ellipsoidal case. The exact relationship will depend on the 
camera configuration. 

The second set of simulations illustrates the dependence of 
the standard deviation on the distance to the points in the 
scene. The initial volume for generating points was 2-4 m 
away; this was expanded by moving the far limit back in stages 
until the final volume was 2-40 m. A5 with the previous 
experiment, for each volume 5000 random trials were per- 
formed with different points generated for each trial. Fig. 7 

1 .oa 

0.95 

- True forward motion - - - Ellipsoidalestimate ....... Spherical es t imate  

.”.. 
: .. . .  --- -. -.-. Y. 2 .............. ........ - -  - - .--- 

-.-- 

0 1 0  20 30 40 
0 . d  

Maxpolnt dis tance (meters1 

Fig. 7. Mean of estimated forward distance traveled versus maximum 
distance to points. 

4 0.1 
2 
0 
0 
c) 

5 
ti 
d 
1 

0 . 1  

0.: 

0.t 

- - - Ellipsoidal es t lmate  ------- Spherical es t imate  

,.a. 

.*-. ...... ..... - _ _ _ _ _ _ _ _ - - - - - - - .  .. - -  .c I 

1 0  20 30 40 
Max point d i s t ance  (meters) 

Fig. 8. Standard deviation of estimated forward distance traveled versus 
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shows the mean of the forward translation estimates as a 
function of the maximum distance to the points, and Fig. 8 
shows the standard deviation. The true forward motion was 
one meter. The standard deviation tells most of the story. With 
the ellipsoidal model, the standard deviation remains modest 
throughout the range of the experiment, reaching a maximum 
of about three percent of the actual motion. On the other hand, 
with the spherical model the standard deviation is initially 
modest but grows rapidly to the point that the estimates are 
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unusable. The other motion parameters, though not shown, 
behave similarly. Looking at the means, with the ellipsoidal 
model there is negligible bias when points are nearby, with a 
growing tendency to underestimate the distance traveled as the 
points themselves become more distant. For the spherical 
model there also appears to be some underestimation when 
points are nearby, but the rapid growth of the standard 
deviation makes further interpretation of little value. Thus this 
experiment illustrates the strong contrast between the al- 
gorithms that develops with increasing distance to points. 

The last simulation looked at motion over a long sequence 
of images, both to confirm the above results and to test a 
hypothesis suggested by the previous simulation: that for 
equivalent performance, the ellipsoidal model may permit the 
use of a shorter stereo baseline than the spherical. This is an 
important consideration. because length of the baseline di- 
rectly affects the difficulty of stereo matching. Each trial in 
this experiment involved tracking points 2-10 m from the 
cameras. with new points added when existing ones passed out 
ot' view. Fig. 9 shows the standard deviation of the estimated 
distance as a function of the true distance. The travel between 
images was 0.64 m. so the figure represents about 90 images. 
It shows curves for B 0.5-m baseline with the spherical model 
and 0.125. 0 . 2 5 .  and 0.5-m baselines for the ellipsoidal 
model. Comparing the curves for 0.5-m baselines, the 
ellipsoidal model dcns outperform the spherical. It appears 
that the curves may eventually run parallel, so that the 
difference between the methods would be an additive constant 
rather than multiplicative. Looking at the effects of different 
baselines, results with the ellipsoidal model are still better than 
the spherical model with a 0.25-m baseline, though not with 
0.125-m. Based on standard deviations of position, it does 
appear possible to use a shorter baseline. However, another 
factor involved is bias of the motion estimates. In general, we 
have found that the narrower the baseline, the more motion is 
underestimated. The same occurs when we increase the 
variance of the noise in the image coordinates. This requires 
further investigation. For the moment we just note that bias 
can be a problem with short baselines or nontrivial noise 
levels. 

B. Real Images 

To verify the simulations on real images, we used both error 
models to estimate the position of a stereoequipped robot 
traveling across the floor of our lab. The scene is pictured in 
Fig. IO. The robot was driven straight forward in 54 steps of 
slightly less than 10 cm each. The cameras were on a 20-cm 
baseline and had a 36" field of view. The FIDO feature- 
tracking system I231 was used to track points through the 
image sequence. and the resulting set of matched image 
coordinates were input to the algorithms described earlier to 
estimate the robot's position at each step. We will briefly 
describe the operation of FIDO before discussing the results of 
the experiment. 

FIDO uses the Moravec interest operator and coarse-to-fine 
correlation algorithm to pick and match point features in stereo 
pairs. The intcrcst operator is applied to one image of a stereo 
pair to pick points where intensity varies in all directions; 

>o*rs 1 1 - - - - Ellipsoidal, 0.25 m baseline 

s 
----- Ellipsoidal, 0.5 m baseline 

----- Ellipsoidal, 0.125 m baseline 
.------ Spherical, 0.5 m baseline 

$0.12 

0 15 30 45 60 
Dislsnce rrevelled (meters) 

Standard deviation ol estimated l o w a r d  Jihtance traveled \ersus Fig. 9. 
true distance. 

Fig. IO. One image from lab wquencc 

typically these are sharp comers or intersections o f  lines. The 
correlator finds these points in the other image of the .stereo 
pair. To find the same points in subsequent stereo pairs. an a 
priori motion estimate is used to predict the locatior! of the 
point in the new images. a constraint window is defined 
around the predicted location based on the uncertainty of the 
motion estimate. and the correlator is applied t o  find the 
position of best match within the constraint window. Incorrect 
matches are culled with a threshold o n  the correlation 
coefficient and with a 3D error heuristic called the "3D 
prune" stage. This heuristic uses the fact that under rigid 
motion the distance between two 3D points does not change 
over time. Points which appear to violate this condition are 
discarded. The advantage of this test is that it does not require 
knowledge of the motion between stereo pairs. Points that 
survive this test become input to the motion solving al- 
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Fig. 1 1 .  Position estimates obtained with 3 DOF algorithm and clean data. 
Dots show actual vehicle positions. diamonds show positions estimated with 
ellipsoidal model, and circles show positions estimated with spherical 
model. 

gorithms. In the experiments to follow. between 30 and 40 
points usually remained. 

Fig. 1 1  compares the true motion to the position estimates 
obtained with the spherical and ellipsoidal error models. For 
this figure a "planar" motion solver was used that solved only 
for the parameters of motion in the plane, that is two degrees 
of translation and one of rotation. The line of heavy dots shows 
the true position at every step, the path marked with circles 
shows the positions estimated with the spherical model, and 
the path marked with diamonds shows the same for the 
ellipsoidal model. The final position estimated with the 
ellipsoidal model was correct to within two percent of the 
distance and 1" of orientation. With the spherical model the 
corresponding figures were eight percent and 7". 

To gauge the effect of noisier image matches, we adjusted 
the threshold of the prune stage so that progressively fewer 
points were discarded. The general effect was to increasingly 
underestimate the distance traveled. Fig. 12 shows what 
happened when the prune stage was entirely disabled, leaving 
only the correlation threshold to detect matching errors. 
Estimates with the spherical model were initially very bad. We 
attribute this to matching errors caused by large depth 
discontinuities around the foreground objects. When these 
objects fell out of view, the estimates were better behaved. 
The behavior with the ellipsoidal model was much less erratic. 

Finally, we repeated the first experiment (Le.. clean data) 
with the algorithm that computes all six degrees of freedom 
(DOF) of motion. The results were in accord with the planar 
case, with roughly the same levels of error in the final position 
estimate. It was notable that with the spherical model the error 
in roll was less than a degree, while in the other rotations it 
was between 5" and 12". This is consistent with the 
observation made from the first simulation about coupled 
rotation and translation. 

VII. CONCLUSION 

Comparing motion estimates obtained with the spherical 
(scalar) and ellipsoidal (3D Gaussian) error models, there is no 
question that the ellipsoidal model is preferred. Simulations 
showed that position estimates with the ellipsoidal model had 
less variance and live trials confirmed that they were more 
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Fig. 12. Results with noisy data. As in Fig. I I .  dots show actual vehicle 
positions, diamonds show ellipsoidal estimates, and circles show spherical 
estimates. 

accurate and less influenced by matching errors. The contrast 
between algorithms is strongly influenced by the distance to 
the points being tracked; with nearby points. the difference 
will be moderate, but it grows very rapidly with increasing 
distance. 

The possibility of bias arose with very large distances to 
objects and high noise levels. We amibute this to the non- 
Gaussian nature of the true error distribution in these 
situations. Under these conditions, better error modeling is an 
area for further research. The question of whether the 
ellipsoidal method permits a shorter baseline has only been 
tested in simulation; based on the variance of the estimates it 
appears feasible, but the bias issue is unresolved. 

Perhaps the most valuable result is demonstrating that 
accurate position estimates can be achieved in a fully automatic 
system when an adequate error model is used. The true motion 
in the examples we showed was pure translation, but we 
believe that the results will hold for general motion and 
preliminary simulations bear this out. With matching to 
subpixel resolution, matching of extended features instead of 
points, and more sophisticated error detection, it may be 
possible to obtain much better performance than that quoted 
here. Another interpretation of our results is that they show the 
importance of error modeling in stereo and probably other 
aspects of vision. One area we plan to explore this is in shape 
from stereo, beginning with the local update paradigm of 
Section V. 
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