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Abstract—Distributed algorithms for (re)configuring sensors
to cover a given area are important for autonomous multi-
robot operations in application areas such as surveillance and
environmental monitoring. Depending on the assumptions about
the choice of the environment, the sensor models, the coverage
metric, and the motion models of sensor nodes, there are different
versions of the problem that have been formulated and studied.
In this work, we consider the problem of (re)configuring systems
equipped with anisotropic sensors (e.g., mobile robot with limited
field of view cameras) that cover a polygonal region with polyg-
onal obstacles for detecting interesting events. We assume that a
given probability distribution of the events over this polygonal
region is known. Our model has two key distinguishing features
that are inherently present in covering problems with anisotropic
sensors, but are not addressed adequately in the literature. First,
we allow for the fact that the sensing performance may not be a
monotonically decreasing function of distance. Second, motivated
by scenarios where the sensing performance not only depends on
the resolution of sensing, but also on the relative orientation
between the sensing axis and the event, we assume that the
probability of detection of an event depends on both sensing
parameters and the angle of observation. We present a distributed
gradient-ascent algorithm for (re)configuring the system of mo-
bile sensors so that the joint probability of detection of events over
the whole region is maximized. Simulation results illustrating
the performance of our algorithms on different systems, namely,
mobile camera networks, mobile acoustic sensor networks, and
static pan-tilt-zoom camera networks are presented.

Index Terms—Distributed Multi-robot Coverage, Anisotropic
Sensing, Sensor Placement.

I. INTRODUCTION

Multiple robot coverage problems have been studied in the
context of a wide variety of applications such as surveil-
lance, environmental monitoring, demining, floor cleaning,
lawn mowing, harvesting, and industrial applications (e.g.
drilling, milling, painting) [1]. Distributed algorithms for
(re)configuring mobile sensors to cover a given area for
surveillance and environmental monitoring applications have
also received attention [2], [3]. In most of this literature
(exceptions include [4], [5], [6], [7]), the sensors are either
assumed to have infinite range or to be bounded range isotropic
sensors (i.e., their performance does not depend on the direc-
tion in which they are sensing the object or event). Many
popular sensors such as cameras or acoustic receivers with
limited sensor footprint cannot be modeled as isotropic sensors
(see Figure 1 for example anisotropic sensor footprints). In
such scenarios, the probability of detection of an event may
depend on the resolution of sensing as well as the angle at

which the event is being sensed. Thus, the performance of the
sensors does not only depend on the relative distance between
the sensor and the sensed point, but also on the relative orienta-
tion between them. Motivated by such application scenarios of
mobile sensor networks, we study the problem of reconfiguring
a system of mobile anisotropic sensors to optimize a given
coverage metric that is dependent on the position of a point and
the orientation at which the point is being sensed. We consider
a system of active anisotropic sensors (e.g., mobile robots with
limited sensor footprint cameras) that are required to cover a
polygonal area with polygonal obstacles to maximize the joint
probability of detection of interesting events.

For isotropic sensor models, the sensing region of coverage
is usually assumed to be a disc of finite or infinite radius. For
anisotropic sensors, they are assumed to be a segment of a
disc [4], [5] or an ellipse [6] or an infinite cone [7]. In all
these cases, the sensor position is always within the region
of coverage and the sensor performance is assumed to be
monotonically decreasing with the distance of the points being
sensed. In our paper, the region of coverage of the sensors can
be any bounded set. The sensor position need not be contained
within the region of coverage. Thus, in our sensor model,
the performance of the sensor does not necessarily deteriorate
monotonically with distance from the sensor. Figure 1 shows
example sensor footprints and probability of detection for a
camera and an acoustic receiver (the sensor parameters used
in generating the figures is given in Section VII). These sensor
models are relevant in situations where we may not detect an
event if it is too close to the sensor or if an event occurs at
a point opposite to the heading of the sensor. For example,
if an object is too close to a camera (or if we zoom in too
much), such that only a fraction of the object is in the entire
field of view, we may not be able to detect the object and
hence our sensing performance will be poor. Furthermore,
the acoustic receiver model (a cardioid [8]) indicates that the
sensor performance for a point in the front of the sensor is
much better than a point at the back.

With our anisotropic sensing model, the sensing perfor-
mance in regions close to the sensor may not be good, hence
using Voronoi region based distributed coverage algorithms
(as used in [9], [10] and also used for anisotropic sensors
in [4]) is not appropriate. Assuming that we have a probability
distribution of occurrence of events over the entire region,
we present a distributed algorithm that controls the position
of the mobile agents and the sensor parameters to maximize



(a) Camera (b) Acoustic Receiver

Fig. 1: Sensor footprint of a typical camera and acoustic receiver showing variation of probability of detection. Note that the
detection probability is anisotropic and does not decrease monotonically with distance.

the joint detection performance of events by all the agents.
Like Voronoi region based coverage algorithms, in general, our
gradient-ascent algorithm converges to a local optimal solution
of the objective function. The key challenge in developing our
distributed control algorithm is that the presence of obstacles
and bounded field of view of our sensors, makes our objective
function discontinuous and non-differentiable. Consequently,
by exploiting the geometry of the sensor footprints, we form
the generalized gradients of the objective function at various
discontinuities to compute the direction of motion for each
robot. To illustrate our algorithm, we provide case studies of
a group of mobile agents with cameras or directional acoustic
receivers and static pan-tilt-zoom cameras. The objective is to
maximize their performance while operating in an environment
with obstacles.

Figure 2 shows a simple example of four agents with
acoustic receivers moving to positions and orientations that
maximize their joint probability of event detection over the
rectangular environment. It is assumed that the density func-
tion of events occurring is uniform over the area. Note the
directions of the mobile robots at the final configuration, which
points away from the center of the rectangular environment.
Since the robots have bad detection probability behind them,
and each sensor has independent probability of detection, by
overlapping the regions of coverage behind them the overall
joint probability of detection is optimized.

This paper is organized as follows: In Section II we give
a brief review of the recent literature on distributed coverage
control. In Section III, we introduce our problem model and
in Section IV we introduce our distributed controller. We
illustrate our concepts using an example with mobile camera
networks, mobile sound sensor networks and static pan-tilt-
zoom cameras in Section V. In Section VI we present the
overall distributed algorithm and in Section VII, we present
simulation results demonstrating the performance of the algo-
rithm on exemplar cases for each of the three examples above.
Finally, in Section VIII, we present our conclusions and point

out future research directions. A preliminary version of this
work appeared in [11].

II. RELATED WORK

Depending on the assumptions about the choice of the
environment, the sensor models, the coverage metric, and the
motion models of sensor nodes, there are different abstract
versions of the coverage problem that has been formulated
and studied for surveillance and monitoring applications. One
of the most well known coverage problems with static sen-
sors (cameras) is the Art Gallery problem for covering a
given polygonal region with polygonal obstacles with omni-
directional infinite range sensors [12] of constant resolution.
Here, the problem is to find the minimum number of sensors
(and their positions) that are required to cover the region. The
problem in its simplest version stated above is NP-hard and
it is also shown to be APX-hard. Different variations of this
basic problem have been studied with limited FoV sensors
and with resolution metrics [13], [14], where the problem is
still hard to solve. The literature on static sensor placement or
camera placement to cover an area is quite substantive and we
will restrict ourselves here to mobile sensor network coverage
problems. Here, the usual assumption is that the number of
mobile sensors is already known and we need to find their
positions (or configurations) for maximizing a given coverage
metric.

Coverage problems with a system of mobile sensors have
been studied in recent years (e.g., [9], [15], [16]). In [15],
the authors use a potential field approach for deploying a
system of sensor nodes for maximizing area coverage. In [9],
the authors use techniques from the facility location literature
to give a distributed algorithm for mobile sensor placement.
In their approach, the nodes at each step compute their
(generalized) Voronoi regions and move towards the centroid
of their Voronoi region until they converge. The underlying
sensing model is isotropic and the sensing performance is
assumed to decrease with distance. Although [9] assumed



(a) Initial Position (b) Final Configuration

Fig. 2: Result of applying our algorithm for configuring mobile robots equipped with directional acoustic receivers in a convex
environment Q with uniform event density function. Figure 2a is the initial configuration and Figure 2b shows the final
configuration. Note that the sensors each sensor face outward from the center of the convex region. They not only optimize
the coverage over the region but also optimize their placement in the orientation space.

a convex polygonal environment, this approach has been
extended subsequently to consider non-convex environments
with obstacles and limited FoV sensors [2], [17], [18]. An
approach that combines Voronoi coverage and the TangentBug
path planning algorithm to address non-convex coverage is
shown in [19], where the path planning algorithm is used to
compute the motion around corners and obstacles. In [20], a
distributed technique that aimed to minimize the information
in each pixel was proposed for hovering robots with downward
facing cameras. Optimizing the joint detection probability of
events by a network of mobile robots was proposed in [18]
and the work was extended to regions with polygonal obstacles
in [21].

Game theoretic models for coverage control have been
proposed in [22], [23], where each visual sensor individually
attempts to optimize its own coverage. At the same time
each sensor tries to optimize the energy and/or computational
expenditures in processing the information. They assume a
square 2D discretized lattice space where agents are deployed
to detect events of interest. Each mobile agent caries visual
sensors that are assumed to be pan-tilt-zoom cameras with
limited field of view. The coverage optimization problem
is posed as a constrained strategic game. The reward for
observing a point in the lattice is unknown in the beginning of
the game and whenever an agent observes the point the reward
is shared among the other agents upon observing the point.
The algorithm is provably convergent to the set of constrained
Nash equilibrium and global optima for the given performance
metric.

More recently, in [4], [5], [6], the Voronoi region based
coverage algorithm has been extended to anisotropic sensor
models. The sensor FoV is modeled as a segment of a disc
in [5] and as an ellipse in [6]. For anisotropic sensors, the
method in [9] does not give a distributed algorithm because
the sensing regions of nodes that are not Voronoi neighbors

may overlap. To overcome this problem, the authors in [4],
propose an alternative metric that approximates their cover-
age metric within a constant factor and it is shown that a
Voronoi region based distributed algorithm can minimize the
alternative metric. In [6], the authors propose to discretize the
possible sensor orientations by assuming fixed, equally spaced
sensor orientations and then show that they can modify the
algorithm in [9] to obtain a distributed algorithm. However,
a common assumption in all of this work is that the sensing
performance decreases monotonically with distance. In this
paper, we remove this assumption of monotonically decreasing
performance functions. Motivated by applications with mobile
camera networks, we assume that there may be a region close
to the sensor that may not be within its FoV. We note that
with this sensing model, it is no longer true that our coverage
metric can be maximized by maximizing the coverage over
the individual Voronoi regions of the robots (a key property
of the metric proposed in [9]).

III. PROBLEM FORMULATION

In this work we study the problem of (re)configuring a
system of agents (or sensor nodes) equipped with anisotropic
sensors to cover a bounded environment with obstacles, so as
to maximize a given coverage metric. The obstacles may affect
both sensing performance and/or mobility of the sensor nodes.
We will first define the basic notations that we use throughout
this work and then present our modeling assumptions and
optimization problem.

A. Notation

Let R and R≥0 be the set of real and non-negative real
numbers, respectively. Let Rd and Sd denote the d-dimensional
Euclidean and the d-dimensional space of orientations, respec-
tively. Let int(S) and ∂S denote the interior and the boundary



of set S, respectively. Let n denote the outward unit normal
vector at the boundary of a set.

Let ‖x− y‖2 denote the Euclidean distance between points
x,y ∈ Rd . Let the geodesic distance in S1 be

distg(x,y) = min{distC(x,y),distCC(x,y)} x,y ∈ S1 (1)

where distC(x,y) = (x− y) mod 2π is the clockwise distance
and distCC(x,y) = (y− x) mod 2π is the counterclockwise
distance. We also define the 1-dimensional orientation interval
Θ as the set of possible orientations such that

Θ = (−π,π] . (2)

Let the closed line segment between the points x,y ∈ Rd be
denoted by

[x,y] = {λx+(1−λ )y | λ ∈ [0,1]} .

For a set S ⊂ Rd , two points x,y ∈ S are said to be visible
if the closed segment [x,y] is contained in S. The visibility
set V (x,S) is the set of all points in S visible from x. Note
that the visibility set is a geometric property, determined by
the geometry of the environment and the geometry of the
obstacles and their locations. It is independent of the sensor
characteristics used to sense the environment. A set is said
to be convex if the visibility set V (x,S) is S for all x ∈ S,
otherwise the set is said to be non-convex [2].

B. Environment

The environment that we desire to cover is assumed to be
a planar bounded environment Q ∈ R2 defined by a possibly
non-convex polygon with non-self-intersecting edges. This en-
vironment may contain non-traversable obstacles that may also
interfere with visibility. These obstacles are modeled as m non-
self-intersecting polygons denoted by H j ⊂ Q, j = 1, . . . ,m.
The interior of these polygons are unobservable, so the feasible
subspace of Q to be covered by sensors is

F = Q\

(
m⋃

j=1

int(H j)

)
. (3)

Moreover, the robot may not be able to traverse through
the obstacles in Q and there may be other forbidden zones
(or unsafe zones for the robot to traverse). We define the
traversable space T ⊆ F as the set of all possible locations
that a mobile agent can occupy. In Figure 3, a non-convex
environment with one obstacle and a connected traversable
region is shown. Mobile agents may not be located outside
the defined traversable region.

C. State Space of the Multi-agent System

The quality of information sensed by an agent, i, depends
on its state xi, which consists of the position and orientation
of the agent as well as the sensor parameters. In a planar
environment the agent’s position is denoted by ci = [cix ciy]T

and its orientation by θi. Agents are only allowed to move
within the traversable space, T , described in III-B. The sensor
specific parameter space is denoted by P . For example, for a
pan-tilt camera, the sensor parameter space is a subset of S2

Fig. 3: Polygonal non-convex environment Q with obstacles
H in gray. The area bounded by the two dashed lines indicate
the traversable region T . Areas outside the traversable region
in Q can be observed but not traversed. The different types
of boundary line segments rk are also shown. Boundaries r1
through r5 are coverage boundaries. Boundary r6 is a visibility
boundary. Boundaries r7 through r10 are rigid boundaries. The
vectors n1, . . . ,n5, are the outward normal unit vectors of the
corresponding boundary segments.

consisting of all possible pan and tilt angles. Thus the state
space of an agent is X = T ×S1×P . For the multiple agents
scenario proposed in this paper, the joint state space, denoted
by X N is a Cartesian product of the individual state spaces.
The state of the overall system is denoted by the concatenated
vector x = (x1, ...,xN) ∈X N .

D. Anisotropic Density Function

In this paper we use an anisotropic density function defined
by the map φ : Q×S1 →R≥0. This density function is known
to the agents and it represents the prior knowledge about the
probability or a measure of information about events at a point
q ∈ Q when observed at an orientation α ∈ S1. It is assumed
that φ(q,α) = 0∀q /∈ F and∫

Θ

∫
Q

φ(q,α)dqdα < ∞ (4)

This orientation is not to be confused with the angle between a
point q and the agent, as it is a property of the density function
independent of the state of the agent.

The intuition behind the orientation parameter α in the
function φ(q,α) is that it is a parameter that varies the sensing
reward according to the absolute orientation in the map. A
simple example of this is facial recognition, where the back
of a person’s head provides very little information about the
individual. Conversely, the frontal view of the head maximizes
the detection performance [24].

E. Anisotropic Sensing Model

The region covered by an agent i, denoted by Ri and
called the sensor footprint of i, is dependent on the sensor
characteristics of the agent and its current state. We place
no restrictions on the geometry of Ri, which can be, for



instance, a disk, polygon, non connected regions, wedge,
etc. As stated earlier, the visibility set V (ci,F) is the set
of all points in F visible from the agent position ci. Since
V (ci,F)⊂ F , the set of all visible points covered by the agent
i is Vi = Ri∩V (ci,F). The set of invisible points covered by
the sensor is V̄i = (Ri∩F)\Vi.

The probability of detecting an event is given by the
function p : X ×Q× S1 → [0,1]. This probability not only
depends on the specifics of the sensors on each agent, it may
also depend on the nature of the task. It may or may not
degrade upon the presence of obstacles or effects caused by the
non-convexity of region Q. Therefore, the detection probability
has to be considered for both the visible and invisible sets of
points within the field of view as

pi(xi,q,α) =


p̂i(xi,q,α) if q ∈Vi

p̃i(xi,q,α) if q ∈ V̄i

0 otherwise
, (5)

where p̂i(xi,q,α) is the detection probability for a point q
visible from agent i and p̃i(xi,q,α) is the detection probability
for a point q invisible from agent i. For some sensors, example
cameras, events invisible to the agent may not be sensed at all,
leading to a detection probability p̃i(xi,q,α) = 0. The set of
points where the agent has a non-zero probability of event
detection is the field of view of agent i.

It is assumed that every agent can sense events indepen-
dently. Therefore, the probability of detection of an event at
point q and at orientation α is given by the joint probability
of detection for each of the sensors given by

P(x,q,α) = 1−
N

∏
j=1

[1− p j(x j,q,α)]. (6)

We want to find a joint state of the agents that maximize
the joint probability of detection over the entire environment
Q. The optimization problem is then

max
x

∫
Θ

∫
Q

P(x,q,α)φ(q,α)dqdα

subject to x ∈X N (7)

and the objective function function from (7) is

H (x) =
∫

Θ

∫
Q

P(x,q,α)φ(q,α)dqdα. (8)

Note that when pi and φ are independent of α and φ is
uniform, the problem is an area coverage problem.

IV. DISTRIBUTED CONTROLLER

The goal of this paper is to present a distributed controller
that maximizes the joint detection probability over the en-
vironment. We use a (generalized) gradient based controller
to coordinate the multiple robotic nodes according to the
optimization problem described in (7).

We compute the gradient for both the visible set of points
Vi and the invisible points V̄i. Also, all the discontinuities
of the function pi should be considered. Let the set of
discontinuity intervals of points (or line segments) be denoted
by Dscn(pi). These include boundaries of the covered region,

boundaries between the visible and invisible set, and possible
discontinuities in the sensing model, as seen in Figure 3.
Applying the rules of differentiation under the integral sign
to equation (8), we have

∂H (x)
∂xi

=
∫

Θ

∫
Vi∪V̄i

∂P(x,q,α)
∂xi

φ(q,α)dqdα +

∑
rk∈Dscn(pi)

∫
Θ

∫
rk

Φk(x,q,α)
∂qrk

∂xi

T

nkφ(q,α)dqdα (9)

where rk is a line segment where the performance function
is discontinuous, nk is the outward normal of rk, qrk is, with
abuse of notation, a point in rk, and Φk(x,q,α) is defined as

Φk(x,q,α) = P−k (x,q,α)−P+
k (x,q,α)

where we define P−k and P+
k as

P−k (x,q,α) = lim
ε→0+

P(x,q− εnk,α) (10)

P+
k (x,q,α) = lim

ε→0+
P(x,q+ εnk,α). (11)

In Equation (9), the generalized gradient ∂H (x)
∂xi

is a mi× 1

vector, ∂P(x,q,α)
∂xi

is a mi×1 vector,
∂qrk
∂xi

is a 2×mi matrix, and
nk is a 2× 1 vector, where mi is the dimension of the state
space of robot i.

The control update from time k to k +1 is

xk+1
i = xk

i +K
∂H (x)

∂xi
(12)

where K is a diagonal matrix with the individual gains for each
of the parameters in xi in its diagonal. The choice of gains for
convergence are based on standard rules [21], [5], for which
we refer the reader to [25]. Furthermore, if the position of the
robot after the update is outside of the traversable subspace
T , the robot will move instead to the closest point in T from
the desired position.

A. Network Requirement

From (5) we see that the detection probability is always
equal to zero outside the field of view (Vi∪V̄i). At any point
in the environment, robots whose field of view intersect will
contribute to the joint probability computation in (6) (and
thereby the sensing performance). Thus, to compute (12), a
robot needs to know the function φ(q,α) and information
about the state of its neighboring robots, Bi, defined as

Bi =
{

j | F ∩ (Vi∪V̄i)∩ (Vj ∪V̄j) 6= /0, i 6= j
}

.

This can be achieved if the communication range of the robots
is at least twice that of their sensing range, which is reasonable
in many applications.

Remark 1. To implement this controller, it is necessary to
discretize the coverage region to compute the integrals over
the possible orientations α ∈ Θ. Furthermore, the detection
performance p j of the neighbors j ∈ Bi over the node’s
coverage region is necessary to obtain (9).



B. Computation of Gradient Terms

Here we explain how to obtain the terms in (9). The
first term described here is the internal gradient of the joint
probability computed over regions Vi and V̄i. This gradient is
assumed to be globally Lipschitz and continuously differen-
tiable over the set (Vi ∪ V̄i) \ Dscn(pi). The second term of
(9) deals with the discontinuities caused by the environment
and/or the sensing model. As stated earlier and depicted in
Figure 3, there are three types of boundaries or line segments
where H (x) is discontinuous. They are the rigid boundaries
(e.g., line segment r9 in Figure 3), the coverage boundaries
(e.g., r1, r2, in Figure 3), and the visibility boundary (e.g., r6
in Figure 3). In the interest of conciseness, we will omit the
arguments xi, q, and α of the function p.

1) Internal Gradient: The first term in equation (9) is the
internal gradient and should be computed over the covered re-
gions Vi and V̄i. Since every node is assumed to be independent
of the other, from (6) we obtain

∂P(x,q,α)
∂xi

=
∂ pi

∂xi
∏
j∈Bi

[1− p j].

2) Rigid Boundary: The rigid boundary consists of points
lying on the boundary of obstacles and the boundary of region
Q. These points are in the set Ri∩bd(F), where bd(F) denotes
the boundary of the set F . Since they do not vary as a function
of the parameters xi, they do not affect the gradient calculation.

∂qrk

∂xi
= 0 ∀ qrk ∈ bd(F)

3) Coverage Boundary: For points on the boundary of the
sensor coverage set ∂Ri ∩ int(F) (where int(F) denotes the
interior of the set F), there is non-zero detection performance
immediately inside the filed of view, Vi∪V̄i, and zero detection
performance immediately outside this region. Thus, from (10)
we have

P−k (x,q,α) = 1− (1− pi) ∏
j∈Bi

[1− p j]

P+
k (x,q,α) = 1− ∏

j∈Bi

[1− p j]. (13)

The discontinuity probability function then becomes

Φk(x,q,α) = pi ∏
j∈Bi

[1− p j].

The values of ∂qrk/∂xi on the coverage boundary vary accord-
ing to xi and are sensor parameter dependent (see Section V
for illustration of this computation for different realistic sensor
models).

4) Visibility Boundary: The visible and invisible set bound-
ary is the interval where there is a transition between the
visible coverage region Vi and the invisible coverage region
V̄i. These points are defined by the set ∂Vi∩ (int(Ri)\∂F).

P−k (x,q,α) = 1− (1− pi) ∏
j∈Bi

[1− p j]

P+
k (x,q,α) = 1− (1− p̃i) ∏

j∈Bi

[1− p j]. (14)

The discontinuity probability function then becomes

Φk(x,q,α) = (p̂i− p̃i) ∏
j∈Bi

[1− p j].

Note that the visibility boundary is generated by a vertex
either of the region Q or of an obstacle H j. In this case
also, the computation of ∂qrk/∂xi are dependent on the sensor
parameters and we discuss it further in Section V. For an
excellent geometric description on how the visibility boundary
is generated in a region with polygonal obstacles we refer the
reader to [21].

V. CASE STUDIES

In this section we illustrate the computation of the gradient
terms, i.e., the term ∂qrk/∂xi in the distributed algorithm for
different anisotropic sensors. We will present three different
examples, a mobile robot with a limited footprint camera, a
mobile robot with a directional acoustic receiver and static
cameras with pan, tilt and zoom parameters. We will exploit
the geometry of the sensor footprint, which is a function of
the sensor parameters to compute the gradient terms. Since the
algorithm is intended to be used in a planar 2D environment,
some task specific assumptions must be made in the problem
formulation for each example presented.

A. Mobile Camera Coverage

Here we formulate an example application of the distributed
coverage algorithm in a scenario of a mobile robot with inte-
grator dynamics equipped with a limited field of view camera.
The probability of detection is a function of the resolution
Ni at a given depth Zi from the camera point of view. The
boundaries are delimited by a minimum and maximum depth
for a possible detection, given by Zmin and Zmax, respectively.
Moreover, a frontal observation of targets is preferred in this
scenario. The environment and the event density with the
associated orientation φ(q,α) will be provided beforehand.

The state space for sensor i is xi = [cxi cyi θi]T , where cx
and cy are the center position of the agent in the x and y axis,
respectively. The orientation of the agent and the region of
coverage are given by the parameter θ . For a given image
sensor, let lH and lV be the camera sensor height and length,
respectively. The number of pixels along the horizontal and
vertical axes are given by NH and NV, respectively.

It is useful to analyze the environment in the camera
coordinate frame. Let the rotation matrix Rotθi be defined as

Rotθi =
[

cos(θi) −sin(θi)
sin(θi) cos(θi)

]
, (15)

points can be converted into a camera centered coordinate
frame by applying the transformation[

Zi
Yi

]
= Rot−1

θi
(q− ci) = RotTθi

[
qx− cxi
qy− cyi

]
(16)

where Zi and Yi are the depth and horizontal displacement with
respect to the camera center in camera coordinates.



1) Sensor Footprint: The boundaries of coverage are deter-
mined by the minimum and maximum depth Zmin and Zmax in
camera coordinates and the limitations given by the angle of
the field of view of the camera. For a given focal distance f ,
the horizontal angle γH and the vertical angle γV are given by

γH = 2arctan
(

lH
2 f

)
γV = 2arctan

(
lV
2 f

)
. (17)

The absolute value of the angle between a point q in the field
of view and the camera center ci must be less or equal to γH .
Therefore, the coordinate Yi is restricted by the field of view
as in ∣∣∣∣arctan

(
Yi

Zi

)∣∣∣∣≤ γH ⇒ |Yi| ≤
lH
2 f

Zi. (18)

The field of view of the camera, Ri, is

Ri =
{

q | Zmin ≤ Zi ≤ Zmax
∧
|Yi|<

lH
2 f

Zi

}
. (19)

Figure 4 gives the camera parameters and variables that define
the field of view.

2) Sensor Model: The resolution of the camera at a depth
Zi is given by the the total number of pixels divided by the
observed area, A(Zi) . This observed area is given by

A(Zi) =
(

2Zi tan
(

γH

2

))(
2Zi tan

(
γV

2

))
= Z2

i
lH lV

f 2 (20)

by using γH and γV from (17). The resolution is given by

Ni =
NHNV

A(Zi)
=

NHNV

lH lV

f 2

Z2
i

=
Kcam

Z2
i

, (21)

where Kcam is a constant dependent on the physical charac-
teristics of the camera sensor.

We model the detection probability as a function of the
resolution at a given depth Zi from the camera point of view
as an exponential function. This function was chosen because
of its smoothness properties and relevance in a probabilistic
framework (however other choices relevant to the application
at hand may be made). The probability of detection according
to the pixel area is given by

pNi = exp

(
−
(
Ni−Nµ

)2

2N 2
σ

)
, (22)

where Nµ is the optimal pixel area for a detection and Nσ is a
constant to determine how spread out the detection distribution
pNt is with respect to the depth Zi. Since a frontal direct
observation is desired, the probability of detection varies as a
function of geodesic distance between the current direction of
observation θ and the orientation α . It is also modeled as an
exponential in

pα = exp

(
−

distg(α,θi)
2

2σ2
α

)
, (23)

where σα is a constant to determine how spread out the
orientation detection distribution pα is with respect to the
geodesic distance between the observation direction and the
orientation α .

Since no detection is possible behind obstacles in a camera
scenario, the overall detection probability function is

pi =

{
p0 pNi pα if q ∈Vi

0 otherwise
(24)

where p0 is the maximum detection probability of the sensor.
3) Controller: In order to obtain the gradient ascent con-

troller, the partial derivative of the detection probability should
be obtained for region Vi. The boundary gradients for the
visibility and coverage boundary should also be obtained. We
describe here derivation of these expressions.

a) Gradient at interior points: The partial derivative of
pi with respect to xi in the region Vi can be obtained by
applying the chain rule to (24) as in

∂ pi

∂xi
=

[
−
(
Ni−Nµ

)
σ2

N

∂Ni

∂xi
−

distg(α,θi)
σ2

α

∂θi

∂xi

]
pi. (25)

where from (21) and (16), we have

∂Ni

∂xi
=−2Kcam

Z3
i

∂Zi

∂xi
=−Kcam

Z3
i

−cos(θi)
−sin(θi)

Yi

 . (26)

and ∂θi
∂xi

= [0 0 1]T .
Thus, for the first term of (9), the gradient for the region Vi

is
GVi =

∫
Θ

∫
Vi

∂ pi

∂xi
∏
j∈Bi

[1− p j]φ(q,α)dqdα

b) Gradient at coverage boundary: To obtain the varia-
tion of a point q (or qrk ) on the coverage boundary with respect
to cxi, cyi, θi, we first notice that the geometry of the boundary
is independent of any of the parameters in xi. Thus, from (16)
we have for the position parameter ci

∂

∂ci

[
Zi
Yi

]
=

∂

∂ci

(
RotTθi

(q− ci)
)

= 0

Since Rotθi is an orthonormal matrix, we have

∂q
∂ci

=
[

1 0
0 1

]
(27)

For the orientation parameter θi, we have

∂

∂θi

[
Zi
Yi

]
=

∂

∂θi

(
RotTθi

(q− ci)
)

= 0. (28)

Isolating ∂q/∂θ in (28) we obtain

∂q
∂θi

=
[

0 −1
1 0

]
(q− ci) (29)

Combining (27) and (29), the boundary varies with respect
to the parameters in xi as

∂qrk

∂xi
=
[

1 0 −qy + cyi
0 1 qx− cxi

]
.

Thus, for points on the coverage boundary we have

Gbd(Vi) = ∑
rk∈Dscnbd(Vi)

(pi)

∫
Θ

∫
rk

pi ∏
j∈Bi

[1− p j]
∂qrk

∂xi

T

nkφdqdα

where Dscnbd(Vi)(pi) is the union of all the line segments
forming the coverage boundary.



(a) Top view of the mobile camera (b) Side view of the mobile camera

Fig. 4: Variables for the determination of the coverage boundary Ri and the pixel resolution Ni.

c) Gradient at visibility boundary: As discussed before,
obstacles and the environment introduce visibility boundaries.
In this example, the visibility boundary varies only with
respect to the position of the robot ci. This boundary is induced
by a vertex v j that can either belong to an obstacle H j or to
the boundary Q. The proof of this gradient can be found in
[21].

∂qrk

∂xi
=

− ‖q−v j‖2
‖ci−v j‖2

0 0

0 − ‖q−v j‖2
‖ci−v j‖2

0


For points on a visibility boundary, we have

Gvis = ∑
rk∈Dscnvis(pi)

∫
Θ

∫
rk

pi ∏
j∈Bi

[1− p j]
∂qrk

∂xi

T

nkφdqdα

where Dscnvis(pi) is the union of all the line segments forming
the visibility boundary.

d) Control law: After calculating all the terms as in (9),
we obtain the gradient

∂H (x)
∂xi

= GVi +Gbd(Vi) +Gvis, (30)

and we can update the state using the control law in (9).

B. Directional Acoustic Receiver
Here we consider an example of distributed coverage using

mobile robots with integrator dynamics equipped with acoustic
receivers. The probability of detection is a function of the
angle and the distance of a point q from the sound sensor
(see Figure 1b for a typical detection distribution). We assume
that the response is in the form of a cardioid (as in many
of the commercially available microphone sensors [8]). This
implies maximum response directly in front of the sensor and
minimum in the back of the sensor. The coverage boundaries
are given by a minimum and maximum distance for a possible
detection, namely, Dmin and Dmax, respectively. Moreover, a
frontal observation of targets is preferred in this scenario.

The state space for sensor i is xi = [cxi cyi θi]T , where cx
and cy are the center position of the agent in the x and y axis,
respectively. The orientation of the agent and its sound sensor
is given by the parameter θ .

1) Sensor Footprint: The boundaries of coverage for this
sensor are delimited by the minimum and maximum distance
from the sensor, given by Dmin and Dmax, respectively. The
region of coverage is therefore a hollow disc defined by

Ri = {q | Dmin ≤ ‖q− ci‖2 ≤ Dmax} . (31)

2) Sensor Model: The detection probability is modeled as
a function of the perceived intensity and the orientation. For
a given sound sensor, let bmic be a constant whose value
indicates the best possible reception by the sensor. We also
define the angle between a point q and the sensor as

ϕ(xi,q) = θi− atan2(qy− cy,qx− cx). (32)

The intensity, I(xi,q), of the received sound is a function of
the angle and the distance from the sensor to a point. The
intensity of sound waves decay quadratically with distance.
We simplify the cardioid model of sound perception as

I(xi,q) =
bmic

2
[1+ cos(ϕ(xi,q))]

‖q− ci‖2
2

, (33)

where bmic is a constant related to the physical characteris-
tics of the microphone. Once more we model the detection
probability as function of the sound intensity as

pI = exp

(
−
(
I(xi,q)− Iµ

)2

2I2
σ

)
, (34)

where Iµ is the optimal sound intensity for a detection and Iσ

is a constant that determines the spread of the distribution pI .
A frontal direct observation is desired. We have a probability

of detection that varies as a function of geodesic distance
between the current direction of observation θi and the ori-
entation α . It is also modeled as an exponential in

pα = exp

(
−

distg(α,θi)
2

2σ2
α

)
, (35)

where σα is a constant to determine how spread out the ori-
entation detection distribution pα is in respect to the geodesic
distance between the observation direction and the orientation
α .



In contrast to the camera case, sound can be perceived
even if the source is not directly in the line of sight of the
sensor. To simplify inherently complex problem of estimating
sound intensity decay around obstacles, we assume that the
probability of detection is different for visible and invisible
points. The overall detection performance is given by

pi =


p0 pI pα if q ∈Vi

p̃0 pI pα if q ∈ V̄i

0 otherwise
(36)

where p0 is the maximum detection probability by the sensor if
a point is visible and p̃0 is the maximum detection probability
if a point cannot be seen directly.

3) Controller: The derivation of the gradients for the mo-
bile anisotropic sound sensor is similar to the mobile camera
case. What differs for this sensor is the capability of detection
of events even in the invisible region. The derivation of the
gradient terms will be shown for this case.

a) Gradient at interior points: The partial derivative of
the detection probability pi in the region Vi is

∂ pi

∂xi
=

[
−
(
I(xi,q)− Iµ

)
I2
σ

∂ I(xi,q)
∂xi

−
distg(α,θ)

σ2
α

∂θi

∂xi

]
pi.

(37)
where ∂θi

∂xi
= [0 0 1]T and

∂ I(xi,q)
∂xi

=− bmic

2

[
sin(ϕ(xi,q))
‖q− ci‖2

2

∂ϕ(xi,q)
∂xi

+
2+2cos(ϕ(xi,q))

‖q− ci‖3
2

∂ ‖q− ci‖2
∂xi

]
,

(38)

with
∂ϕ(xi,q)

∂xi
=
[
− qy−cyi
‖q−ci‖2

2

qx−cxi
‖q−ci‖2

2
1
]
, (39)

∂ ‖q− ci‖2
∂xi

=
[

qx−cxi
‖q−ci‖2

qy−cyi
‖q−ci‖2

0
]
. (40)

The gradient term for points in the region Vi is

GVi =
∫

Θ

∫
Vi

∂ pi

∂xi
∏
j∈Bi

[1− p j]φ(q,α)dqdα.

For the region invisible region V̄i, the gradient term

GV̄i
=
∫

Θ

∫
V̄i

∂ p̃i

∂xi
∏
j∈Bi

[1− p j]φ(q,α)dqdα,

where

∂ p̃i

∂xi
=

[
−
(
I(xi,q)− Iµ

)
I2
σ

∂ I(xi,q)
∂xi

−
distg(α,θ)

σ2
α

∂θi

∂xi

]
p̃i.

b) Gradient at coverage boundary: As in the camera
case, the geometry of the coverage boundary does not vary
with respect to the parameter xi. Therefore, the same equations
from V-A3b can be used. Points in the boundary vary with
respect to xi as

∂qrk

∂xi
=
[

1 0 −qy + cyi
0 1 qx− cxi

]
.

The gradient term for points on the coverage boundary is

Gbd(Vi∪V̄i) = ∑
rk∈Dscnbd(Vi∪V̄i)

(pi)

∫
Θ

∫
rk

pi ∏
j∈Bi

[1− p j]
∂qrk

∂xi

T

nkφdqdα.

where Dscnbd(Vi∪V̄i)(pi) is the union of all line segments
forming the coverage boundary.

c) Gradient at visibility boundary: : The visibility varies
for this sensor similarly to the camera case as discussed in
V-A3c. The visibility boundary is given by

∂qrk

∂xi
=

− ‖q−v j‖2
‖ci−v j‖2

0 0

0 − ‖q−v j‖2
‖ci−v j‖2

0


As discussed previously, it is a characteristic of this sensor to
have detection performance in the invisible coverage region.
Therefore, the gradient term for the visibility becomes

Gvis = ∑
rk∈Dscnvis(pi)

∫
Θ

∫
rk

(p̂i− p̃i) ∏
j∈Bi

[1− p j]
∂qrk

∂xi

T

nkφdqdα.

where p̂i is the detection probability for a visible set and p̃i
is the probability of detection for a point in the invisible set.

d) Control law: After calculating all the terms as in (9),
we obtain the gradient

∂H (x)
∂xi

= GVi +GV̄i
+Gbd(Vi∪V̄i) +Gvis, (41)

and we can update the state by using the control law in (9).

C. Pan-Tilt-Zoom Coverage

In this section we consider an example application of
distributed planar coverage with static pan-tilt-zoom cameras.
The cameras are assumed to be placed at a fixed position
c = [cxi cyi]

T and height hi. We will assume that the coverage
area is the projection of the image plane onto the ground
(see Figure 5). The probability of detection is a function of
the resolution Ni at a given depth Zi from the camera point
of view and the camera focal distance and tilt parameter. A
frontal observation of targets is preferred in this scenario.
The environment and the event density with the associated
orientation φ(q,α) will be provided beforehand.

The state space for sensor i is xi = [θi βi fi]T , where θi is
the pan angle, βi is the tilt angle and f is the focal length.
Let lH and lV be the camera image sensor height and length,
respectively. The number of pixels along the horizontal and
vertical axes are given by NH and NV, respectively. Let q =
[qx qy 0]T be the position of a point in the world frame and
[Xi Yi Zi]T be its position in the camera coordinate frame. Then,Xi

Yi
Zi

= RT
tilt(βi)RT

pan(θi)

qx− cxi
qy− cyi
0−hi

 , (42)

where [cxi cyi hi]T is the position of the camera in the world
frame. The pan rotation is about the z axis and tilt rotation is



Fig. 5: Pan-Tilt-Zoom camera projecting its image plane onto
the region Q. Camera is at a height hi and the coverage region
Ri is the red area projected onto the planar surface.

about the y axis in the world coordinate frame. The rotation
matrices are

Rtilt(βi) =

 cos(βi) 0 sin(βi)
0 1 0

−sin(βi) 0 cos(βi)

 (43)

Rpan(θi) =

cos(θi) −sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

 .

By substituting 43 in 42 we can obtain Pi = [Xi Yi]T and Zi
such that

Pi = T (βi,θi)(q− ci)+hiV (βi). (44)

Zi = t(βi,θi)(q− ci)+hiv(βi). (45)

where v(βi) =−cos(βi), V (βi) = [sin(βi) 0]T , and

T (βi,θi) =
[

cos(βi)cos(θi) cos(βi)sin(θi)
−sin(θi) cos(θi)

]
(46)

t(βi,θi) =
[
sin(βi)cos(θi) sin(βi)sin(θi),

]
. (47)

The coordinates of a point on the plane is given in the
image coordinates according to the perspective transformation,
namely, [

ximagei
yimagei

]
= fi

Pi

Zi
. (48)

1) Sensor Footprint: The planar coverage set is a projection
of the ground plane on the image plane. All the points q in the
plane are projected onto the image plane through a perspective
transform. Thus, the sensing set is given by

Ri =
{

q |
∣∣∣∣ fi

Pi

Zi

∣∣∣∣≤ [
lH
lV

]}
. (49)

where Pi is given by (44) and Zi is given by (45).

Fig. 6: Example of probability of detection of events with
static pan-tilt-zoom camera.

2) Sensor Model: As in Section V-A2, the performance of
this sensor is a function of the resolution Ni. The derivation
is analogous to section V-A2, where

Ni =
NHNV

lH lV

f 2
i

Z2
i
. (50)

This can be further simplified as

Ni = KPT Z
f 2
i

Z2
i

(51)

where KPT Z is a constant that depends on the physical
characteristics of the camera. The probability of detection as a
function of resolution and orientation are modeled exactly as
described in Section V-A2. No detection is possible behind
obstacles, therefore the probability of detection for the pan-
tilt-zoom camera is

pi =

{
p0 pNi pα if q ∈Vi

0 otherwise
(52)

where p0 is the maximum detection probability by the camera.
3) Controller: In order to obtain the gradient ascent con-

troller, the partial derivative of the detection probability should
be obtained for region Vi. Since the parameters for the static
pan-tilt-zoom camera case are purely rotational, the visible
boundary does not vary with respect to xi.

a) Gradient at interior points: The partial derivative of
pi with respect to xi for the pan-tilt-zoom camera case is

∂ pi

∂xi
=

[
−
(
Ni−Nµ

)
σ2

N

∂Ni

∂xi
−

distg(α,θi)
σ2

α

∂θi

∂xi

]
pi. (53)

where ∂θi
∂xi

= [1 0 0]T and from (51) we have

∂Ni

∂xi
=

2KPT Z

Z3
i

[
Zi

∂ fi

∂xi
− f 2 ∂Zi

∂xi

]
(54)

where ∂ fi
∂xi

= [0 0 1]T and from (45), we have

∂Zi

∂xi
=

−sin(βi)sin(θi) cos(βi)cos(θi)
cos(βi)cos(θi) cos(βi)sin(θi)

0 0

(q− ci)+ hi

 0
sin(βi)

0

.

(55)



Applying the above to the first term of (9) we have the
gradient for the region Vi given as

GVi =
∫

Θ

∫
Vi

∂ pi

∂xi
∏
j∈Bi

[1− p j]φ(q,α)dqdα

b) Gradient at coverage boundary: In contrast to the
previous two cases, in this case the coverage boundary changes
with the sensor parameters. We are interested in obtaining
the variation of the boundary with respect to the camera
parameters xi. From the perspective equation, we have from
(48) the partial

∂

∂xi

([
ximagei

yimagei

])
=

∂

∂xi

(
fi

Pi

Zi

)
. (56)

The image coordinates does not change as a function of the
camera parameters. Thus, from (56) we can deduce

1
fi

ZiPi
∂ fi

∂xi
+ Zi

∂Pi

∂xi
− Pi

∂Zi

∂xi
= 0. (57)

Substituting for the gradients of Pi and Zi, we can deduce

∂q
∂xi

= (ZiT −Pit)−1

[
− 1

fi
ZiPi

∂ fi
∂xi

+
(

Pi
∂ t
∂xi
−Zi

∂T
∂xi

)
(q− ci)+

hi

(
Pi

∂v
∂xi
−Zi

∂V
∂xi

)]
.

Thus, for the pan parameter θi we have (after some algebraic
simplification)

∂q
∂θi

=
[

cyi−qy
qx− cxi

]
(58)

For the tilt parameter, βi, we have

∂q
∂βi

=− 1
hi

[
cos(βi)h2

i +(∆qxi)2 cos(βi)+(∆qxi)(∆qyi)sin(βi)
sin(βi)h2

i +(∆qyi)
2 sin(βi)+(∆qxi)(∆qyi)cos(βi)

]
(59)

where ∆qxi = qx− cxi and ∆qyi = qy− cyi.
For the focal length parameter fi we have

∂q
∂ fi

= −(ZiT −Pit)−1 ZiPi

fi
(60)

Expanding and simplifying (60) (steps not shown here), we
obtain

∂q
∂ fi

= − 1
fi

[
Xi

hi

(
sin(θi)(q− ci)−hi cos(θi)

[
cos(βi)
sin(βi)

] )
+

−
[

sin(βi)sin(θi) sin(βi)cos(θi)
−cos(βi)sin(θi) −cos(βi)cos(θi)

]
(q− ci)

]
Note that points in the boundary of the pan-tilt-zoom coverage
vary as the following

∂qrk

∂xi
=
[

∂q
∂θi

∂q
∂βi

∂q
∂ fi

]
.

Thus, for points on the coverage boundary we have

Gbd(Vi) = ∑
rk∈Dscnbd(Vi)

(pi)

∫
Θ

∫
rk

pi ∏
j∈Bi

[1− p j]
∂qrk

∂xi

T

nkφdqdα

c) Control law: After calculating all the terms as in (9),
we obtain the gradient

∂H (x)
∂xi

= GVi +Gbd(Vi),

and we can update the control rule by following the control
rule in (9). Note that Gvis = 0 in this case, since the camera
positions are fixed and visibility boundaries depend only on
camera positions and not on the states, i.e., the pan, tilt, and
zoom angles.

VI. OVERALL ALGORITHM

In this section, we discuss the implementation of the overall
distributed gradient-ascent algorithm for the collection of
agents. First, note that to compute the integrals of (9), the
region of coverage must be discretized. Let V̂i∪V̄i be the
discretized set of points in the visible and invisible regions, Θ̂

be the discretized orientation space and r̂k be the discretized set
of discontinuity points. The discussion in the previous sections
was centered around finding a direction of motion by using
local sensing information. However, due to the presence of
obstacles or forbidden regions in the environment, the robots
may not be able to take a full step along the computed
direction. To ensure that the action of the robot is feasible
with respect to all the other constraints we need to modify the
computed control input.

Algorithm 1 summarizes the computation done by each
agent for computing its control action. Line 7 gives the compu-
tation of the control input to improve the sensing performance.
It is a discrete form of Equation (9) with ∆q and ∆α being
the size of the discrete interval. The function Reproject in
Line 8 modifies this control input. Re-projection consists of
the following steps:

Algorithm 1 Distributed Discrete Controller

1: Require: Sensor i knows its parameters xi, the extent of
the region Q, obstacles in Q, the traversable region T and
the anisotropic density function φ(q,α).

2: Require: Sensor i can communicate with the set of neigh-
bors that intersect the region of coverage Bi.

3: Require: Sensor i can compute p j for all neighbor sensors
j ∈Bi.

4: if Convergence criterion is not met then
5: Communicate with neighbors and acquire x j ∈Bi
6: Compute
7: u−i (t)= K ∑

α∈Θ̂
∑

q∈V̂i∪V̄i

∂ pi
∂xi

∏ j∈Bi [1− p j]φ(q,α)∆q∆α

+ K ∑rk ∑
α∈Θ̂

∑qrk

∂qrk
∂xi

T
nkΦk(x,q,α)φ(qrk ,α)∆qrk ∆α

8: ui(t) = Reproject(xi(t),u−i (t))
9: Move to x(t +∆T ) = x(t)+ui(t)

10: end if

d) Collision avoidance: When the sensors are on mobile
robots, we use a potential field approach to avoid collisions.
The repulsion force from the obstacles follows the inverse
square law.

ρi = ∑
j

1∥∥ci− p j
∥∥2 (ci− p j),



where p j is either the closest point to the polygonal edge of
Q or an obstacle H j, or the position of another agent c j ∈Bi.
The repulsive action urep is:

urep = krep max{0,‖ρi‖−ρ0}ρi,

where krep is a proportional gain to the repulsive action and ρ0
is the minimum value of ‖ρi‖ for a repulsive action. The value
of urep is added to u−i to obtain the next action. Note that the
use of repulsive potential functions is one approach. We could
also have used other approaches for obstacle avoidance [26].

e) Physical limitations: Robots have physical limitations
such as maximum speed, maximum angle for pan and tilt, etc.
The output of the command is clamped to the maximum and
minimum value for actions ui and the state xi.

f) Traversable region: For mobile agents, the position ci
is constrained to the traversable region T ⊆ Q. If the mobile
agent is projected to move outside of the traversable region
T , the next position ci is reprojected to the closest position
inside the traversable region T .

VII. SIMULATION RESULTS

Here we show some example simulations of the proposed
algorithm developed in a Matlab environment. The VisiLi-
bity Library [27] was used to obtain the visible region. We
performed simulations with both deterministic communication
models and probabilistic communication models. In determin-
istic communication models, it is assumed that robots can
always communicate with their neighbors (i.e., robots with
whom their sensor field-of-view overlap). In the probabilistic
model, the probability of communication link failure between
two agents at any time was modeled as linearly decreasing
from 0 at zero distance to 1 at a distance of 60m (similar to
[20]). Thus, this model allows for intermittent communication
dropouts between neighbors. The results shown here are for
the probabilistic communication model. In all examples, the
repulsion term for obstacle and collision avoidance krep and
ρi were set to 1 for mobile sensors. The density function used
in all the examples (except Example 2) is shown in Figure 7.

We consider three different scenarios. In the first scenario,
we consider a group of holonomic mobile robots with cameras,
the second is a group of holonomic mobile robots with acoustic
receivers, and the third is a group of static pan-tilt-zoom
cameras. Although in the examples, there is only one type
of sensor for each example, they are for illustration only.
Our framework can easily be used for teams of robots with
different sensors and with robots containing multiple sensors
with different modality of sensing and sensor footprint (e.g.,
acoustic receiver and PTZ camera).

A. Mobile Robot with Camera

We consider a collection of mobile robots equipped with
cameras in a non-convex environment with obstacles and
anisotropic density function. In this example, ten robots are
to be assigned to maximize the probability of detection over
a non-convex region with maximum length and width of
60m. We also assume here poor sensing capabilities for these
sensors, so overlap between the regions of coverage improve

the overall detection performance. The parameters of the
image sensor sensor are NH = 640 pixels, NV = 480 pixels,
lH = 3.04mm, lV = 1.98mm, and focal distance f = 3mm.
The optimal parameters for a target detection was set as
Nµ = 3840 pixel2/m2, Nσ = 2800 pixel2/m2. The minimum
distance and maximum distance for an observation are Zmin =
1.5m and Zmax = 22.5m, respectively. For the anisotropic term,
the parameter σα = π/6 rad was assigned to the sensor. The
maximum set detection probability for each robot is p0 = 0.2.
The control gains used for the position ci were 1 and for the
rotation θi was 0.05.

The result of the simulation is shown in Figure 8. Figure 8a
shows the initial position and Figure 8c shows the final
position of the robots. As can be observed, from Figure 8c,
the sensor footprint of the robots overlap to increase the
overall detection performance, since the individual cameras
have low detection performance. Furthermore, the orientation
of the robots are in the direction that enhances detection
performance. The paths taken by the individual robots are
shown by the dotted lines. Figure 8b shows the variation of
the objective function with the iterations, which shows that the
objective function increases monotonically.

B. Mobile Robot with Acoustic Receiver

Here we present simulation results for mobile robots
equipped with acoustic receivers. The first example is the
example shown in Figure 2 that illustrates that even when
no prior information is known about the environment the
algorithm optimizes the placement and orientation of the
sensors. In this example, four mobile directional sound sensors
are assigned to maximize the probability of detection over
a square convex region of 40m on each side. The second
example is a more challenging non-convex environment with
obstacles and multiple regions of interest. In this example,
eight mobile directional sensors are assigned to maximize
the probability of detection over a non-convex region with
maximum length and width of 60m.

The parameters of the acoustic receiver are minimum radius
of sensing Dmin = 0.5m and maximum radius of sensing
Dmax = 12m and a microphone constant bmic = 2m2. The
optimal parameters for a target detection was set as Iµ = 1,
Iσ = 0.9. For the anisotropic term, the parameter σα = 3π/4rad
was assigned to the sensor. The maximum detection proba-
bility for each robot in the visible region is p0 = 1 and in
the invisible region p̃0 = 0.5. The control gains used for the
position ci were 0.02 and for the rotation θi was 0.003.

The result of the simulation is shown in Figure 9. Figures 9a
and 9c are the initial and final positions of the robots. The
paths the robots take are shown by the dotted lines. Note the
path taken by robot 3, which shows the combined effect of
the repulsive forces along with the force along the direction
of maximum gradient. Figure 9b shows the monotonic increase
in objective function as the iterations progress.

C. Static Pan-Tilt-Zoom Cameras

We now present simulation results for a collection of static
pan-tilt-zoom (PTZ) cameras in a non-convex environment



(a) φ(q,α =−π) (b) φ(q,α =−π/2) (c) φ(q,α = 0) (d) φ(q,α = π/2)

Fig. 7: The density function is shown at different orientations α in Figure 7a through Figure 7d, where darker areas indicate
higher values of φ when a point is observed at orientation α . White areas indicate φ(q,α) = 0 and black areas φ(q,α) = 1.

(a) Initial Position (b) Objective Function

(c) Final Configuration

Fig. 8: Example 1 - Simulation of mobile camera sensors in a non-convex environment Q with obstacles. Dotted lines indicate
the traversable region T . Note that the regions of coverage align to the orientation where φ(q,α) is maximum.

with obstacles and anisotropic density function. In this ex-
ample, six static PTZ cameras are assigned to maximize the

probability of detection over a non-convex region with maxi-
mum length and width of 60m. The parameters of the camera



(a) Initial Position (b) Objective Function

(c) Final Configuration

Fig. 9: Example 2 - Simulation of mobile directional sound sensors in a non-convex environment Q with obstacles. Dotted
lines indicate the traversable region T . Darker areas in the region of coverage indicate the invisible region V̄i. Notice how the
regions of coverage align to the orientation where φ(q,α) is maximum.

are NH = 640 pixels, NV = 480 pixels, lH = 3.04mm, lV =
1.98mm, and focal distance f = 3mm. The optimal parameters
for a target detection was set as Nµ = 4000 pixel2/m2,
Nσ = 4000 pixel2/m2. The cameras are placed at a height
h = 5m. The maximum detection probability for each robot at
any given moment was limited to p0 = 1, in order to maximize
the covered area. The control gains used for the pan and tilt
parameters where 1e−3 and 1e−4 for the focal distance term.
The result of the simulation is shown in Figure 10.

Figures 10a and 10c shows the initial and the final regions
covered by the cameras. The cameras are fixed near the walls
or the columns (obstacles) in the environment. The pan and tilt
angles, as well as the zoom f the cameras are changed (e.g., see
camera 1 and camera 3) to maximize performance detection.
Figure 10b shows the monotonic increase in objective function
as the iterations progress.

VIII. CONCLUSION

In this paper, a (generalized) gradient-ascent coverage con-
trol algorithm for maximizing the joint probability of detec-

tion of events over a planar non-convex environment with
polygonal obstacles was presented. Realistic sensor models
that capture the anisotropic nature of sensing performance was
explicitly modeled. This approach also captures the property
of preferred sensing orientation of certain types of events. For
this, an anisotropic density function that rewards observations
according to the orientation in which an observation is being
made was defined. The discontinuities such as sensing and
visibility boundaries that should be taken into consideration
when obtaining the gradient were considered. Furthermore,
some common assumptions in anisotropic sensing coverage
were relaxed, such as detection performance decay is inversely
proportional to distance. Case studies for common anisotropic
sensors (like cameras and acoustic receivers) were shown and
simulation results of this technique being applied to different
scenarios where a network of agents jointly maximized the
probability of detection over a region with known density
function was shown.

There are a few directions along which this work can be
extended. The gradient-based approach along with the poten-



(a) Initial Position (b) Objective Function

(c) Final Configuration

Fig. 10: Example 3 - Simulation of static placed Pan-Tilt-Zoom cameras in a non-convex environment Q with obstacles. Dotted
lines indicate the traversable region T .

tial field for obstacle avoidance may have slow convergence
under certain configurations of the robot, especially in the
presence of obstacles. Thus, devising improved techniques
that enhances the convergence properties of the system would
be useful. Furthermore, the proposed method converges to a
local maxima and it is not clear apriori how close the local
maxima is to the global maxima.. Thus, an open problem
is to theoretically characterize the worst case performance
of this algorithm. Finally, the performance function over the
environment may not be known for some application scenar-
ios. Devising algorithms for such systems under the sensing
models described here is another avenue of future research.
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