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Abstract— Current GPS-based devices have difficulty localiz-
ing in cases where the GPS signal is unavailable or insufficiently
accurate. This paper presents an algorithm for localizing
a vehicle on an arbitrary road network using vision, road
curvature estimates, or a combination of both. The method
uses an extension of topometric localization, which is a hybrid
between topological and metric localization. The extension
enables localization on a network of roads rather than just
a single, non-branching route. The algorithm, which does not
rely on GPS, is able to localize reliably in situations where GPS-
based devices fail, including “urban canyons” in downtown
areas and along ambiguous routes with parallel roads. We
demonstrate the algorithm experimentally on several road
networks in urban, suburban, and highway scenarios. We also
evaluate the road curvature descriptor and show that it is
effective when imagery is sparsely available.

I. INTRODUCTION

In recent years, GPS-based navigation devices have gained
in popularity, with many vehicles coming equipped with
navigation systems and a variety of portable devices also
becoming commercially available. However, such devices
have difficulty localizing in situations where the GPS sig-
nal is unavailable or insufficiently accurate (Figure 1c). In
large cities, “urban canyons” block visibility to most of
the sky (Figure 1a), causing significant GPS errors and
subsequent localization failure. Even if the GPS signal is
available, multiple roads near the same location can confuse
a navigation system (e.g., parallel roads running side by
side or one above the other) (Figure 1b). While it may be
possible to use road connectivity information to correct some
cases, ambiguous cases still occur frequently, especially in
densely networked urban areas. Typically, ambiguity occurs
at an exit or other branching point where the two possible
routes run parallel for a period of time before diverging.
In such situations, existing navigation systems can require a
long time to recognize that the driver has taken the wrong
route. Such extended localization errors can cause driver
confusion and, potentially, even accidents, since the ensuing
navigation system instructions will be incorrect until the
system recovers.

This paper presents a real-time vehicle localization ap-
proach that uses vision-based perception and, optionally,
route curvature measurements, to reliably determine a ve-
hicle’s position on a network of roads without relying on
GPS (Figure 1d). The algorithm uses topometric localiza-
tion, which is a hybrid method that combines topological
localization (i.e., qualitative localization using a graph) with
metric localization (i.e., quantitative localization in Euclidean
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Fig. 1: Current GPS-based navigation systems can become lost in
certain situations, such as in downtown areas (a), (b) and parallel
roads (c). The red triangle is the true vehicle position, whereas the
GPS system locates it inside a building (car icon). Our topometric
localization algorithm can track a vehicle’s position on arbitrary
road networks without relying on GPS (d). The vehicle location in
(d) is the same as in (a).

space) [4]. The combination of topological and metric local-
ization has been shown to provide geometrically accurate
localization using graph-based methods that are normally
limited to topological approaches [4].

Previous work on topometric localization was limited to a
single, non-branching route [4], [5]. This paper extends the
topometric localization concept to operate on an arbitrary
network of roads that includes branching and merging at
intersections, highway exits, and entrance ramps. In addition
to this primary contribution, we also extend the algorithm to
utilize road curvature measurements when they are available.
We show, experimentally, the situations in which curvature is
most effective for localizing and evaluate localization in situ-
ations where the database images are only sparsely available.
Finally, we demonstrate reliable, real-time localization in
GPS-denied situations and on ambiguous routes – situations
that normally cause navigation systems to lose track of the
vehicle position.

II. RELATED WORK

Visual localization methods rely either on the extraction
of local features from images to build and match against a
visual database of the environment [2], [3], [16], [17], [21]
or use direct methods without explicit visual local feature
detection [18].



The two main categories of visual localization approaches
are metric and topological. Topological approaches [2], [3],
[21] use graphs in which nodes identify distinctive places
of the environment and edges link them according to some
distance or appearance criteria. Localization is achieved
by finding the node where the robot is currently located.
Metric localization provides, instead, quantitative estimates
of observer position in a map. Simultaneous localization and
mapping (SLAM) [17], [18], and visual odometry [9], and
some appearance-based localization approaches relying on
accurate 3D maps [?], [15] fall into this category.

The fusion of topological and metric localization has been
approached before – mainly in the SLAM domain and using
3D sensors [7], [8], [14], [16], [20]. In these approaches,
the fusion aims at segmenting metric maps represented by
topological nodes in order to organize and identify submap
relations and loop closures.

Recently, researchers have proposed fusing metric local-
ization approaches with road trajectory information taken
from prior maps, such as OpenStreet1. Localization is
achieved by matching observed trajectories, constructed from
visual odometry [9], [12] or IMU-based odometry [22], with
a prior map using various techniques, such as Chamfer
matching [12], curve similarity matching [22], or street
segment matching [9]. Such approaches, however, are subject
to drift in situations where the road geometry offers no
constraints (e.g., long, straight road segments), particularly
when visual odometry is used. Our probabilistic framework
can incorporate road geometry features naturally, as we
demonstrate with the curvature descriptor, but the visual
localization provides complimentary constraints to prevent
drift in most cases.

Our approach differs from visual SLAM methods that
incrementally construct a map [11]. Those methods are typi-
cally more focused on accurate loop closure and topological
correctness than accurate localization. For example, [11]
reports any match within 40 meters of the true match as
correct. In contrast, our approach reliably achieves average
localization accuracy on the order of 1 m. On the downside,
our approach requires a prior map to localize with respect to.
However, this is not such an onerous requirement, since such
maps already exist (e.g., Google Street View). Our previous
work has shown that the maps do not have to be updated very
frequently, as localization is robust to changing conditions,
such as seasonal variations and different weather and light
conditions [5], [6].

III. LOCALIZATION ON A ROAD NETWORK

The prior map needed for topometric localization is cre-
ated by traversing the routes with a vehicle equipped with
a similar (though not necessarily identical) set of sensors to
those used at runtime. The next several sub-sections describe
how the road network map is represented (Section III-A),
how it is automatically created (Section III-C), baseline topo-
metric localization for a non-branching route (Section III-D),

1http://wiki.openstreetmap.org/wiki/planet.osm

Fig. 2: The road network is represented as a directed graph.
Edges correspond to road segments (yellow lines), and nodes
connect edges at splitting and merging points (red dots). Intersection
boundaries are denoted as white circles.

and the extension of topometric localization to road networks
(Section III-E).

A. Road Network Map Representation

A road network is represented by a directed graph G(V,E)
(Figure 2). Edges E in G correspond to segments of a
road with no junctions. The direction of the edge indi-
cates the direction of legal traffic flow. Vertices V in G
correspond to points where road segments merge or split
(called “split points” and “merge points” hereafter). An
intersection is represented by several edges in G, with each
legal path through the intersection represented separately.
Lanes traveling in opposite directions on the same road
are represented by separate edges as well. Each edge in G
is subdivided into a linear sequence of fine-grained nodes,
each of which is associated with a geographical location
(e.g., GPS coordinates) and a set of features derived from
observations obtained at that location. The fine-grained nodes
are spaced at constant intervals along the length of each edge.

B. Location Appearance and Road Curvature Descriptors

In this work, we use two types of descriptors. The location
appearance descriptor is derived from camera imagery, and
the road curvature descriptor is derived from the vehicle
motion estimate.
Location appearance. For encoding location appearance,
the whole-image SURF (WI-SURF) descriptor has previ-
ously been shown to be robust to changes in lighting and
environmental conditions [5]. The WI-SURF descriptor is
an adaptation of the upright SURF (U-SURF) descriptor to
cover an entire image [1]. It is a 64-vector encoding of the
distribution of wavelet filter responses across the image. Each
fine-grained node in the graph is associated with the WI-
SURF descriptor of the geographically closest observation.
Other, potentially more discriminitive, appearance descrip-
tors, such as the bag of words used in FAB-MAP 2.0 [11],
could be interchanged for the WI-SURF descriptor. However,
WI-SURF is much more computationally efficient, requiring
only 0.45 ms to compute (enabling the full algorithm to
easily run in real-time), as compared to extraction and
computation of hundreds of SURF descriptors per image,



as required by FAB-MAP’s SURF/bag of words approach,
which takes about 0.5 seconds to process and inhibits real-
time operation [10].
Location curvature. In this paper, we introduce a road
curvature descriptor, which we hypothesize can aid in local-
ization at splitting points, such as intersections and highway
exits. The curvature descriptor models the curvature of the
recent history of the vehicle’s route. Specifically, we define
the descriptor as the signed difference in vehicle orientation
(yaw) at the current position and the orientation a fixed
distance backward along the route:

ci = θi − θi−L, (1)

where θ is the vehicle yaw (in radians), i indexes the current
node in the map, and L is the lookback distance in nodes. The
yaw is measured with respect to an arbitrary fixed orientation
and is limited to the range −π/2 to π/2.

The curvature descriptor is both computationally efficient
and easily available. In our implementation, we use the
vehicle’s IMU to compute the descriptor. However, if an IMU
is not available, any means of estimating relative orientation
can be used, such as a compass, a gyro, or integrating the
steering wheel position. A descriptor is computed and stored
for each fine-grained map node. The single scalar value adds
negligible storage requirements to the map and is efficient to
compute.

In our experiments (Section V-A), we objectively de-
termine a suitable lookback distance L and evaluate the
benefits of using the curvature descriptor for localization.
As will be shown, the descriptor can significantly accelerate
convergence to the correct route after passing a split point.

C. Automatic Road Network Map Creation

The road network map is created by driving a mapping
vehicle along the routes that comprise the network, ensuring
that each significant road segment is traversed at least
once. As the vehicle drives the route, a route database is
created, containing a sequence of fine-grained nodes spaced
at uniform intervals (1 m in our implementation) along with
observations from on board cameras and motion trajectory
measurements. Location appearance and road curvature de-
scriptors are computed using these observations and stored
with each fine-grained node.

The initial map is a linear route with no concept of
intersections or connectivity at split points or merge points.
The route may have redundant sections because the vehicle
sometimes needs to traverse the same path multiple times
to fully explore the entire route network. We process the
initial map to remove these redundant sections and transform
the route into a graph-based road network (Figure 2). First,
intersections in the network are identified. Intersections can
be detected using online digital maps (e.g., Google Maps)
or by heuristics on the geometry of the node locations. For
each intersection, a circle encompassing that intersection is
defined. Each point where the vehicle route crosses this circle
is detected, and a vertex is added to the road network graph

G. Directed edges are then added for each route segment
connecting vertices in sequence along the traversed route.
Next, redundant edges are detected and eliminated. An edge
is considered redundant if its source and sink vertices are
both within a threshold distance of those from another edge.

It is not strictly necessary to traverse all segments within
intersections, as it can be challenging to cover all possible
routes through every intersection. Instead, missing segments
through intersections are inferred. Each node representing
an entrance to an intersection is connected to all other
nodes representing departures from the intersection, with the
exception of the route traversing the opposite direction on the
same road (i.e., no u-turns allowed in intersections). Then
a new segment is created for each inferred route through
the intersection by fitting a b-spline connecting the two
adjacent segments. Curvature descriptors are calculated for
these inferred segments, but location appearance descriptors
are not.

D. Topometric Localization on a Road Segment

Once a road network map is created, we use topometric lo-
calization to determine the location of the vehicle as it drives
anywhere on the network at a later time. We first briefly
review the basic topometric localization algorithm, which is
limited to non-branching routes, and then demonstrate how
it is extended to handle a road network. See [5] for details
of the basic algorithm.

The vehicle position is represented as a probability distri-
bution over fine-grained nodes and tracked over time using
a discrete Bayes filter [19]. We chose the discrete Bayes
filter over alternate approaches, such as a Kalman filter or a
particle filter, because we wanted the algorithm to be capable
of localizing globally, which is not achieved by a Kalman
filter and is not guaranteed by a particle filter. At a given time
t, the estimated position of the vehicle is a discrete random
variable Xt with possible values corresponding to fine-
grained nodes in the route (i.e., xk, k = 1, 2, 3...N , where
N is the number of nodes in the route). The probability
of the vehicle being at node xk at time t is denoted as
pk,t = p(Xt = xk) and the probability distribution (pdf) over
all nodes is p(xk) = {pk,t}.

The position estimate pdf p(xk) is initialized to the
uniform distribution or to a prior estimate of vehicle position,
if available. The Bayes filter repeatedly updates the pdf
by applying two steps: prediction, which incorporates the
vehicle’s motion estimate; and update, which incorporates
knowledge from new measurements. Formally,

Input: {pk,t−1}, st, zt
Output: {pk,t}
# Predict
p̄k,t =

∑N
i=1 p(xk,t|st, xi,t−1 = xi) pi,t−1

# Update
pk,t = η p(zt|xk,t) p̄k,t

where st and zt are the vehicle velocity and observations
at time t respectively and η is a normalizing constant. To
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Fig. 3: Measurement pdfs for the location appearance descriptor (a)
and the road curvature descriptor (b). The red line is the parametric
fit to the empirical distribution (blue line).

implement the filter, we must model two probability dis-
tributions: the state transition probability, p(xk,t|st, xi,t−1),
and the measurement probability, p(zt|xk,t).

The state transition probability has the effect of translating
and smoothing the vehicle position estimate. Assuming that
the vehicle velocity st is measured with zero mean and
variance σ2

s , the motion in an interval ∆t is µ = st∆t/ρ
with a variance of σ2 = (∆t σs/ρ)2, where ρ is the distance
between fine-grained nodes. We represent the state transition
probability with a Gaussian pdf:

p(xk,t|st, xk,t−1) =
1

σ
√

2π
exp

(
− (xi − xk,t−1 − µ)2

2σ2

)
(2)

We model the measurement probability function with a
linear combination of two pdfs: one that models potentially
correct matches, converting similarities between measured
descriptors and those in the database into probabilities,
and one that models coincidental matches. The first pdf
is modeled by fitting a parametric model to the empirical
distribution of similarity measures for a set of training data
for which ground truth is known. For the location appearance
descriptor, we define zd as the dissimilarity between d, a
measured WI-SURF descriptor and di, a database descriptor
(i.e., zd = |d− di|). We accumulate measurements of zd for
a sample set of data to produce an empirical pdf, which
we model parametrically using a Chi-squared distribution
(Figure 3a). Similarly, for the road curvature descriptor, we
define the dissimilarity zc between c, a measured curvature
descriptor, and a curvature descriptor from the database,
ci as zc = |c− ci|, and model the empirical pdf using an
exponential distribution (Figure 3b). The second pdf mod-
els coincidental matches at other locations along the route
with a uniform distribution. The measurement pdf for each
descriptor type is a linear combination of these two pdfs:

p(zd|xk) = ηd

{
αd + χ(zd, k) if xk = li
αd otherwise (3)

p(zc|xk) = ηc

{
αc + f(zc, λc) if xk = li
αc otherwise (4)

where li is the location of the database feature used to
compute the measurement, χ is the learned Chi-squared
distribution with k degrees of freedom, f is the learned

exponential distribution with rate parameter λ, αd and αc

are weighting factors, and ηd and ηc are unit normalization
factors. The final measurement pdf is then the product of the
individual pdfs:

p(zt|xk) = η p(zd|xk)p(zc|xk) (5)

The estimated vehicle location after each time step is the
maximum a posteriori (MAP) estimate, which is the node
with the highest probability:

Xt = arg max
k

(pk,t). (6)

E. Topometric Localization on a Road Network

We now show how the topometric localization algorithm
is extended to operate on a road network. In the graph-based
formulation, the state transition probability function must
be modified to accommodate split and merge points in the
directed graph. The process is simplified by dividing the state
transition function into two phases. First, the probabilities
are updated by the motion estimate under the assumption of
no motion uncertainty, which corresponds to a shift by µ
nodes, and second, the probabilities are smoothed using the
Gaussian kernel.

The process of shifting the probabilities is analogous to
water flowing in pipes. When probabilities are shifted across
a merge point, they are summed with the probabilities shifted
from the other paths leading to the merge point; when they
are shifted across a split point, they are divided by the
branching factor (i.e., a three-way split is a branching factor
of three, resulting in probabilities divided by three).

The process of Gaussian smoothing is similar to proba-
bility shifting, but the directionality of the edges is ignored.
For each node xk, the Gaussian kernel is applied centered
at that node. When an n-way split or merge is encountered,
traversing either forward or backward from xk in the graph,
the associated weight for the kernel is divided by n. This
process is applied recursively along each route leading from
the split point (or into the merge point). For practical
purposes, the Gaussian is truncated at a distance of 3σ, at
which point, the weights are insignificant.

Fig. 4: An example of the localization algorithm as the vehicle
passes through a 3-way intersection. Snapshots of the probability
graph show the vehicle approaching and entering the intersection
(top row) and then emerging on the left route (bottom row). Bubbles
of increasing size and redness indicate higher probability at a given
fine-grained node, while smaller and more green bubbles indicate
lower probability.



Figure 4 shows an example of the localization algorithm
running as the vehicle approaches an intersection. This
example uses a database with 10 m image frequency. As the
vehicle enters the intersection, it turns left. Initially, proba-
bility spreads to all three possible routes. As more evidence
accumulates from visual measurements, the probability for
the left route increases, while that of the other two routes
decreases.

F. Curvature Descriptor Computation Near Merge Points

In most cases, computation of the curvature descriptor is
straightforward. However, at points within L nodes beyond a
merge point, there are multiple possible curvature measure-
ments during the mapping phase (since the vehicle could
arrive from any of the incoming segments). In such cases,
near an M-way merge point, we store M separate curvature
measurements in the database – one for each incoming seg-
ment. At runtime, when evaluating the curvature descriptor
measurement pdf, M curvature descriptors are computed.
Since the probabilities leading to a merge point are mutually
exclusive, we weight the associated measurement probabili-
ties p(zc|xk)m according to the probability that the vehicle
arrived from the corresponding segment m (i.e., pe,m):

p(zc|xk) = η

M∑
m=1

p(zc|xk)mpe,m (7)

The probabilities pe,m can be obtained by maintaining a
historical buffer of vehicle probability distributions, saving
as many distributions as needed to cover a distance of L tra-
versed nodes, and looking up the probabilities at a lookback
distance L along each possible segment. In practice, only
one incoming route has probability significantly different
from zero, so we can approximate the exact solution by only
maintaining a buffer of the most likely vehicle positions for a
distance L. Then, the curvature descriptor from the segment
containing the most likely previous position at the lookback
distance is used. In the case where the most likely previous
previous position is not on any of the incoming segments,
the curvature descriptor is not used.

IV. EXPERIMENTAL SETUP

We evaluated the proposed algorithm using a test vehicle
with two suites of cameras. The first set is a pair of Point
Grey Flea 2 cameras mounted on the left and right sides of
the vehicle, pointing at a 45◦ angle from forward-facing, with
images recorded at 15 Hz and downsampled to 256 x 192
pixels. The second camera suite is a roof-mounted Point Grey
Ladybug 5 omni-directional camera. For this work, we used
images from the two cameras that were 72◦ from forward-
facing, recording at 10 Hz and downsampling to 256 x 306
pixels. The different camera configurations show that our
algorithm is robust to different setups and can operate with
low resolution imagery.

We evaluated the algorithm using data from two distinct
route networks. The “neighborhood network” is a compact
network in a small-sized (0.5 km2) suburban residential
neighborhood (Figure 5(a)). The area has a regular grid-
shaped structure and consists primarily of houses, trees, and
stationary vehicles. The mapped network includes three split
and three merge points with branching factors of two and
three. The “city network” is a more comprehensive road
network that covers a variety of environment types, includ-
ing urban, suburban, and highway sections. The route was
designed to include regions that challenge GPS-based nav-
igation devices. One section focuses on downtown naviga-
tion between high-rise buildings. This region contains eight
two-way splits and eight two-way merges. Another section
includes a split in the highway where the two roads travel
parallel to one another, and after 0.8 km, proceed in different
directions. The database image sequences and evaluation
image sequences were collected at different times on a single
day. More extensive analyses the effects of illumination and
appearance variance were presented in [4], [5], and [6].
Ideally, our experiments would use an established database,
such as the KITTI benchmark [13]. Unfortunately, this and
other available databases are aimed at other variations of
localization or visual odometry, and are not suitable for this
algorithm, since they do not cover the same route multiple
times (though some segments are revisited to support loop
closure).
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Fig. 5: (a) The neighborhood evaluation route. (b) The average distance to converge using different lookback distances L. (c) Average
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shown in figure).



In regions where GPS works reliably, we compute ground
truth localization using the on-board IMU and the GPS
correction algorithm described in [5]. Where GPS is not
available, the IMU data is aligned to a prior map of the route
network. Specifically, points along the route are manually
matched by comparing visual landmarks from the on board
cameras to images from Google Street View (for which the
GPS position is known), thereby generating a correspondence
between IMU measurements and GPS positions at each key-
point. The affine transform that aligns each adjacent pair of
IMU-GPS correspondences along the route is estimated, and
the intermediate IMU measurements between each pair of
correspondences are then converted to GPS coordinates using
this transform. The reported localization error is measured
along the route with respect to the ground truth position.

We collected data in each route network two separate
times. The data collection took place on different days, at
different times, and under different lighting conditions. For
each route network, one data collection was used to construct
the map, and the other one was used for localization. The
algorithm runs at 10 Hz for these data sets on off the shelf
hardware with no explicit optimizations.

V. EXPERIMENTAL RESULTS

In this section, we present performance evaluations and
limitations of the network-based topometric localization al-
gorithm. We first analyzed the curvature descriptor perfor-
mance and determined the best choice for the lookback
distance. Then we evaluated the effectiveness of the road
curvature measurement in improving the localization perfor-
mance. Finally we compared the performance of our system
and commercial GPS navigation system in situations where
GPS-based localization may fail.

A. Road Curvature Descriptor Evaluation and Lookback
Distance

Our first experiment used the neighborhood data set to
evaluate the performance of the road curvature descriptor and
to determine a suitable lookback distance L for computing
the descriptor (Equation 1). This experiment did not use the
location appearance descriptor, enabling evaluation of the
road curvature descriptor in isolation. For this experiment,
we selected 15 starting locations uniformly distributed on
the route. We initialized the algorithm with a uniform prior
location estimate and then recorded the distance the vehicle
travelled before the algorithm converged. Convergence is
defined as the point at which the localization error falls below
10 m and that the error stays below 10 m for at least another
100 m of travel.

We performed this test using the same starting locations
but with different values of the lookback distance L, ranging
from 6 to 14 m in 2 m increments. These distances were
chosen based on the typical size of an intersection. The
results, shown in Figure 5(b), indicate that the road curvature
descriptor is an effective method for localization, even when
the initial vehicle location is unknown. The distance to
converge ranges from 132 m to 195 m, with the minimum

TABLE I: Localization results on the “neighborhood network.”
Units in meters.

Image rate Meas Avg Err Max Err Err Std
1 m/img Image 1.10 7.50 1.23

Fusion 1.19 7.50 1.17
5 m/img Image 1.22 8.09 1.25

Fusion 1.17 7.80 1.24
10 m/img Image 3.37 69.42 4.81

Fusion 2.12 9.52 1.67
20 m/img Image 8.07 90.56 6.83

Fusion 3.99 52.59 2.95
30 m/img Image 14.28 185.20 12.69

Fusion 5.08 166.92 10.8
50 m/img Image 52.54 355.82 66.12

Fusion 14.58 346.28 54.51

occurring with L = 10 m. Therefore, we used this value of L
for all of the other experiments in this paper. The distance to
convergence tends to be relatively large because the roads in
this map are straight, and the corners are all right angles. In
order to localize, the vehicle must turn at least two corners,
which can be a long distance, depending on the starting point.

B. Sparse Imagery and Benefits of the Road Curvature
Descriptor

In previous work, topometric localization was evaluated
using relatively dense image data along the route (typically
at least 2 m intervals). As the algorithm scales to larger
route networks, even the recording of a 64-vector at this
density can require significant storage. For reference, Google
Street View stores images at intervals of about 10 m. The
road curvature descriptor requires negligible storage space
by comparison, but, as shown in the previous experiment,
localization can be limited when the route has no turns.

Based on these observations, we tested the algorithm
to assess its performance with reduced image availability
and determine the minimum amount of visual information
required to maintain localization with a reasonable average
error (e.g., < 10 m). We also wanted to assess whether
the curvature descriptor provides any benefit for localization.
Using the neighborhood data set, we created map databases
using image frequency ranging from 1 m to 50 m. We then
ran the localization algorithm using a separate test route
through the neighborhood. We evaluated the algorithm for
each map database with the location appearance descriptor
alone (image test case) and with both appearance and cur-
vature descriptors together (fusion test case).

The results of the experiment, shown in Table I and
Figure 5(c), indicate that at dense image availability (0.2
to 1 images/m), curvature measurement does not provide
any benefit over location appearance descriptors alone, since
the accuracy differences are well within the expected noise
level. This also agrees with the results in [5], in which at
high image database density, the range measurement does
not provide additional improvement, and the average error is
less than 1 meter both with and without range measurement.
Intuitively, images are better at precise localization when the
images are available and the features are distinctive, whereas
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Fig. 7: Our algorithm enables reliable localization in urban canyons.
The vehicle drove the blue route. At points 1-5, the commercial GPS
system reported incorrect vehicle locations (red diamonds and insets
on right) versus the true locations (green circles). Our algorithm
maintained correct localization throughout (left insets), as can be
seen from the comparison of the live (Live) and matched (DB) map
images in the left insets.

localization using curvature is limited by the road geometry.
With only the appearance descriptor, localization accuracy
decreases significantly as image frequency reduces to 10 m
and beyond. The average error exceeds 10 m at the 30 m
spacing, and fails to converge at all at the 50 m frequency.
On the other hand, the fusion of the appearance and curvature
descriptors yields much better performance in these sparse
image density cases. The average localization error is at or
below 5 m up to 30 m image spacing. Figure 6 shows that at
the 10 m image spacing, peaks in localization error for the
appearance-only case typically occur immediately after the
vehicle moves through a splitting point. This effect is likely
due to insufficiently distinctive visual information within
intersections, and the algorithm re-converges once through an
intersection. Incorporating the curvature descriptor, however,
enables the algorithm to converge much more quickly at
intersections, in this experiment, reducing the maximum
error from 70 m to below 10 m. In sparse image availability
cases, the curvature descriptor provides the most benefit at
precisely the locations where the appearance descriptor has

TABLE II: Localization results for the downtown and parallel roads
experiments.

Region Meas Avg Err Max Err Err Std
Downtown Image 3.70 m 15.87 m 3.84 m

Fusion 3.69 m 14.88 m 3.74 m
Parallel roads Image 8.79 m 17.30 m 2.31 m

Fusion 8.63 m 17.30 m 2.31 m

the most difficulty. The results also suggest that it is viable to
localize using database with sparse image information, such
as Google Street View, particularly in non-intersection areas
where precise localization may be less important.

C. Performance Evaluation in GPS-denied Scenarios

We evaluated the algorithm’s ability to maintain localiza-
tion when GPS is unavailable or not accurate enough. In
the first example, we evaluated navigation in the downtown
region of the city dataset. Our algorithm successfully local-
ized on routes where the commercial GPS system becomes
lost (Figure 7). In areas with tall buildings, the commercial
GPS system frequently placed the vehicle in a building or
other impossible location. In contrast, our algorithm was
able to localize throughout the entire route. The overall
accuracy averaged 3.7 m (Table II) – slightly worse than the
neighborhood experiment. This difference is primarily due
to limitations in the ground truth accuracy. Visual inspection
of matching images shows that the true error is typically
smaller.

In a second example, we tested on part of the city map
where the road splits and two lanes proceed in parallel for
a long time and eventually head in different directions (Fig-
ure 8). We programmed an integrated vehicle GPS navigation
system to navigate from position 1 on the map to the red
star, which required taking the left fork at the split point
immediately after position 1. The driver missed the exit
and took the right fork instead. The commercial navigation
system failed to localize after the split, and continued giving
directions as if the driver were on the left route (positions 2
through 6). Only after the paths separated significantly did
the system recognize the error and replan (at position 7).
In contrast, our algorithm converged to the correct branch
almost immediately after the split (at position 3) and was
never confused about its location through the entire route.
The estimated position is off by a few meters longitudinally
(Table II), primarily due to the lack of nearby features to
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Fig. 8: Our algorithm handles parallel road situations. The commercial navigation system does not realize that the driver took a wrong turn
at location 1 until the vehicle reaches location 7. Lower insets: Screenshots of the commercial system when at corresponding positions
marked with red diamonds. Upper insets: Probability maps of our algorithm. Blue squares mark the ground truth position.

localize more accurately along the route. In a separate test,
our system also successfully localized the vehicle when it
followed the left lane instead.

VI. SUMMARY AND FUTURE WORK

In this paper, we have shown how topometric localization
can be used to localize a vehicle using imagery and road
curvature measurements. We demonstrated the method ex-
perimentally using data obtained on different days and with
different camera suites. Our findings indicate that the method
can localize reliably in typical scenarios when driving on a
network of routes and that it can handle situations where
conventional GPS-based navigation systems fail. We found
that the curvature descriptor is most effective when only
sparse imagery is available (10 m between images or less).

In the future, we intend to extend the algorithm to han-
dle navigation in different lanes. This could be used, for
example, to detect when the vehicle is in the incorrect lane
at a confusing branching point, which is a common cause
of navigation error. We also plan to explore the use of the
algorithm for localizing using existing visual databases, such
as Google Street View. Our preliminary experiments have
shown that this is possible. We are also experimenting with
more sophisticated representations of the curvature feature,
and we are analyzing the effects of weighting factors in
combining measurements from different sensors. Finally, we
want to demonstrate the algorithm at a city or national scale,
which will require additional compression and optimization
of the descriptor database. We have not yet found the limit
of the global localization in terms of map size.
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