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Abstract—We consider the problem of using real-time feedback
from contact sensors to create closed-loop pushing actions. To do
so, we formulate the problem as a partially observable Markov
decision process (POMDP) with a transition model based on
a physics simulator and a reward function that drives the
robot towards a successful grasp. We demonstrate that it is
intractable to solve the full POMDP with traditional techniques
and introduce a novel decomposition of the policy into pre- and
post-contact stages to reduce the computational complexity.

Our method uses an offline point-based solver on a variable-
resolution discretization of the state space to solve for a post-
contact policy as a pre-computation step. Then, at runtime, we
use an A∗ search to compute a pre-contact trajectory. We prove
that the value of the resulting policy is within a bound of the
value of the optimal policy and give intuition about when it
performs well. Additionally, we show the policy produced by our
algorithm achieves a successful grasp more quickly and with
higher probability than a baseline policy.

I. INTRODUCTION

Humans effortlessly manipulate objects by leveraging their
sense of touch, as demonstrated when a person feels around
on a nightstand for a glass of water or in a cluttered kitchen
cabinet for a salt-shaker. In each of these tasks the person
makes persistent contact with the environment and uses their
tactile sense for real-time feedback. Robotic manipulators
should be able to similarly use contact sensors to achieve
this kind of dexterity. In this paper, we present a strategy for
generating a robust policy for contact manipulation that takes
advantage of tactile feedback.

Contact manipulation is an inherently noisy process: a robot
perceives its environment with imperfect sensors, has uncertain
kinematics, and uses simplified models of physics to predict
the outcome of its actions. Recent work (Section II) has formu-
lated manipulation as a partially observable Markov decision
process (POMDP) [19] with a reward function that drives the
robot towards the goal [13, 15, 16, 40]. Unfortunately, the
contact manipulation POMDP is intractable for most real-
world problems like Fig. 1 where a robot hand manipulates
an object into its hand with a closed-loop tactile policy.

Our key insight is that the optimal policy for the contact
manipulation POMDP naturally decomposes into two stages:
(1) an open-loop pre-contact trajectory followed by (2) a
closed-loop post-contact policy that uses sensor feedback to
achieve success. This decomposition mirrors the dichotomy
between gross (pre-contact) and fine (post-contact) motion
planning [17] found in early manipulation research.

We can accurately detect the transition from pre- to post-
contact because contact sensors discriminate whether or not

pre-contact
post-contact

Fig. 1: Robot using real-time tactile feedback to grasp a box
under pose uncertainty. The robot begins by executing an
open-loop, trajectory (top) towards the object. Once the robot
observes contact (middle), it switches to executing a closed-
loop policy (bottom) to complete the grasp.

contact has occurred [21]. As a result, any contact observation
indicates that the object lies on the contact manifold [11, 21,
30], the lower-dimensional set of poses for which the object
is in non-penetrating contact with the hand.

We exploit this structure to find a near-optimal policy for
the contact manipulation POMDP. First, as an offline pre-
computation step, we find a post-contact policy using a point-
based method [37]. This is possible because we only need to
plan for the set of beliefs whose support lies entirely on the
contact manifold. Then, when presented with a new scene, we
perform an efficient A∗ search to plan a pre-contact trajectory
that makes contact with the object.

In this paper, we specifically consider the task of pushing
objects on a planar support surface (Fig. 1) with binary contact
sensors for feedback. This problem is a fundamental research
topic in manipulation [14, 32, 34] and enables robots to
perform a wide variety of tasks that would not be otherwise
possible. Pushing enables robots to move objects that are too
large or heavy to be grasped [6], for pre-grasp manipula-
tion [5, 20], and to grasp objects under uncertainty [4, 7, 8].

We build on this large body of work by developing a closed-
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loop pushing action that is robust to large amounts of uncer-
tainty. We demonstrate, through a large suite of simulation
experiments, that our uncertainty-aware policy outperforms a
baseline policy that makes use of real-time feedback.

We make the following contributions:
Policy Decomposition. We show that the optimal policy
for the contact manipulation POMDP naturally decomposes
into an open-loop move-until-touch trajectory followed by
a closed-loop policy (Section IV). We introduce a novel
algorithm that exploits structure of contact manipulation to
efficiently find a provably near-optimal policy.
Post-Contact Policy. We present a method of finding a post-
contact policy (Section IV-A) using a point-based POMDP
solver [37]. Finding a solution is efficient because we explic-
itly discretize the contact manifold to accurately represent the
object’s interaction with the hand.
Simulation Results. We demonstrate that the proposed algo-
rithm successfully grasps an object in simulation experiments
(Section V-C). Our uncertainty-aware policy achieves a suc-
cessful grasp more quickly and with higher probability than a
baseline closed-loop policy.
Real-Time Performance. Decomposing the policy into two
stages enables us to perform the computationally expen-
sive calculation of the post-contact policy in an offline pre-
computation step. Executing the pre-contact trajectory is en-
tirely open-loop and evaluating the post-contact policy takes
milliseconds (Section V-B).

We also discuss several limitations of our work. Key among
them is the requirement that the post-contact policy be pre-
computed. This is possible for local policies—such as grasping
an object or actuating controls—but precludes policies that
require large, global movement. For example, our algorithm
cannot efficiently generate policies for problems that require
long transit phases or coordinating two distant end-effectors.

II. RELATED WORK

Early work in contact manipulation focused on sensorless
manipulation, where the robot attempts to plan an open-loop
trajectory that achieves a task—such as inserting a peg in a
hole [31] or localizing an object on tray [9]—despite initial
pose uncertainty. More recently, the push-grasp [7, 8] has
applied the same approach to grasping by using a long straight-
line push to funnel the object into the hand before closing
the fingers. These techniques model the problem using non-
deterministic uncertainty [24] and use worst-case analysis to
guarantee success. In contrast, our algorithm considers prob-
abilistic uncertainty and directly minimizes the time required
to achieve the goal. The policies produced by our algorithm
leverage real-time sensor feedback to more quickly achieve
the goal.

Other research has approached contact manipulation as a
control problem by directly mapping observations to actions.
Prior work has developed controllers that can locally refine
the quality of a grasp [38] or achieve a desired tactile sensor
reading [26, 43]. These techniques achieve real-time control
rates of up to 1.9 kHz [26] and impressive performance

in controlled environments. However—unlike our approach—
these algorithms require a high-level planner to analyze the
scene and provide a setpoint to the controller.

Recent work, such as this paper, has attempted to combine
the advantages of both approaches by formulating the contact
manipulation problem as a POMDP [16] and synthesizing a
closed-loop policy that can reason about uncertainty. Many of
these approaches, such as tactile localization [18, 36], split the
problem into an information-gathering stage, which attempts
to localize the object, followed by a goal-directed stage.
Alternative approaches gather information while executing
goal-directed trajectories and dynamically re-plan based on
observations received during execution [39, 40]. Our technique
improves on these results by eliminating the need for an ex-
plicit information-gathering stage. Instead, we naturally gather
information during execution and only when it necessary to
achieve the goal.

Most recently, Horowitz et al. applied SARSOP [23]—the
same point-based POMDP solver [37] we use to to find the
post-contact policy—to synthesize a grasp of a lugnut [13].
We generalize this approach to the wider class of contact
manipulation problems, including those with long planning
horizons, by decomposing the policy. Our pre- and post-
contact decomposition closely mirrors the “simple after de-
tection” property of POMDPs observed in aerial collision
avoidance [1]. This property states that all but one observation
lead to belief states that admit simple sub-policies. In our case,
we subvert the need for simple sub-policies by leveraging
the small number of post-contact beliefs to pre-compute an
exhaustive post-contact policy.

III. CONTACT MANIPULATION PROBLEM

We focus on the class of contact manipulation tasks where
a robotic manipulator maintains persistent contact with its
environment; e.g. pushing an object to a desired pose or
executing a grasp. Unfortunately, contact manipulation is
inherently uncertain: a robot perceives its environment with
noisy sensors, has uncertain kinematics, and uses simplified
models of physics for reasoning about the consequences of
its actions. Thus, incorporating and even seeking out new
information during execution is often critical for success.

A. POMDP Formulation

We formulate the contact manipulation problem as a par-
tially observable Markov decision process (POMDP) with
continuous state, but discrete action and observation spaces.
A POMDP is a tuple (S,A,O, T,Ω, R) where S is the set of
states, A is the set of actions, O is the set of observations,
T (s, a, s′) = p(s′|s, a) is the transition model, Ω(o, s, a) =
p(o|s, a) is the observation model, and R : S ×A→ R is the
reward function [19].

In a POMDP the agent does not know its true state but
instead tracks its belief state b : S → [0, 1] with

∫
S
b(s)ds = 1,

a distribution over S, with a state estimator. The set of all
belief states ∆ =

{
b : S → [0, 1] :

∫
S
b(s)ds = 1

}
is known

as belief space. The goal is to find a policy π : ∆ → A over
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Fig. 2: Contact manipulation POMDP. The robot starts in
belief state b0 ∈ ∆, takes action a ∈ A, and updates its belief
state with observation o ∈ O. The robot’s goal is to maximize
its reward R by pushing the object into the goal region G ⊆ S.

belief space that maximizes the sum of expected of future
reward E[

∑∞
t=0 γ

tR(st, at)] discounted by γ ∈ [0, 1).
We consider the planar contact manipulation problem

(Fig. 2) where a state s ∈ S = SE(2) is the pose of the object
relative to the hand and an action a = (va, Ta) ∈ A commands
the hand to follow the generalized velocity va ∈ se(n) for Ta
seconds, possibly making contact with the object.

During contact the motion of the object is modeled by a
quasistatic physics simulator [33]. The quasistatic assumption
states that an object will stop moving as soon as it leaves
contact with the hand. As a result, the state space consists
only of pose S = SE(2) instead of the tangent bundle S =
SE(2)× se(2). This approximation has shown to be accurate
for the planar manipulation of household objects at relatively
low speeds [6, 8].

The transition model T (s, a, s′) can additionally incorporate
state-action dependent uncertainty. This includes inaccuracies
in the physics simulator and the unknown physical properties
of the environment (e.g. friction coefficients). We can also
model noise in motion of the hand while executing actions,
assuming that the noise is independent of the full configuration
of the manipulator.

After taking action a, the robot receives an observation
o ∈ O that indicates whether the object is touching a contact
sensor. This is equivalent to testing whether s ∈ So, where
So ⊂ S is the observable contact manifold: the set of all
states that are in non-penetrating contact with one or more
sensors [22]. Similar to prior work [12, 18, 21, 22, 36],
we assume that observations perfectly discriminate between
contact (o ∈ Oc) and no-contact (o = onc), but may not
perfectly localize the object along the hand. For example, a
binary contact sensor that returns “contact” or “no-contact” for
the entire hand—but provides no additional information about
the pose of the object—satisfies this assumption.

For the remainder of this paper, we assume that the robot
starts with a prior belief b0 ∈ ∆—possibly initialized with
vision or knowledge of the environment—and wishes to push
the object into a hand-relative goal region G ⊆ S as quickly
as possible. We encode G in a reward function

R(s, a) =

{
0 : s ∈ G
−Ta : otherwise

that assigns zero reward to the goal and negative reward to all

actions. This encourages the robot to quickly move the object
into the goal region. However, our approach generalizes to any
state-action dependent reward function.

B. Value Function
Each policy π induces a value function V π : ∆→ R that is

equal to the sum of expected future reward of following policy
π in belief state b. The value function V ∗ of the optimal policy
π∗ is a fixed point of the Bellman equation

V ∗(b) = max
a∈A

[
R(b, a) + γ

∫
∆

T (b, a, b′)
∑
o∈O

Ω(o, b′, a)V ∗(b′)

]
where R(b, a) =

∑
s∈S R(s, a)b(s) is the expected reward of

executing action a in belief state b [3].

C. Tractability
Optimally solving a POMDP has been shown to be

PSPACE-complete [28] and is only tractable for small prob-
lems. Even worse, most POMDP solvers operate on discrete
state, action, and observation spaces.

Point-based methods [37] are a class of offline solvers
that approximate value function by performing backups at a
discrete set of belief points. These methods perform well when
the initial belief b0 is known a priori and the reachable belief
space R(b0) ⊆ ∆, the set of beliefs that are reachable from
b0 given an arbitrary sequence of actions and observations, is
small.

Unfortunately, the contact manipulation POMDP has a
continuous state space that must be discretized for most
point-based solvers. Discretizing a 1 m × 1 m region at a
2 cm × 2 cm × 10◦ resolution, which is the same resolution
used in our experimental results, would result in a state space
of size |S| = 90, 000. This is approximately an order of
magnitude larger than the problems solved by state-of-the-
art point-based methods [23]. More importantly, the resulting
policy would only be valid for a single initial belief state b0
and would need to be recomputed for each problem instance.

Online planning algorithms [42] forgo pre-computing the
full value function by finding a local policy during each step
of execution. Actions are selected by performing a forward-
search of the action-observation tree rooted at the current
belief state. Online planning algorithms can operate in con-
tinuous state spaces and perform well when tight upper and
lower bounds are available to guide the search and ample time
is available for action selection.

Unfortunately, performing this search online is intractable
given the real-time constraints on the contact manipulation
problem. Simply performing a Bayesian update on the contin-
uous belief state, which is a fundamental operation of an online
planner, requires running a large number of computationally
expensive physics simulations and is challenging to perform
in real-time [21, 44].

IV. POLICY FACTORIZATION

Our key observation is that a policy for the contact manip-
ulation POMDP is naturally split into pre- and post-contact
stages due to the discriminative nature of contact sensors.
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Fig. 3: Online POMDP solvers must branch over both actions
and observations. The pre-contact search only branches on
actions by evaluating all post-contact belief states with the
post-contact value function V c.

Before observing contact, the robot executes an open-loop pre-
contact trajectory ξ ∈ A × A × . . . and receives a series of
no-contact observations o1 = · · · = ot−1 = onc. Once contact
is observed ot ∈ Oc, the closed-loop post-contact policy πc

uses feedback from the hand’s contact sensors to achieve the
goal.

Decomposing the policy into pre- and post-contact stages is
equivalent to splitting the value function

V (b) = max
a∈A

[
R(b, a) + γ

∫
∆

T (b, a, b′) (1)(
Ω(onc, b

′, a)V (b′)︸ ︷︷ ︸
pre-contact

+
∑
o∈Oc

Ω(o, b′, a)V c(b′)︸ ︷︷ ︸
post-contact

)]

into two separate terms that depend on the current observation
and the value function V c of the post-contact policy πc. We
only need to consider the current observation—instead of the
full belief b—because contact sensors accurately discriminate
between contact (o ∈ Oc) and no-contact (o = onc).

The pre-contact term is active only for o = onc and
includes the reward earned from executing the remainder of ξ.
Conversely, the post-contact term is active for the remaining
observations o ∈ Oc = O \ {onc} and includes all reward
V c(b) that would be earned by π if the robot were to observe
contact in b and immediately switch to executing the post-
contact policy.

We compute the post-contact policy πc—and corresponding
value function V c—once per hand-object pair using a point-
based method [37] in an offline pre-computation step (Sec-
tion IV-A). Then, when given a problem instance, we solve
for the pre-contact trajectory ξ that is optimal with respect to
πc using an online search. As shown in Fig. 3 this is equivalent
to truncating an online POMDP search [42] once contact has
occurred and using V c to evaluate the value of the truncated
subtrees.

A. Post-Contact Policy
Suppose the robot is in belief state b while executing ξ,

takes action a, receives contact observation o ∈ Oc, and

(a) Free Space (b) Contact Manifold

Fig. 4: The state space considered by the post-contact planner
is partitioned into (a) free space Snc and (b) the contact
manifold Sc. Each sensor’s contribution to the observable
contact manifold So is labeled with a unique color.

transitions to the posterior belief state b′. At this point—due to
the discriminative nature of contact sensors—we know that the
object is in non-penetrating contact with one or more contact
sensors [21]. Formally, we know that the true state s ∈ S lies
on the observable contact manifold So ⊆ Sc: the subset of the
contact manifold Sc that is also in contact with one or more
sensors [22].

Fig. 4b shows Sc and So for the hand, object, and sensor
configuration as depicted in Fig. 2. The contact manifold
is a two-dimension structure embedded in SE(2) where the
vertical axis represents the orientation of the object relative to
the hand. Each color in on the manifold represents a region
of So that is in contact with a unique sensor. White regions
of manifold indicate simultaneous contact between the object
and multiple sensors.

Since the state is known to lie on So, we additionally
know that the belief state b′ is in post-contact belief space
∆o = {b ∈ ∆ : b(s) = 0 ∀ s 6∈ So} and exhibits sparse
support. Furthermore, many belief states R(∆o) reachable
from ∆o share the same sparsity because the state evolves
on Sc during periods of contact. As a result, the post-contact
POMDP is particularly well suited to being solved by a point-
based method [25].

1) Discretization: Ideally, we would only discretize the
regions of S that comprise the support of the optimally-
reachable belief space R∗(∆o). Unfortunately, finding the
optimally-reachable belief space is PSPACE-complete and is
just as hard as solving the full POMDP [23]. Instead, we define
a trust region Strust ⊆ S that we believe to over-estimate the
support of R∗(∆o) and solve the post-contact POMDP over
this smaller state space.

There is a trade-off in choosing the size of the trust region:
making Strust too small may disallow the optimal policy, while
making Strust too large will make it intractable to solve the
resulting POMDP. In the case of quasistatic manipulation [33],
we believe Strust to be relatively small because the optimal
policy will not allow the object to stray too far from the hand.
Note however, that this choice disallows policies that require



large global motions; e.g. performing an orthogonal push-grasp
once the object has been localized along one axis.

We compute the discrete transition, observation, and reward
functions over Strust by taking an expectation over the con-
tinuous models under the assumption that there is a uniform
distribution over the underlying continuous states. In practice,
we approximate the expectation through Monte Carlo rollouts.

It is important to discretize Strust such that the Markov
property still holds in the discretized state space. Unfor-
tunately, uniformly discretizing Strust poorly represents the
discontinuous nature of contact [13, 21]: two states in S may
be arbitrarily close together, but generate completely different
observations depending upon whether the object is in contact
with the hand. Instead, we compose the trust region Strust from
two components: (1) a uniform discretization of free space
Snc = Strust \ Sc (Fig. 4a) and (2) an explicit discretization
of the contact manifold Sc (Fig. 4b). We first discretize the
contact manifold into a set of orientation iso-contours that are
computed using a polygonal Minkowski sum [22]. Then, we
discretize the perimeter of each iso-contour into a sequence
of equal-length segments. Each segment is a discrete contact
state.

Using this discretization strategy, the observation model
and reward functions both satisfy the Markov property. The
transition model is not guaranteed to be Markovian: whether
or not a discrete state transitions from Snc to Sc depends
on the underlying continuous state. However, in practice, we
have found that the discrete belief dynamics closely match the
continuous belief dynamics given a high enough resolution.

2) Initial Belief Points: Unlike in the traditional application
of a point-based method—where the prior belief state b0
is known—we only know that b0 ∈ ∆o. We cannot seed
the point-based solver with the full set ∆o because it is
uncountably infinite. Instead, we initialize the solver with
with a discrete set of samples B ⊆ ∆c similar to the initial
beliefs that we expect to see during execution; e.g. Gaussian
distributions with means sampled uniformly at random from
Strust. This could be later refined by adding the post-contact
beliefs observed during execution to B and running additional
iterations of point-based value iteration.

B. Pre-Contact Policy
The belief dynamics are a deterministic function of the

action given a fixed sequence of “no contact” observations.
As a result, we can find the optimal trajectory ξ by running
an optimal graph search algorithm, such as A* [10], in
an augmented belief space by recursively expanding V in
Equation (1) to

V (b) = max
ξ

[ ∞∑
t=0

γt

(
t∏
i=0

Ω(onc, bi+1, ai)

)(
R(bt+1, at)

+
∑
o∈Oc

Ω(o, bt+1, ai)V
c(bt+1)

)]
. (2)

Each term in the summation corresponds to taking a single
action in ξ. The product is equal to the probability of reaching
time t without having observed contact.

1) Graph Construction: Define a directed graph G =
(V,E, c) where each node x = (b, pnc, t) ∈ V consists of
a belief state b, the probability pnc of having not yet observed
contact, and the time t. An edge (x, x′) ∈ E corresponds to
taking an action a in belief state b and transitioning to belief
state b′.

The cost of an edge (x, x′) ∈ E from x = (b, pnc, t) to
x′ = (b′, p′nc, t

′) is

c(x, x′) = −γtpnc

(
R(b′, a) + γ

∑
o∈Oc

Ω(o, b′, a)V c(b′)

)
,

precisely one term in the above summation. The no-contact
probability evolves as t′ = t + 1 and p′nc = pncΩ(onc, b

′, a)
because the Markov property guarantees ot ⊥ ot−1| st. When
pnc = 0 the cost of executing ξ is −V (b0). Therefore, finding
the minimum-cost ξ is equivalent to finding the optimal value
function V (b0).

Intuitively, the cost of an edge consists of two parts: (1)
the immediate reward R(b′, a) from taking action a in belief
state b and (2) the expected reward

∑
o∈Oc

Ω(o, b′, a)V c(b′)
obtained by executing πc starting from b′. The minimum-cost
path trades off between making contact quickly (to reduce pnc)
and passing through beliefs that have high value under πc.

2) Heuristic Function: The purpose of a heuristic func-
tion is to improve the efficiency of the search by guiding
it in promising directions. Heuristic-based search algorithms
require that the heuristic function is admissible by underesti-
mating the cost to goal and consistent [35]. Heuristic functions
are typically designed by finding the optimal solution to a
relaxed form of the original problem.

Since the true cost to the goal from a particular belief is
the negated value function, we compute a lower bound on
the cost-to-come by computing an upper bound on the value
function. We intentionally choose a weak, computationally
inexpensive heuristic function since the pre-contact search
primarily explores the simple, no-contact regions of belief
space.

We do this by solving for the value function of the MDP ap-
proximation [42] of our problem. The value function V MDP(s)
of the optimal policy for the MDP (S,A, T,R) is an upper
bound

V ∗(b) ≤ V MDP(b) =

∫
S

V MDP(s)b(s)ds

on the POMDP value function V (b).
Next, we upper-bound the MDP value function V MDP with

a deterministic search in the underlying state-action space by
ignoring stochasticity in the transition function. Finally, we
compute an upper-bound on the value of the graph search by
lower-bounding the cost of the optimal path with a straight-line
motion of the hand that is allowed to pass through obstacles.

After making these assumptions, the MDP approximation
of the value function is

V MDP(s) ≤
tmin∑
t=0

γtRmax



where Rmax = maxa∈A,s∈S R(s, a) is the maximum reward
and tmin is the minimum number of steps required to make
contact with the object.1 We can compute a lower bound on
bound on tmin as

tmin =

⌊
mins′∈G dist(s, s′)

dmax

⌋
where dist(s, s′) is the straight line distance between two
positions of the states, and dmax is the maximum displacement
of all actions.

This is an upper bound on V MDP because we are over-
estimating reward and under-estimating the time required to
achieve the reward in an environment with R(s, a) ≤ 0.
Therefore, from the definition of the MDP approximation [42],
we know that

h(x) = γtpnc

∫
S

V MDP(s)b(s)ds.

is an admissible heuristic for state x = (b, t, pnc).
3) Search Algorithm: We employ weighted A*, a variant

of A*, to search the graph for an optimal path to the goal [41].
Weighted A* operates identically to A* but sorts the nodes in
the frontier with the priority function

f(v) = g(v) + εwh(v)

where g(v) is the cost-to-come, h(v) is the heuristic function,
and εw is the heuristic inflation value.

For εw > 1, weighted A* is no longer guaranteed to return
the optimal path, but the cost of the solution returned is
guaranteed to be no more than εw times the solution cost
of the true optimal path [41]. Weighted A* has no bounds
on number of expansions, but—in practice—expands fewer
nodes that A*. This is beneficial when, such as in our case, it
is computationally expensive to generate successor nodes.

C. Suboptimality Bound

Factoring the policy into pre-contact and post-contact com-
ponents has a bounded impact on the performance of the
overall policy. To prove this, we assume that the pre- and
post-contact stages share identical discrete state, action, and
observation spaces and consider a search of depth T . Under
these circumstances, error can come from two sources: (1)
truncating the pre-contact search and (2) using a sub-optimal
post-contact value function.

We will derive an explicit error bound on η = ||V −V ∗||∞
by recursively expanding the Bellman equation for the for T -
horizon policy VT in terms of the value function VT−1 of the
(T − 1)-horizon policy:

||VT − V ∗||∞ ≤ γ||VT−1 − V ∗||∞ + γPmax||V c − V ∗||∞

≤ γT ||V0 − V ∗||∞ +

T∑
t=1

γtPmax||V c − V ∗||∞

η ≤ γT ηnc + γ(1−γT )
1−γ Pmaxηc (3)

1We cannot simply use dists′∈G(s, s′) as the heuristic because it omits
the discount factor γ.

First, we distribute || · ||∞ using the triangle inequality and
bound the maximum single-step probability of contact with
0 ≤ Pmax ≤ 1. Next, we recursively expand VT in terms of
VT−1 until we reach the static evaluation function V0 used to
approximate VT+1. Finally, we evaluate the geometric series
and express the result in terms of the sub-optimality of our
evaluation function ηnc = ||V0−V ∗||∞ and post-contact policy
ηc = ||V c − V ∗||∞. In the worst case we can bound ηnc ≤
−Rmin/(1− γ) by setting V0 = 0 since the reward function is
bounded by Rmin ≤ R(s, a) ≤ 0.

As expected, Equation (3) shows that η → 0 as ηc, ηnc → 0,
the same result as in traditional online search algorithms [42].
However, the post-contact error does not approach zero as
T → ∞ because the full policy can never outperform a sub-
optimal post-contact policy πc.

V. SIMULATION EXPERIMENTS

We evaluated the performance of the policies produced by
our algorithm in a suite of simulation experiments. First, we
evaluate the performance of the post-contact policies produced
for our discretization of the contact manipulation POMDP.
Then, we demonstrate that pre-contact search effectively ex-
tends the horizon of the post-contact policies.

A. Experimental Setup

We simulated the algorithm in a custom a two-dimensional
kinematic environment with polygonal geometry. Each exper-
iment consisted of a BarrettHand pushing a rectangular box
with initial pose uncertainty (Fig. 2-Left).

1) Transition Model: We simulated the motion of the object
using a penetration-based quasistatic physics simulator [33]
with a 2 mm step size. During each update, the finger-object
coefficient of friction and the radius of the object’s pressure
distribution were sampled from a stationary Gaussian distri-
bution. We considered a set of |A| = 5 purely translational
actions with length ||ai|| ≈ 2 cm for planning.

2) Observation Model: We simulated binary observations
for each of the hand’s n = 7 links, shown in Fig. 2, by
checking collision between the contact sensor and the object.
Prior analysis of the observable contact manifold ∆o revealed
that only |O| = 20 of the potential 27 observations were ge-
ometrically feasible. All observations perfectly discriminated
between contact and no-contact.

3) State Estimator: We represented the belief state using
a set of weighted particles and performed recursive Bayes
updates using the manifold particle filter (MPF) [21, 22]. The
MPF is a variant of the particle filter that samples from the
contact manifold to avoid particle starvation during periods
of persistent contact. Using a particle filter enabled us to
track the underlying continuous distribution instead of using
the discretized models used for planning. At runtime, we
discretized the continuous representation of the belief state
each time πc was evaluated.

Note that our use of the MPF for state estimation is a
choice that we made for practical reasons. In theory, it is more
appropriate to use a discrete Bayes filter that exactly matches
the belief dynamics used during planning.
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Fig. 5: Left: SARSOP finds a post-contact policy that achieves
higher value than the QMDP policy using the discrete belief
dynamics. Right: The higher value corresponds to SARSOP
achieving success more reliably than QMDP.

4) Evaluation Metric: We evaluated the success rate of the
policy by computing the probability Pr(s ∈ G) of the object
being in the goal region after each timestep. Good policies
should quickly achieve reward and, thus, a high success rate.

5) Baseline: We compare the policy generated by our
algorithm to a policy computed using the QMDP approxi-
mation. The QMDP approximation computes an upper-bound
on the optimal POMDP value function using the optimal
value function of the underlying MDP [29]. QMDP takes
advantage of observations during execution and has been
shown to perform well in several domains, but does not take
information-gathering actions to reduce uncertainty.

B. Post-Contact Policy

We discretized Snc in a 15 cm × 50 cm region around
the hand at a coarse 2 cm × 2 cm × 0.2 rad resolution. We
discretized an analytic representation of Sc at a 2 cm×0.2 rad
resolution. The resulting discretization consisted of |S| = 7238
states split between |Snc| = 5425, |Sc| = 1812, and one
unknown state to represent all states that lie outside Strust. We
set the discount factor of the discretized post-contact POMDP
to γ = 0.99.

We solved for the post-contact QMDP policy by running
1776 iterations of MDP value iteration on the discrete POMDP.
Value iteration converged within an error bound of 10−6 in
17.73 seconds. The resulting policy contained one α-vector
per action, for a total of |A| = 5 α-vectors, and took 48 µs to
evaluate on a discrete belief.

We repeated this procedure for the post-contact POMDP
policy by running the SARSOP implementation provided by
APPL Tookit on |B| = 50 initial belief points [23]. Each belief
point in B consisted of a Gaussian distribution with its mean
in Strust. We ran SARSOP for 10 minutes, during which it
sampled 3360 belief points, performed 8700 backups, and was
able to bound the optimal value function within 4.26 reward.
The final policy consisted of 7608 α-vectors and took 39 ms
to evaluate on a discrete belief.

We evaluated the quality of both post-contact policies by
performing 250 rollouts using the discrete belief dynamics.
Each rollout was initialized with a belief drawn from B
and was forward-simulated for 100 timesteps. Fig. 5-Left
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Fig. 6: (a) SARSOP and QMDP perform equally well when
the entire hand is instrumented with sensors. (b) However,
SARSOP significantly outperforms QMDP when sensors are
only located on the fingertips.

shows that SARSOP achieved significantly higher average
value of V c = −40.27 than QMDP with V c = −55.48.
QMDP performs poorly because it is unable to reason about
information-gathering actions [29]. This result confirms that it
is advantageous to formulate the contact manipulation problem
as a POMDP instead of a more computationally efficient MDP
or deterministic search.

Next, we repeated 250 rollouts using continuous belief
dynamics tracked using a manifold particle filter [21]. The
state estimator used an analytic representation of the contact
manifold [22] and was configured to use 500 conventional
particles, 50 dual particles, and a 10% mixing rate. The robot
discretized the continuous state estimate after each timestep,
which took an average of 23 ms, and took the action dictated
by the discrete QMDP and SARSOP policies. Fig. 5-Right
shows that SARSOP’s higher-quality policy from the discrete
state space translates to a high-quality policy in the continuous
state space. SARSOP successfully grasps the object both more
quickly and with higher probability than QMDP.

C. Pre-Contact Trajectory
The post-contact policies described above rely on approx-

imate, discrete belief dynamics and are only valid in the
small region Strust near the hand. We use the search algorithm
described in Section IV-B to extend these policies to a longer
horizon using the continuous belief dynamics.

We sampled 100 prior beliefs with Σ1/2 =
diag[5 cm2, 5 cm2, 1.2 rad2] variance and a mean located
0.5 m in front of and up to 0.5 m laterally offset from
the center of the palm. Note that all of these beliefs lie
significantly outside of the trust region and it is not possible
to directly execute the post-contact policy.

To find ξ, we ran a separate weighted A∗ search for each
post-contact policy with a heuristic inflation factor of εw = 2.
The search terminated once a node was expanded that satisfied
one of the following criteria: (1) ξ achieved contact with 100%
probability, (2) 85% of the remaining belief lied in Strust, or
(3) the search timed out after 20 s.

The robot began each trial by executing ξ until it observed
contact ot ∈ Oc or exhausted ξ by reaching t > |ξ|.
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Fig. 7: Two rollouts of a policy produced by the POMDP algorithm. The robot begins by executing the pre-contact trajectory
ξ in (a) the initial belief state until (b) contact is observed. Then (c–d) the robot executes the post-contact policy πc until the
object is (e) successfully grasped.

Fig. 7 shows the SARSOP pre-contact trajectory and several
snapshots (a)–(e) of the post-contact policy for two different
trials. As expected, the pre-contact trajectory attempts to make
contact with the object as quickly as possible by moving the
hand towards the prior distribution. Once (b) contact occurs,
the post-contact policy quickly (c) localizes the object and (e)
pushes it into the goal region.

Fig. 6a shows the success rate of the robot executing the
combined pre- and post-contact using its full suite of sensors
for feedback. Surprisingly, we found no difference in perfor-
mance between QMDP and SARSOP: both achieve success
rates similar to the performance of SARSOP on the pre-contact
policy (Fig. 6). This occurred because the move-until-touch
pre-contact trajectory acts as an information gathering action
by localizing the object. This allows QMDP—which is optimal
in absence of uncertainty—to quickly achieve a successful
grasp.

We verified our hypothesis by repeating the same experi-
ment using a hand with inferior sensors. Fig. 6b shows the
result of running the experiments with a hand that only has
sensors on its fingertips (n = 2, |O| = 2). As we hypothe-
sized, the performance of QMDP dropped and SARSOP again
achieved a significantly higher success probability. This result
confirms our intuition that information-gathering actions are
most useful when limited sensing resources are available.

VI. DISCUSSION AND CONCLUSION

Our simulation experiments demonstrated that SARSOP
achieves higher reward than QMDP in the discrete domain
(Fig. 5-Left) used for planning. These results suggests that: (1)
information-gathering actions are useful and (2) our adaptive
discretization of the state space (Section IV-A1) captures the
discriminative nature of contact sensors. Our results in the
continuous domain (Fig. 5-Right) mirror those in the discrete
domain and suggest that the discrete belief dynamics used for
planning are consistent with the continuous belief dynamics
tracked by the manifold particle filter [21].

Surprisingly, we found that QMDP performed the same as
SARSOP while executing the policy with full sensors because
the pre-contact trajectory acted as an information-gathering
move-until-touch action. As expected, the performance of
QMDP significantly dropped when applied to a hand only

equipped with fingertip contact sensors. With this sensor
configuration, the SARSOP post-contact policy was able to
perform information-gathering actions by moving sideways
and forcing the belief state into a fingertip. The QMDP policy,
which does not reason about sensing, would never perform this
action.

A. Limitations and Future Work
We made several simplifying assumptions to find an efficient

solution to the contact manipulation POMDP:
1) Kinematic Feasibility: Our formulation of the contact

manipulation POMDP considers state to only be the pose of
the object relative to to the hand. As a consequence, a direct
implementation of our algorithm does not consider global ob-
stacles or kinematic feasibility while planning. This limitation
can easily be addressed for the pre-contact search by simply
evaluating the feasibility of each node before expanding it.
We believe that we can take a similar approach to πc by using
the pre-computed value function as a heuristic guide an online
search in the robot’s full configuration space.

2) Dimensionality: Our implementation assumes that the
robot lives in a two-dimensional world with S = SE(2), fixed
hand geometry, and a discrete action set. We plan to extend
this algorithm to SE(3) to more complex interaction with the
environment (e.g. toppling) and to articulated hands with in-
ternal degrees of freedom. In both cases, these generalizations
increase the dimensionality of the state space.

Unfortunately, increasing the dimensionality of the problem
exponentially increases |S| and |A| and makes the POMDP
significantly harder to solve . We believe that the increased
computational complexity could be partially addressed by
using a sample-based representation of Sc that avoids uni-
formly discretizing the contact manifold [22]. Another possible
solution is to use a continuous POMDP technique [2, 27] to
avoid discretizing post-contact POMDP.
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