I

i
A\
\\\\\\Q\\\\ ‘

\

\
iyl H‘IH\\\\\\\\\\\\\\\\\

)
\
i
L]
u
I
/

-
-
—_
—
-~
~

Safety Analysis with AADL [

Julien Delange <jdelange@sei.cmu.edu> N
Jerome Hugues <jerome.hugues@isae.fr> .

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

= Software Engineering Institute

[fotaloicloiotololoioiolol

Carnegie Mellon University




Copyright 2015 Carnegie Mellon University and IEEE

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002583

Safety Modeling with AADL
— September, 29 2015

=== Software Engineering Institute | Carnegie Mellon University



Objectives

Introduce the AADL Error-Model v2 (EMV2)

¥ Explain main concepts (errors sources
and propagation)

Present safety analysis tools

Exercise safety analysis on the ADIRU
system

Safety Modeling with AADL

== Software Engineering Institute Carnegie Mellon University



I

[

AN
//////mm n\lm\m\\\\\\\\\\\\\\

N

\

R

i

-
///////////

%,

Introduction to the AADL

7
%
%,

Error Model Annex v2

[fotaloicloiotololoioiolol

== Software Engineering Institute | Carnegie Mellon University




Safety Practice in Development Process Context

Validationof !
requirements at
the next highest

level : | PSSA
1
- | System CCA l
Top Down : Validation of

Safety
Requirements
Development &

requirements at
the next highest
level

1 1 1 ' 1 1
: : : - = '
AIRCRAFT 1 SYSTEM I ITEM : : i :
REQUIREMENTS |} | REQUIREMENTS |! | REQUIREMENTS |!| ITEM DESIGN : vemggn/fnon i verg;?gf#ou : véi;ﬁ:?g:;.crm
IDENTIFICATION IDENTIFICATION (- IDENTIFICATION 1 M
PR .:15&.’.3: 417845[8 4628463 : 551 55 : 55
\ 1 I Ailrcralt Verification : -
| Aircraft FHA |}
1
| PASA | E Aircraft CCA
| Aircraftcca |
1

Validation

1
System FTA
A4

System SSA

Z
System CCA |

| Systom EMEAIFMES | Bottom Up

Safety
Requirements
Verification

System FTA

SystemCMA |

System CMA |

e ——

Labor-intensive
Early in system engineering

System FMEA/
FMES

Validation of
requirements at
the next highest
level

Focus on System Engineering Largely

Ignores Software as Hazard Source

i -
Rarely repeated due to cost i Software Design
E : : Hardware Design
: 4
1
ARP4754A Process e -

Software Engineering Institute

Carnegie Mellon University

Safety Modeling with AADL
September, 29 2015
© 2015 Carnegie Mellon University

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




AADL Error Model Scope and Purpose

System safety process uses many individual methods and analyses, e.g.

- hazard analysis

- failure modes and effects analysis
Capture risk mitigation architecture
- fault trees

« Markov processes Capture FMEA model

SAE ARP 4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment

Related analyses are also useful for other purposes, e.qg.
« maintainability

. availability Annotated architecture model permits checking for
i consistency and completeness between these various
« Integrity declarations.

Goal: a general facility for modeling fault/error/failure behaviors that can
be used for several modeling and analysis activities.

Safety Modeling with AADL
September, 29 2

Distribution is Unlimited

:; Softwa re Eng i nee ri ng I nStitUte ‘ Cal'llegie hlelloll UI]j"7Pl'Sit}7 Distribution Slatemeentolr\]: Ar::re;:d for Public Release;



Error Model V2: 4 levels of abstraction

1. Focus on fault interaction with other components
2. Focus on fault behavior of components
3. Focus on fault behavior in terms of subcomponent

4. Types of malfunctions and propagations

== Software Engineering Institute | Carnegie Mellon University




Automation of SAE ARP4761 System Safety
Assessment Practice Markov Chain

PRISM
FHA AADL & EMV2

Spreadsheet A\ Uses error flows
/ -
Lol / ~~<. | & behavior

~ 1 1 ~
Uses error sources|, .- A Lo NSl W=
] 7 / / 7/ \ Yy _- /

_ , i} =~ =~a _ . | 1 \ \ ]- = /
Component Error Hazard Description Crossrefer Functional Failure Operational P 1 1 \ \ 2050 [
StabilatorPositionSel "ServiceOmission o "No stabilator position readings due tos "1.1.3" "Loss of sensor readings" "all" 1 I \ \ 4 &‘D‘ /
StabActl "ServiceOmission ol "Failure to move stabilator into desired ; "1.1.2" "Loss of actuator functionalit "all" —\ 7 \ I 0.25
StabAct2 "ServiceOmission o1 "Failure to move stabilator into desired § "1.1.2" "Loss of actuator functionalit "all" / \ /
StabilatorController "null on ActCmd"  "Absence of computed data should signz "1.1.1" "Loss of guidance values" "Approach"” N /7 , 0.00-L
StabilatorController "null on ActCmd"  "Absence of computed data should signz "1.1.1" "Loss of guidance values" "Approach" \ . 0 1 2 3 4 5 6 7 8 9 10
StabilatorController "null on ActCmd"  "Absence of computed data should signz "1.1.1" "Loss of guidance values" "Approach" T

FTA RBD/DD
FMEA CAFTA, OpenFTA OSATE plugin

Spreadsheet
Uses composite
error behavior

Uses composite
Uses error flows & error behavior

r g I ¥ Reiiavility Biock Diagram
B C. D, ™ ECPU FMEA E S ) a @ Feilure probability
ree s i T 2 - Components invol
e TZE6TS P upplier -] = &= = —] = &=l vice) - failed mode rate 3.0-5
Subsystem failed mode rate 3.0E-5
| == Tinitial State [initial Failure (1=t Level Effect [Transition T5nd Lovel Effect | ) { ) e e e Ol
CPU_Tcpu  Emorfree  CPU_Failure PermanentEror  out_GPU_Failsd PermanentError = . . y
PRAPL  Erorfres Erorfree CPU_Faied(N)  PermanentError - = = EEmIiEEaLin
CPU_2cpu  ErorFree ErrorFree ErrorFree a2 (device) - failed mode rate 1.0E-4
PRAP_R  EmorfFree ErrorFree ErrorFree
PRFGS_L1  EmorFree ErrorFree ErrorFree
CPU_3cpu  EmorFree ErrorFree ErrorFree = - = -
PR FGS R1 _Emorfree Errorfree Errorfree 5 — — - — oK J
CPU_fcpu  EmorFree ErrorFree ErrorFres \ \ \ \
PRAP_L  EmorFree ErrorFree ErrorFree
CPU_2cpu  Emorfree  CPU_Failure PermanentErmor out_CPU_Failed PermanentEiror
PRAP R  EmorFree ErrorFree CPU_Failed(N)  PermanentEror
PRFGS L1 EmorFree ErrorFree CPU Failed(N)  PermanentError | |
CPU_3cpu  Emorfree ErrorFree ErrorFree
FR_FGS R1_ErorFree ErrorFree ErrorFree
oo pl v S

Safety Modeling with AADL
September, 29 2015

H H > ad @ /| M 74 - 7 © 2015 Carnegie Mellon Universit)
Software Eng I neerlng InStItUte Cal 11 e} e 1\1911011 UI]]" P lt} Distribution SI:tementA: Approvez for Public Release;
Distribution is Unlimited




Value of Automated Architecture-led Safety Analysis

Failure Modes and Effects Analyses are rigorous and comprehensive
reliability and safety design evaluations

« Required by industry standards and Government policies

« When performed manually are usually done once due to cost and
schedule

- If automated allows for
- multiple iterations from conceptual to detailed design
- Tradeoff studies and evaluation of alternatives

D Item Initial State Initial Failure Mode  1st Level Effect Transition 2nd Level Effect Transition 3rd Level Effect Severity M
1 Sat_Bus Working Failure Failed Failed Recovery Working Workir
1 Sat_Payload Working Working Bus failure causes payload transition Standby Standby Bus Recovery Causes Payload Transition  Workir
2 |Sat_Bus Working Working Working 5

2 Sat_Payload Working Failure Failed Recovery Working 5

Largest analysis of satellite to date consists of 26,000 failure modes
« Includes detailed model of satellite bus
Myron Hecht, Aerospace Corp.
o 20 StateS perfor-m failure mOde Safety Analysis for JPL, member of DO-178C committee
« Longest failure mode sequences have 25 transitions (i.e., 25 effects)

Safety Modeling with AADL
September, 29 2015

== Software Engineering Institute ‘ Carnegie Mellon University



Providing different views

EMV2-like Compositional Fault Behavior
Specification for Simulink Models

System Failures Component Failure Modes

Induction of
effects

Deduction of
causes

Component Failure Modes System Failures
Figure 9 - Inverse relationship between fault trees (left) and FMEA (right)

Safety Modeling with AADL
September, 29 2015

== Software Engineering Institute Carnegie Mellon University



Understanding the Cause and Effects of Faults

Through model-based analysis identify architecture induced
unhandled, testable, and untestable faults and understand root
causes, contributing factors, impa~t =nd potential mitigation

]
CAAS IOutOfRangel
Avionics System T
| | Y‘i ; kri

4

_______________________________________________

Root Cause of Data Loss Is
Non-deterministic Temporal &
Buffer Read/Write Ordering

= Config1 Processor —C:nflgi
Tt X (Cyelic Executive> € TRMS
L<

Read/write Timeline Analysis A
Under Cyclic Executive &
Preemptive Scheduler

3 Gltched ok

Safety Modeling with AADL
— September, 29 2015

== Software Engineering Institute | Carnegie Mellon University



Safety-Criticality Requirements

Exceptional conditions, anomalies and hazards
« Mode confusion (reported state vs. observed state vs. actual state)
« Unexpected fault conditions and fault impact
« Inclusion/exclusion of pilot in system
« Fault Detection, Isolation, and Recovery (FDIR)
Safety system architecture, security system architecture

Certification impact
- Criticality levels, design assurance levels and verification implications
« Partition allocations (isolation) and avoidable certification cost
« Understanding change impact to achieve proportional recertification

Safety Modeling with AADL
€| 9 2015

== Software Engineering Institute Carnegie Mellon University




Latency Sensitivity in Control Systems

System Engineer Control Engineer
Operational
Environment
System H Control
Under System
Control —
Common latency data from system ] ; T
engineering N
. Processing latency | //
« Sampling latency r/,,,/»* =
« Physical signal latency

Impact of Scheduler Choice on Controller Stability
A. Cervin, Lund U., CCACSD 2006

Safety Modeling with AADL
September, 29 2015

== Software Engineering Institute | Carnegie Mellon University ©2015 Camegi Mellon Universy 13

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Software-Based Latency Contributors

Execution time variation: algorithm, use of cache
Processor speed
Resource contention

Flow Use Scenario through Subsystem Architecture

Dlsplay \
\\ I P 1(60Hz

Preel I lptlon Display -> IOProcessor->
d-> Comm -> Nav ,
/ RadioSW
PC350HZ

Legacy & shared variable communic *~
Rate group optimization L
Protocol specific communication del: gzgozcgsso

Pa rtitioned a rCh itectu re [ independentclocks " /

| Modem

[Redionw |
Migration of functionality

Fault tolerance strategy

Safety Modeling with AADL

%% Software Engineering Institute | Carnegie Mellon University




The Symptom: Missed Stepper Motor Steps

Software modeled and verified in SCADE

Full reliance on SCADE of SM & all functionality
Stepper mOtOr (SM) ContrOIS a Valve Problems with missing steps not detected

« Commanded to achieve a specified valve position

- Fixed position range mapped into units of SM steps

« New target positions can arrive at any time
- SM immediately responds to the new desired position

Safet hazard due to software desian Software tests did not discover the issue
y . ) L _ g _ Time sensitive systems are hard to test for.
« Execution time variation results in missed steps
 Leads to misaligned stepper motor position and control system

states
« Sensor feedback not granular enough to detect individual step
misses Two Customer Proposed Solutions

Sending of data at 12ms offset from dispatch

Buffering of command by SM interface

No analytical evidence that the problem will be addressed

Safety Modeling with AADL
September, 29 2015

© 2015 Carnegie Mellon University 1 5

:; Softwa re Eng i nee ri ng I nStitUte Cal'llegie hlelloll UI]j"7Pl'Sit}7 Distribution Statement A: Approved for Public Release;

Distribution is Unlimited




Analysis Results and Solution

Architecture Fault Model Analysis

- Fault impact analysis identifies multiple sources of missed steps

- Early arrival of step increment commands

- Step increment command rate mismatch

- Transient message corruption or loss

- Understanding of error cause
- When is early too early

- Guaranteed delivery assumption
for step increment commands

MissedStep Original Design Fixed Send Time Buffered C d | Position C

SMS logical 1 EarlyDelivery HighRate HighRate

failures HighRate

SMS mechan- | ActuatorFailure ActuatorFailure ActuatorFailure ActuatorFailure

ical failures SteppertMotorFailure | StepperMotorFailure | StepperMotorFailure | StepperMotorFailure
Transient MessageCorruption MessageCorruption MessageCorruption

comm failures | Message! Loss MessageLoss MessageLoss

Mechanical ECUFailure ECUFailure ECUFailure ECUFailure
failuresinOp | PowerLoss PowerLoss PowerLoss PowerLoss
Environmen t | ValveFailus ValveFailure ValveFailure ValveFailure

=== Software Engineering Institute

Carnegie Mellon University

Safety Modeling with AADL
September, 29 20

© 201

Mellol iversi




Time-sensitive Auto-brake Mode Confusion

Auto-brake mode selection by push button
« Three buttons for three modes
- Each button acts as toggle switch

Event sampling in asynchronous system setting
« Dual channel COM/MON architecture
« Each COM, MON unit samples separately

- Button push close to sampling rate results in asymmetric value
error

- COM/MON mode discrepancy votes channel out
- Repeated button push does not correct problem
- Operational work around (1 second push) is not fool proof
Avoidable complexity design issue
« Concept mismatches: desired state by event and sampled event

Safety Modeling with AADL
September, 29 2015
° —

== Software Engineering Institute ! Carnegie Mellon University




I

N
\\\\\Q\\\\ \

\\

\
iyl H‘IH\\\\\\\\\\\\\\\\\

R

Error Model Annex v2

Main Concepts

= Software Engineering Institute

[fotaloicloiotololoioiolol

Carnegie Mellon University




Package myerrortypes
public
Annex emv2{**

Error Type Libraries error types

AxleFailure: type;
Fracture: type extends axlefailure;

Fatigue: type extends axlefailure;
end types;

*% .,
I3

End myerrortypes;

Error Type libraries and AADL Packages
« An AADL package can contain one Error Model library declaration

« The error types clause represents the Error Type library within the
Error Model library

« The Error Type library is identified and referenced by the package
name

Error Type library represents a namespace for error types and
type sets

« Error type and type set names must be unique within an Error Type
library

« An Error Type library can contain multiple error type hierarchies

Safety Modeling with AADL

== Software Engineering Institute ‘ Carnegie Mellon University



Error Types & Error Type Sets

Error type deCIaratlonS Error Type Set as Constraint

{T1} tokens of one type hierarchy
{T1, T2} tokens of one of two error type hierarchies

EarlyValue: type extends TimingError; {T1°T2}type product (one error type from each error
type hierarchy)

TimingError: type ;

Latelate: type extends TimingError; {NoError} represents the empty set
. Constraint on state, propagation, flow, transition
ValueError: type ; condition, detection condition, outgoing propagation

BadValue: type extends ValueError; condition, composite state condition

An error type set represents a set of type instances
« Elements in a type set are mutually exclusive
« An error type with subtypes includes instances of any subtype
« A type product represents a simultaneously occurring types
- Combinations of subtypes

InputOutputError : type set {TimingError, ValueError,
TimingError*ValueError};

An error type instance
« Represents the error type of an actual event, propagation, or state

Safety Modeling with AADL
September, 29 2015
© 2015 Carnegie Mellon University 20

:; Softwa re Eng i nee ri ng I nStitUte ‘ Cal'llegie hlelloll UI]j"7Pl'Sit}7 Distribution Statement A: Approved for Public Release;

Distribution is Unlimited




A Standard Set of Error Propagation Types

Predeclared as library called Errorl ihrarv

Includes a common set of aliase R E
ServiceError
T v\ EarIyDehvery LateDehvery SubtleVaIueError BenignValueEror

SernviceOmission

ServiceCommission ltemCommission ltemOmission

/j V\ v\ ‘;\ OutOfRange OutOfBounds
LateServiceStart \E

oundedOmissionSequence LateService Termination

BoundedltemOmissioninterva | | |

/ \

EarlyServiceTermination BoundedOmissionlnterval

EarlyServiceStart BoundedlitemOmissionSequence BelowRange AboveRange
ReplicationError RateError SequenceError
InconsistentTiming Inconsistentvalue InconsistentOmission HighRate LowRate OutOfOrder ValueChange
ValueCorruption renames type ValueError;
IncorrectValue renames type ValueError;
InconsistentExactvalue InconsistentApproximatealue Badvalue renames type SubtleValueError;

EarlyData renames type EarlyDelivery;
LateData renames type LateDelivery;

AsymmetricValue renames type InconsistentValue;
SymmetricValue renames type ValueError;
Software Engineering Institute | Carnegie MellsRASammsuu ol

~J

enames type InconsistentItemOmission;

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited



Legend Propagation

Component Error Propagation B o e

Direction

- Propagated |
HW Bind

= mm mm mm ey

Incoming NoData / BadValue Error Flow through component

ValueError I Component C > NoData Path P1.NoData->P2.NoData —

) > Outgoing Source P2.BadData *r—>

NoData I;teEata_ Path processor.NoResource -> P2.NoData 4

Vo
‘ B_ad;h":_: T Processo
Mg::ry NoResource
Binding “Not“ on propagated indicates that this
error type is intended to be contained.
IncomingIAssumed This allows us to determine whether

Outgoing/Contract eropagation specification is complete. )

* Error Propagation
Propagated errors * Error Propagation

* Error Containment: * Error Containment
Errors not propagated

Bound resources
* Error Propagation

* Error Containment

Supports Fault Propagation & Transformation

Calculus (FPTC) by York University * Propagation to resource

Also origin of safety cases

Safety Modeling with AADL
September, 29 2015

© 2015 Carnegie Mellon University 22

:; Softwa re Eng i nee ri ng I nStitUte Cal'llegie hlelloll UI]j"7Pl'Sit}7 Distribution Statement A: Approved for Public Release;

Distribution is Unlimited




Error Propagation Declarations

system Subsystem
features
P1: in data port;
P2: in data port;
P3: out data port;
annex EMV2 {**
use types ErrorLibrary;
error propagations
P1: in propagation {NoData, ValueError} ;
P2: in propagation {NoData};
P2: not in propagation {BadValue};
P3: out propagation {NoData, BadValue};
P3: not out propagation {LateData}; Binding Related Propagation Specifications

processor: in propagation {NoResource}; Processor, Memory, Connection, Binding, Bindings
end propagations; **};

Path follows predeclared Binding properties

Safety Modeling with AADL
— September, 29 2015

;= H H H 3% G -~ / M TOR 1A T4 © 2015 Carnegie Mellon University 23
————t Software Eng I neerlng InStItUte Cal lleg le hlellOll UI]]" Pl Slt} Distribution SI:tementA: Approvez for Public Release;
Distribution is Unlimited




Error Flows

Error flow specifies the role of a component in error propagation
« The component may be a source or sink of a propagated error types
« The component may pass incoming types through as outgoing types

« The component may transform an incoming type into a different
outgoing type

« By default all incoming errors of any feature flow to all outgoing features
annex EMV2 {**

The same propagation may be part of a flow source/sink and

error propagations flow path.

o A propagation may be a sink for one type and not for another
ows
es1: error source P3{BadData} ; type mappings MyMapping
es2: error source P3{NoData} ; use types Errorlerary,

{BadData} -> {NoData} ;
{NoService} -> {NoData} ;

end mappings;
ep2: error path P1{ValueError} -> P3{ltemOmission}; -- all value errors xformed into ltemOmission

ep3: error path processor -> P3

es3: error sink P2{NoData};

ep1: error path P2{BadData}->P3; -- same type as incoming type

mapping MyErrorModelLibrary::MyMapping; -- use a type mapping table
end propagations ; **};

Safety Modeling with AADL
September, 29 2015

== Software Engineering Institute | Carnegie Mellon University ©2015 Camsgle Malkn Uniersty

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited



Functional Hazard Assessment

Hazard

- Tailoring for safety standards (ARP4761, MIL-STD-882)

property

« Associated with error state, error source, outgoing propagation,
error type

Hazards: list of record

(
crossreference
hazardtitle
description
failure
failureeffect
phases
environment

risk
failurecondition
severity
likelihood
targetseverity
targetlikelihood

developmentassurancelevel

aadlstring; --
aadlstring; --
aadlstring; --
aadlstring; --
aadlstring;

list of aadlstri
aadlstring; --

aadlstring; --
aadlstring; --

: ARP4761::Severitylabels;

: ARP4761::LikelihoodLabels;
: ARP4761::Severitylabels; --
: ARP4761::LikelihoodlLabels;

EMV2::DALLabels; --

device PositionSensor
features

PositionReading: out data port DataDictionary::Position;

flows

f1: flow source PositionReading {

Latency => 2 ms ..
¥

annex EMV2 {**

3 ms;

use types ErrorlLibrary, FHAErrorLibrary;
use behavior ErrorModellLibrary::Simple;

error propagations

PositionReading: out propagation

flows

efl:error source PositionReading {ServiceOmission} when Failed;

end propagations;

properties

EMV2::hazards =>

([ crossreference => "1.1.3";

failure => "Loss of sensor readings"”;

phases => ("all");

severity => MILSTD882::Critical;

likelihood => MILSTD882::remotej;

{ServiceOmission};

verificationmethod aadlstring; -- ver and sl r— description => "No stabilator position readings due to sensor failure";
safetyreport aadlstring; -- ; X }A - ,;“‘ ﬂ;‘P comment => "Becomes major hazard, if no reundant sensor”;
; ot 2
comment aadlstring; -- § see ARPE Loss of Ar & e syste Catastr D . .
A nal T8C o applies to efl.Failed;
) ~o s o *x};
; erce T e v 2l T8 NO signa L
o, Battery O & no mere Mace | €nd PositionSensor;
Battery £1 & Battery £ Catastr e r e g IET e Ty - et -
ver v hd ape 277 hgure 9 nd ¢ ] 200 " Mar hazard i1 f A t
.r ™ Battery D & N wee Maor robu an be an nsue i red » "ilery |
™ Battery £) & Battery B2 Catastr itremel Have 2 physical Impact on the s e
er /ot N< ' e gk g5 of £h Masor Maier hazaed if Bot are 1
20 pum Mycra Tor Wycra B f Mawor roba Naor hazard ff both pumps are lost
green ¢ 0 [ ) Tof MHyara - ] 00 > Mawr hazard 1 B a
sy atoe My Tor Mycra f or Magor robe Major hazard if Bot ar L

Safety Modeling with AADL
September, 29 2015

© 2015 Carnegie Mellon University

25

Software Engineering Institute e Mellon University

Carneg

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Other Predeclared EMV2 Properties

Occurrence distribution

- Distribution functions: Fixed, Poisson/Exponential, Normal/
Gauss, Weibull, Binominal

Persistence: Permanent, Transient, Singleton

Duration distribution

Fault kind: design, operational

State kind: working, nonworking
Detection mechanism

Safety Modeling with AADL
— September, 29 2015

== Software Engineering Institute | Carnegie Mellon University oavtoCamegie Molonuversty
—_— > Y Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Consistency in Error Propagation

/ Contract Assumption
BadData
Component A ' Component B
NoDatahL > NoData NoData %
P —— _? o
| BadData ; A _ata_ | (GREEEm—
=== | Leena | ot
NoResource NoResource
Outgoing Incoming
Propagation Propagation
o L .
| Not propagated |——9' Not propagated | Unspecified
Mismatched fault propagation and == ===
. . | Not propagated Propagated
containment assumptions SRR S m—— ==
. : Unspecified Propagated Propagated
Discovery of unhandled error | T X pep——
pr0pagathnS *  Unspecified - Propagated | Not propagated |
: Unspecified  : Propagated . Unspecified :

/ Component A é ﬁ ComponentB/

Safety Modeling with AADL
September, 29 2015
© 2015 Carnegie Mellon University 27

== Software Engineering Institute | Carnegie Mellon University © 2015 Camage elon —
- Y istribution Statement A: Approved for Public Release;

Distribution is Unlimited




Software Induced Flight Safety Issue

4 ) I Anticipated:
EGI No EGI data
Oper’l NoData NoData Auto Pilot
Failed * Airspeed Operational
Failed
\_ J
FMS
Processor
Operational

\ | Failed

Anticipated: No
Stall Propagation

FMS Power

Original Preliminary System Safety Analysis (PSSA)
System engineering activity with focus on failing components.

Safety Modeling with AADL
September, 29 2015

== Software Engineering Institute | Carnegie Mellon University ©2015 Camego Mellon Univeriy

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited



Unhandled Hazard Discovery through Virtual Integration

system @

features

trueairspeed: out data port DataDictionary::Velocity;

flows

5
annex EMV2 {7
error prd
use typed
use beha
trued
flows
efl:errd
ef2:errd
properties
EMV2: :hazard
[ crossrefd
failure 3
phase =>
descript]
severity
criticaly

el EGL )
‘EGI Logic

Oper’l

rary;
eeErrorStates;
{Failure, CorruptedData};

NoData
lure} when FailedState; .
tedData} when BadVaiueStateAlrSPEEd

Failed

P
Corruptedp =
‘ peed reading due to synchronization error";

/Flight Mgnt System

Actuator

Auto Pilot

Cmd

Operational

NoService

3
|

ata
CorruptedDat_

/N

Failed

-

FMS

comment 7

Processor Response to corrupted
airspeed causes stall

system implem
subcomponen
PilotGrip|
Position§
EGI: syst
FMS: proces® = -
Actuatorl: device Actuator ;
Actuator2: device Actuator ;
FMSProcessor: processor PowerP

corruption through
connections A
pilotCmd: port PilotGrip.Desir tOUChlng boards

sensedPosition: port PositionSensor.PositionReading -> FMS.Position;
ActuatorlCmd: port FMS.ActCmd -> Actuatorl.ActCmd;

Actuator2Cmd: port FMS.ActCmd -> Actuator2.ActCmd;

vix: port EGI.TrueAirSpeed -> FMS.TrueAirSpeed;

{ @ Qutgoing propagation {Failure, CorruptedData} is not handled. Expected incoming {Fallure}

ACTUaTOT ICmo

p T [Vlrtual integration of architecture fault models recording]

|

I f no visual

] [ Corrupted data shows
]

airspeed of 2000 knots

Vibration causes data

Operational
| Failed

FMS Power

i?tency T SIL test observations detects unhandled fault.

Safety Modeling with AADL
September, 29 2015
© 2015 Carnegie Mellon University 29

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Carnegie Mellon University

Software Engineering Institute




Component Error Behavior

Components have error, mitigation, and recovery behavior
specified by an error behavior state machine

Transitions between states triggered by error events and
Incoming propagations.

Conditions for outgoing propagations are specified in terms of
the current state and incoming propagations.

Detection of error states and incoming propagations is mapped
into a message (event data) with error code in the system
architecture model

[ Error propagation /\ Errorevent  Color: Different types of error > Port/access point
--% Errorflow —> Propagation path — > Detection » Detection msg [l Binding

v Recover/repair event

Safety Modeling with AADL

== Software Engineering Institute Carnegie Mellon University




Reusable Error Behavior State Machine

annex EMV2 {**
error behavior ExampleBehavior
events
Fault: error event;
SelfRepair: recover event;
Fix: repair event;
states

Operational: initial state ;
State machine with

FailStopped: state; branching transition
FailTransient: state;

transitions
SelfFail: Operational -[Fault]-> (FailStopped with 0.7, FailTransient with 0.3);
Recover: FailTransient -[SelfRepair]-> Operational;
end behavior;
Properties
EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.00004 ; Distribution => Poisson;]

applies to Fault;

Safety Modeling with AADL
— September, 29 2015

== Software Engineering Institute | Carnegie Mellon University ©2015 Camsgle Malkn Uniersty

—— Distribution Statement A: Approved for Public Release;
Distribution is Unlimited



Component Error Behavior Specification

Component-specific behavior specification
- Identifies an error behavior state machine
« Optionally defines component specific error events

« Specifies transition trigger conditions in terms of incoming propagated errors or

working condition of connected component

« Specifies propagation conditions for outgoing propagated errors in terms of states

& incoming propagated errors

« Specifies detection conditions under which becomes an event with error code in the

core AADL model

use types ErrorLibrary ;
use behavior MyErrorLibrary::ExampleBehavior ;
component error behavior
transitions -- additional transitions that are component specific
Operational-[Port1{NoData} and Port2{NoError}]->FailTransient;
FailStopped-[port1{BadData}];
propagations
all -[2 ormore (Port1{BadData}, Port2{BadData},Port3{BadData})]-> Outport3(BadData);
detections
FailedState —[]-> Self.Failed ( FailCode ) ; -- Could also report on an outgoing error port
properties
EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.00005 ; Distribution => Poisson;]
applies to Fault; -- component specific occurrence value

end behavior;

%% Software Engineering Institute | Carnegie Mellon University

Safety Modeling with AADL
September, 29 2015
© 2015 Carnegie Mellon University

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

kY



Error Model at Each Architecture Level

* Abstracted error behavior of FMS
 Error behavior and propagation specification

NoValue
FM 1@ gFa"ed)“rf' Composite error models lead to fault
1Fa"ure 2 [ trees and reliability predictions

Fault occurrence probability

« Composite error behavior specification of FMS

 State in terms of subcomponent states
[1 ormore(FG1.Failed or AP1.Failed) and
1 ormore(FG2.Failed or AP2.Failed) or AC.Failed]->Failed

FG AP S
Fail oValue @ [ — AC NoValue |
——C o JAC— '
NoValue (Consistency Checking
FG AP
S Across Levels of the
(L _Novalue 2 Fault occurrence probability . Hierarchy

Safety Modeling with AADL
September, 29 2015
© 2015 Carnegie Mellon University 33

:; Softwa re Eng i nee ri ng I nStitUte ‘ Cal'llegie hlelloll UI]j"T)l'Sityv Distribution Statement A: Approved for Public Release;

Distribution is Unlimited



I

[

AN
//////mm n\lm\m\\\\\\\\\\\\\\

N

\

R

i

-
///////////

%,

Error Model Annex v2

7
%
%,

Safety Analysis tools

[fotaloicloiotololoioiolol

== Software Engineering Institute | Carnegie Mellon University




AADL & Safety Evaluation — Tool Overview

[ — —
< /// \\\\ === %/// \\ //l
\ i | | N /
\ ’ - - - N !
\ “ M g > I
| S N \\ // e e _ 1
FTA
FHA . CAFTA Markov Chain FMEA
OpenFTA « PRISM « Spreadsheet

« Spreadsheet
« Use composite  Use error flow  Error behavior

« Use error behavi
propagations ehavior «  Error behavior «  Propagations

7  Error ﬂOWSV 7 7

Safety Modeling with AADL
September, 29 2015

== Software Engineering Institute ‘ Carnegie Mellon University




Safety Analysis & AADL

Preliminary System Safety Assessment (PSSA) support
High-level component, interfaces from the OEM
Automatic generation of validation materials (FHA, FTA)

System Safety Assessment (SSA) support
Use refined models from suppliers
Enhancement of error specifications
Support of quantitative safety analysis (FTA, FMEA, MA\_)\ 7

System Development Cycle

== Software Engineering Institute Carnegie Mellon University



Evolution of Safety Analysis process with AADL

Preliminary System Safety Assessment

' Component | | Validation |
I types > Materials !
(system mterfaces) : (FHA, FTA) :

. % AADL

lopment evolution

Check PSSA and SSA

consistencies

. SV
Component | Validatfon with

implementation >: quantitative fault rates
AADL p . (FMEA, FTA, DD, MA)

>
Q
T
o3
c
o
£
Q
=
©
b m
System Safety Assessment \ /

%% Software Engineering Institute ‘ Carnegie Mellon University




Safety Analyses on Refined Architecture

Aircraft-Level Safety Analysis

| System
Define aircraft failure conditions

Allocate failure to system functions
Perform PSSA and SSA

Avionics Subsystem Level Safety Analysis
Perform PSSA and SSA at subsystem level
Ensure consistency with aircraft level analysi:

System Architecture Refinement ‘

Navigation Sub-Subsystem Level Safety Analys

Perform PSSA and SSA at sub-subsystem Vsystem
Ensure consistency with aircraft level analysis

== Software Engineering Institute ‘ Carnegie Mellon University




Evolution of the AADL model

wbs_ima_Instance

green_pump

W

signall  signal2

blue_pump

O

whbs_basic_Instance

accumulator

pedals power

- hutoff
annunciation 3!
~annunciafion O
informatio

pressure_output
input

battery1 battery2

bscu

socket socket

boolean_input

pedalt pedal2 25
sub1 s

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 s
1
! - o
| :
| v,
sector accumulator 1 pegial on PV pedal_mon g
1 elector
[ V) U G pressure_output ! , valid v v
. 4 - 1 brake skid yalid green_input blue_input
green_inpublue_inpu 1 brake skid

- - 1
| /1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Select_Alternate output

signall  signal2

pedall  pedal2 pwrl

M a:cumu\amr_mputq

pWI'2
Select_Alternate 2

s select_alternate
select_altemate _annunciation

brake skid

emd_nor

£ 4 brake skid
informati’
cmd_alt ormatio

A 4
accumulator_input G WITEel

cmd_alt

pedalvalue pedalvalue

valid valig

cmd_nor  output D

green_output  blue_output

platform

cpu

input

cmd_input

output

P inputl
result

> wheel
cmglalt ’ L O O
green_input blue_input
d_nor
\ input

Component extension,
\_refinement & implementation

N

AADL model Version n

AADL model Version n + 1

Development Process

Safety Modeling with AADL
September, 29 2015

Software Engineering Institute ‘ Carnegie Mellon University ©2015 Camege Melln Universiy 39

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited



Evolution of Safety Assessment with AADL

ﬁ AADL model version n )‘ ﬁAADL model version n + 1)‘
| | [ ]
[ Automatic Fault-Tree Generation ] [ Automatic Fault-Tree Generation ]

<<<<<<<<<<<

FTA refinement &’
improvement
FTA Versic

Svents1 (0.0)
um
aaaaa

’’’’’’’

FTA Version n + 1

Development Process

== Software Engineering Institute ‘ Carnegie Mellon University



Functional Hazard Analysis Support —

Use of component error behavior ‘ FHA J
Error propagations rules
Internal error events

Specify initial failure mode

Define error description and related information

Create spreadsheet containing FHA elements
To be reused by commercial or open-source tools

Safety Modeling with AADL
— September, 29 2015

== Software Engineering Institute | Carnegie Mellon University ©2015 Camegi Mellon Universy M

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Fault-Tree Analysis Support —

Use of composite error behavior A
FTA nodes | FTA )

Use of component error behavior
Incoming error events

Walk through the components hierarchy
Generate the complete fault-tree
Focus on specific AADL subcomponents

Interrupt (3.0)

< Unhandled interrupt
s raised

Export to several tools
Commercial: CAFTA
Open-Source: EMFTA, OpenFTA

Safety Modeling with AADL
— September, 29 2015

;= H H H 3% G -~ / M TOR 1A T4 © 2015 Carnegie Mellon University 42
————t Software Eng I neerlng InStItUte Cal lleg le hlell()ll UI]]" Pl Slt} Distribution SI:tementA: Approvez for Public Release;
Distribution is Unlimited



Failure Mode and Effects Support —

Use of component error behavior ‘ EMEA J
Error propagations rules (source, sink, etc.)

Internal error events

Traverse all error paths
Record impact over the components hierarchy

Use error description and related information

Create spreadsheet containing FHA elements
To be reused by commercial or open-source tools

Safety Modeling with AADL
September, 29 2015

=— Software Engineering Institute ‘ Carnegie Mellon University ©2015 Camegie ilon Universy 43

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




o _ | AADLI
Reliability Block Diagram :

aka ARP4761 Dependence Diagram (DD)

Use of composite error behavior

Error propagations rules (source, sink, etc.)
Internal error events

‘ RDB

Compute reliability of the Dependence Diagram
Use of recover and failure events
Overall probability of system failure

& Reliability Block Diagram

Support in OSATE (built-in)

Failure probability: 2.000027E-4
Components involved:
*cl (device) - failed mode rate 3.0E-5
* 52 (device) - failed mode rate 3.0E-5
* 23 (device) - failed mode rate 3.0E-5
* al (device) - failed mode rate 1.0E-4
* a2 (device) - failed mode rate 1.0E-4

Safety Modeling with AADL
— September, 29 2015

== Software Engineering Institute | Carnegie Mellon University ©2015 Camege Melln Universiy 44

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited



I

A\
\\\\\\Q\\\\ ‘

\
\

R

Error Model Annex v2

Application to the ADIRU

[fotaloicloiotololoioiolol

== Software Engineering Institute | Carnegie Mellon University




Annotating the model with Error Information (1)

device implementation acc_device.1imp
annex EMV2

{ s

use types ADIRU errlLibrary;
use behavior ADIRU errLibrary::simple;

error propagations

I e T Declaring error sources

flows
f1 : error source accData{ValueErroneous} when failed;
end propagations;

properties

emv2: :hazards =>

([ crossreference => *N/A*;
failure => "Accelerometer value error*;
phases => ("1in flight");

description => "Accelerometer starts to send an erroneous value"; Documenting the error

comment => "Can be critical 1f not detected by the health monitoring*;

1)

applies to accData.valueerroneous;

EMV2: :OccurrenceDistribution => [ ProbabilityValue => 3.4e-5 ; Distribution => Fixed;]
applies to accData.valueerroneous;

o} -

}:
end acc_device.impl;

Safety Modeling with AADL
September, 29 2015

Software Engineering Institute | Carnegie Mellon University ©2015 Camogl Melon Unkraty 46

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Annotatinag the model with Error Information (2)

process inplenentation acc_process_emv2.1npl extends acc_process.impl
subconmponent s

extend the initial implementation and add error modeling elements

accl: refined to thread threads:

Classifier_Substitution_Rule

acc2: refined to thread threads:

{ Classifier Substitution Rul

: refined to thread thr : <
{ Classifier_Substitution Pu e =>

refined to thread threads: :acc

-
3
-

IS NN
-
3

imp
Classifier_Substitution_Rule
refined to thread threads: 2.1mp
{ Classifier_Substitution_Rule }
refined to thread threa 2.1mpl
Classifier_Substitution F‘u.- }
connections
7 .

: e Passing the error directly
T through components features

use Iype\ ADIRU errLibrary;
use behavior ADIRU errLibrary::simple;

error propagatlons

a_\- input : in propagation{ValueErroneous);

accl_output : out propagation{ValueErroneous};

acc2 i1nput : in propagation(‘.'a'.L.e‘:rro*eo.t:};

cc2 out propagation{ValueE
in propagation{valu
out propagation{Vvalu ron ro._},
in propagation{valueErroneous};
out propagation{ValueErroneous};
in propagation{ValueErroneous);
1 out propagation{valueErroneo

acc6 input : in propagation{ValueErroneous },

acchb_output : out propagation{ValueErroneous};
&L

f1 : error path ac input{ValueErroneous} ->

f2 : error path 3 nput {valuet us} -> acc2 o lt[ u'{mlu'
error path acc3 input{ValueErroneous} -> acc3 output{ValueE
error path accd_input{valueErroneous} -> ace 4‘-11 itput{valueErroneous};
: error path accS5 input{ValueErroneous} -> acc5 output{ValueErroneous};
f6 : error path 2 input{ValueErroneous} > 2 _output{ValueErroneous});

end propagatlons
end acc _process emve.

Safety Modeling with AADL
September, 29 2015

Software Engineering Institute | Carnegie Mellon University @ 2015 Camegia Meton Universiy 47

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Annotating the model with Error Information (3)

annex EMV2{++
use types ADIR
use behavior AD

Receiving a erroneous value

input : in propagation{ValueErroneous};

ac input : in propagation{V Lu"E""nr-'us); u
SAnout : iR DrepeEEtLeniVELUCENrONCOus). makes the component to fail
a:.-t input : in propagation{Value t""n»’ u‘),
¢S_input : in propagation{VzluesErroneous}
acch_input : in propagation{VzlueErroneous};
flows
fl : error sink accl_input{valueErroneou
f2 : error sink input{ValueErroneou
f error sink n
error sink r
fS : error sink input{ValueErro
f6 : error sink & _input{valueErr
end propagatlons,

errLibrary;
) errLibrary::simple;

3‘

w

<

component error behavior
transitions
tl : operational -[acc 1eEr usH-> failed;
t2 : operational -[acc2 1n'u_t(.a 1eE eous}]-> failed;
t3 : operational -[acc3_input{ValueE cous}-> failed;
t4 : operational -[accd input{ValueE sous}l-> failed;
t5 : operational -[accS input{V jeE cous}]-> 11Lc3,
t6 : operational -[acc6_input{valueErroneous}]-> failed;
_dg‘tections
‘rr'-t ornore{accl_input {Val s-E"'—n—-— error_out!;
ornore(a input {valueEr _error_out!;
L ornore(acc3 input{ValueErroneo L.;))]-> acc_error_out!;
perational -[1 ormore(accd_input{valueErroneous})]-> acc_error_out!;
operational -[1 ormore(acc5 input{ValueErroneous})]-> acc error out!;
operational -[1 ormore(acc6_input{ValueErroneous})]-> acc_error_out!;
end component;
-»}

Safety Modeling with AADL
September, 29 2015

Software Engineering Institute | Carnegie Mellon University ©2015 Camegie Vel Unversiy

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Functional Hazard Assessment

Component Error Hazard Description ossreferer Functional Failure Operational Phases Comment
accl "ValueErroneous on accData" "Accelerometer starts to send an erroneous value"  "N/A" "Accelerometer value error"  "in flight" "Can be critical if not detected by the health monitoring"
acc2 "ValueErroneous on accData" "Accelerometer starts to send an erroneous value" "N/A" "Accelerometer value error”  "in flight" "Can be critical if not detected by the health monitoring"
acc3 "ValueErroneous on accData" "Accelerometer starts to send an erroneous value" "N/A" "Accelerometer value error"  "in flight" "Can be critical if not detected by the health monitoring"
accd "ValueErroneous on accData" "Accelerometer starts to send an erroneous value"  "N/A" "Accelerometer value error”  "in flight" "Can be critical if not detected by the health monitoring"
accs "ValueErroneous on accData" "Accelerometer starts to send an erroneous value" "N/A" "Accelerometer value error”  "in flight" "Can be critical if not detected by the health monitoring"
acch "ValueErroneous on accData" "Accelerometer starts to send an erroneous value"  "N/A" "Accelerometer value error"  "in flight" "Can be critical if not detected by the health monitoring"

List all potential error sources
Include documentation from the model

Required by ARP4761 safety standard

Safety Modeling with AADL
September, 29 2015

Software Engineering Institute ‘ Carnegie Mellon University

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Fault Impact Analysis

Component Initial Failure Mode 1st Level Effect Failure Mode second Level Effect Failure Mode
accl Failed {ValueErroneous} accData -> acc_pr:accl_input acc_pr {ValueErroneous} {ValueErroneous}accl_output->acc_hm_pr:accl_input acc_hm_pr {ValueErroneous} [Masked]
acc2 Failed {ValueErroneous} accData ->acc_pr:acc2_input acc_pr {ValueErroneous} {ValueErroneous} acc2_output->acc_hm_pr:acc2_input acc_hm_pr {ValueErroneous} [Masked]
acc3 Failed {ValueErroneous} accData -> acc_pr:acc3_input acc_pr {ValueErroneous} {ValueErroneous}acc3_output->acc_hm_pr:acc3_input acc_hm_pr {ValueErroneous} [Masked]
accd Failed {ValueErroneous} accData -> acc_pr:acc4_input acc_pr {ValueErroneous} {ValueErroneous} accd_output->acc_hm_pr:accd_input acc_hm_pr {ValueErroneous} [Masked)]
accs Failed {ValueErroneous} accData -> acc_pr:acc5_input  acc_pr {ValueErroneous} {ValueErroneous}acc5_output->acc_hm_pr:accS_input acc_hm_pr {ValueErroneous} [Masked]
accé Failed {ValueErroneous} accData -> acc_pr:accé_input acc_pr {ValueErroneous} {ValueErroneous} acc6_output->acc_hm_pr:acc6_input acc_hm_pr {ValueErroneous} [Masked]

Bottom-up approach

Trace the error flow defined in the architecture

Required by ARP4761 safety standard

Safety Modeling with AADL
September, 29 2015

Software Engineering Institute ‘ Carnegie Mellon University ©2015 Camogie Mol Universiy 50

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Fault Tree Analysis

event257 (3.4E-5)
Accelerometer
< starts to send an
erroneous value
(component acc6)

event259 (3.4E-5)
Accelerometer

< starts to send an
erroneous value
(component accl),

Software Engineering Institute

& component acc_hm_pr in state
v

Failed

Accelerometer

< starts to send an
erroneous value
(component acc5)

Carne

event255 (3.4E-5)

event261 (3.4E-5)
Accelerometer

< starts to send an
erroneous value
(component acc2),

» Mellon University

event263 (3.4E-5)
Accelerometer

< starts to send an
erroneous value
(component acc3)

event253 (3.4E-5)
Accelerometer

< starts to send an
erroneous value
(component acc4)

Safety Modeling with AADL
September, 29 2015

© 2015 Carnegie Mellon University 51
Distribution Statement A: Approved for Public Release;

Distribution is Unlimited




I

\
N

\
\
Ml H‘IH\\\\\\\\\\\\\\\\\\\\

R

Error Model Annex v2

Conclusion

Ty

/17777
/ £

:

[fotaloicloiotololoioiolol

N N . . Vo . . © 2015 Carnegie Mellon University
== Software Engineering Institute | Carnegie Mellon University

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited




Architecture Fault Modeling Summary

Architecture Fault Modeling with AADL
« Error Model Annex was originally published in 2006
- Supported in AADL V1 and AADL V2
« Standardized Error Model Annex (V2) based on user experiences

« Error Model V2 concepts and ontology can be applied to other
modeling notations

Safety Analysis and Verification

« Error Model Annex front-end available in OSATE open source
toolset

- Allows for integration with in-house safety analysis tools

« Multiple tool chains support various forms of safety analysis

(Honeywell, Aerospace Corp., AVSI SAVI, ESA COMPASS, WW
Technology)

« FHA, FMEA, fault tree, Markov models, stochastic Petri net
generation from AADL/Error Model

o — - ¥ - 2" l i » W/ T ) v i
= Software Figiriesring/Ibsiitute CarfmgictVlellon Uhivérsity

Distribution is Unlimited



References

Website www.aadl.info

Public Wiki https://wiki.sei.cmu.edu/aadl|
EMFTA https://github.com/juli1/emfta

Dependability Modeling with AADL (EMV1), SEI Technical
Report, 2006.

Draft Error Model V2 Annex Standard, in ballot. Available on
request.

AADL Fault Modeling and Analysis Within an ARP4761 Safety
Assessment, SEI Technical Report, 2014.

Architecture Fault Modeling and Analysis with the Error Model
Annex V2, SEI Technical Report, 2014 (awaiting completion of

EMV2 ballot).

== Software Engineering Institute Carnegie Mellon University



