The journey toward Population-level Effect Estimation Martijn Schuemie, PhD Janssen Research and Development # Population-level effect estimation What is the effect of treatment A on outcome X? What is the effect of treatment A on outcome X, compared to exposure B? ## Population-level effect estimation #### Evidence Generation How to produce evidence from the data? #### Evidence Evaluation How do we know the evidence is reliable? # Evidence Dissemination How do we share evidence to inform decision making? Doctor, I'm starting on duloxetine, should I be worried about stroke? Let me see what I find in the literature... #### Evidence from literature #### Paper by Lee et al, 2016 - Compare new users of SNRIs (includes duloxetine) vs SSRIs - Taiwanese insurance claims data - 12 month washout - remove people using both drugs - remove people with a prior history of head injury - remove people with a prior history of stroke or intracranial hemorrhage - Propensity score: logistic regression with treatment as dependent variable - HOI is Stroke: first hospitalization with ICD-9 433,434, or 436 - time-varying Cox regression using 5 PS strata | | Crude Hazard Ratio | | Adjusted Hazard Ratio ^a | | |---|--------------------|-----|------------------------------------|-----| | | (95% CI) | Ρ | (95% CI) | Ρ | | Main analyses | | | | | | SNRIs (n = 76,920) vs SSRIs (n = 582,650) | | | | | | lschemic stroke | 0.92 (0.83-1.02) | .12 | 1.01 (0.90-1.12) | .91 | #### How reliable is this evidence? - Can the results be reproduced? - Did the analysis program do what it was supposed to do? - Is the estimate unbiased? - Does the p-value have nominal characteristics? - Does the confidence interval really represent the uncertainty about the effect size? Are we really 95% confident the true effect size is between 0.90 and 1.12? # Population-level effect estimation Evidence Generation Evidence Evaluation Evidence Dissemination How to produce evidence from the data? ### 'Replicating' Lee et al. #### Our replication: - Compare new users of <u>Duloxetine (SNRI) vs. Sertraline (SSRI)</u> - US insurance claims data (Truven CCAE) - 12 month washout - remove people using both drugs - remove people with a prior history of stroke - restricted to people with a diagnosis of major depressive disorder and no prior diagnosis of bipolar disorder or schizophrenia - Propensity score: <u>regularized</u> logistic regression with treatment as dependent variable, and <u>used 58,285 covariates</u> - HOI is Stroke: first hospitalization with ICD-9 433,434, or 436 (but then coded as standard concepts) - <u>fixed-time</u> Cox regression using <u>10</u> PS strata # OHDSI recommendations for evidence generation - ✓ Post protocol online - Prespecify research objectives and design decisions - ✓ Make study code open source - From CDM to hazard ratios - ✓ Use validated software - OHDSI Methods Library uses unit tests and simulation - ✓ Replicate across several databases - 4 included so far, more will follow https://github.com/OHDSI/StudyProtocols/LargeScalePopEst # Population-level effect estimation Evidence Generation Evidence Evaluation Evidence Dissemination How do we know the evidence is reliable? #### Standard diagnostics Most study designs have diagnostics that could be used, e.g. - Propensity score distribution overlap - Covariate balance 1.5 - Density - 0.1 0.5 - 0.0 - 0.00 # Diagnose the propensity score distribution Sertraline We therefore know crude analysis will likely be biased Any covariate adjustment strategy that corrects for this bias will result in impact in the generalizability of the findings to the original research question Preference score Results from Truven CCAE Duloxetine: n = 90,043 Sertraline: n = 175,950 #### Diagnose covariate balance Standardized difference of mean After stratification on the propensity score, all 58,285 covariates have standardized difference of mean < 0.1 #### Empirical evaluation of the study - Control exposure-outcome for which the effect size is known - Negative control exposure-outcome where relative risk is believed to be 1 - Negative controls for comparative effectiveness outcomes not believed to be caused by either treatments Example: ingrowing nail #### Crude estimate: HR = 1.16 (1.01 - 1.32), p = 0.03 #### Adjusted estimate: HR = 0.94 (0.80 - 1.10), p = 0.44 #### Depression – negative controls Acariasis **Amyloidosis** Ankylosing spondylitis Aseptic necrosis of bone Astigmatism Bell's palsy Benign epithelial neoplasm of skin Chalazion Chondromalacia Crohn's disease Croup Diabetic oculopathy **Endocarditis** Endometrial hyperplasia Enthesopathy **Epicondylitis** Epstein-Barr virus disease Ingrowing nail Iridocyclitis Irritable bowel syndrome Lesion of cervix Lyme disease Malignant neoplasm of endocrine gland Mononeuropathy Onychomycosis Osteochondropathy **Paraplegia** Polyp of intestine Presbyopia Pulmonary tuberculosis Rectal mass Sarcoidosis Scar Seborrheic keratosis #### Generated with the help of LAERTES (see posters) Hodgkin's disease Human papilloma virus infection Hypoglycemic coma Hypopituitarism **Impetigo** Toxic goiter Ulcerative colitis Viral conjunctivitis Viral hepatitis Visceroptosis #### All negative controls - crude We would expect 5% of negative controls to have p < 0.05 Instead, 68% has p < 0.05! We found crude estimates to be uninformative. Do not use for decision making! #### All negative controls - adjusted When using the propensity score, 16% have p < 0.05 In the past, we've shown you how you can perform p-value calibration: - P-value represents probability of estimate when true RR = 1 - Negative controls provide empirical distribution of estimates when RR = 1 - Use empirical null distribution to compute calibrated p-value #### P-value calibration #### Trouble with positive controls - Often very few positive examples for a particular comparison - Exact effect size never known with certainty (and depends on population) - Doctors also know they're positive, and will change behavior accordingly Drug Saf (2014) 37:655–659 DOI 10.1007/s40264-014-0198-z #### CURRENT OPINION Zoo or Savannah? Choice of Training Ground for Evidence-Based Pharmacovigilance G. Niklas Norén · Ola Caster · Kristina Juhlin · Marie Lindquist #### Creating positive controls Start with negative controls: RR = 1 Add simulated outcomes during exposure until desired RR is achieved Injected outcomes should behave like 'real' outcomes: preserve confounding structure by injecting outcomes for people at high risk #### Creating positive controls #### Estimated effects for positive controls Black line indicates true hazard ratio #### Estimating effects for positive controls duloxetine vs. Sertraline - Adjusted Ingrowing nail True RR = 1 Estimated RR = 0.94 (0.80 - 1.10) #### Estimating effects for positive controls 0.25 0.5 Ingrowing nail+ True RR = 1.5 Estimated RR = 1.47 (1.27 - 1.69) 8 10 Ingrowing nail++ True RR = 2 #### Estimating effects for positive controls #### Estimating effects for positive controls Ingrowing nail+++ True RR = 4 Estimated RR = 3.89 (3.53 - 4.48) #### Estimating effects for positive controls Analysis suggests bias remains constant with effect size #### Evaluating coverage of the CI #### Confidence interval calibration $HR_{true} = 1$ $HR_{true} = 2$ $$\mu = \alpha_{\mu} + \beta_{\mu} \log(HR_{true})$$ $$\sigma = \alpha_{\sigma} + \beta_{\sigma} \log(HR_{true})$$ #### Calibrating a confidence interval Confidence intervals were too narrow, so made wider to get to nominal coverage # Confidence interval calibration Uncalibrated Calibrated 0.25 0.25 #### Confidence interval calibration 91% 91% Confidence interval calibration complements p-value calibration ## Current evidence for stroke Result from Lee et al. | | Crude Hazard Ratio | | Adjusted Hazard Ratio ^a | | | |---|--------------------|-----|------------------------------------|-----|--| | | (95% CI) | Ρ | (95% CI) | Ρ | | | Main analyses | | | | | | | SNRIs (n = 76,920) vs SSRIs (n = 582,650) | | | | | | | Ischemic stroke | 0.92 (0.83-1.02) | .12 | 1.01 (0.90-1.12) | .91 | | ## Proposed evidence for stroke ### Duloxetine vs. Sertraline Results are comparable to Lee et al., but we provide the context to interpret the results # OHDSI recommendations for evidence evaluation - ✓ Produce standard diagnostics - E.g. for cohort studies diagnose the propensity score distribution, covariate balance, etc. - ✓ Include negative controls - Estimate the error when the null is true - ✓ Create positive controls - Estimate the error when RR > 1 - ✓ Calibrate p-value and confidence intervals - Restoring nominal characteristics # Population-level effect estimation Evidence Generation Evidence Evaluation Evidence Dissemination How do we share evidence to inform decision making? ### Evidence dissemination Traditionally, this evidence is disseminated through the scientific literature How well does that work? # Automated extraction of effect sizes from literature RESULTS: In comparison with distant past users of BP, current users of BP showed an almost twofold increased risk of AF: odds ratio (OR) = 1.78 and 95% CI = 1.46-2.16. Specifically, alendronate users were mostly associated with AF as compared with distant past use of BP (OR, 1.97; 95% CI 1.59-2.43). Bisphosphonate treatment is used to prevent bone fractures. A controversial association of bisphosphonate use and risk of atrial fibrillation has been reported. In our study, current alendronate users were associated with a higher risk of atrial fibrillation as compared with those who had stopped bisphosphonate (BP) therapy for more than 1 year. Oral bisphosphonates and risk of ischemic INTRODUCTION: Bisphosphonates are widely used to prevent bone fractures. Controversial findings regarding the association between stroke: a case-control stud [Osteoporos Int. 2011] bisphosphonate use and the risk of atrial fibrillation (AF) have been reported. The aim of this study was to evaluate the risk of AF in association with Assessing the risk of osteonecrosis of the jay due to bisphosphonate the [Osteoporo METHODS: We performed a nested case-control study using the databases of drug-dispensing and hospital discharge diagnoses from five Italian regions. The data cover a period ranging from July 1, 2003 to December 31, 2006. The study population comprised new users of bisphosphonates aged 55 years and older. Patients were followed from the first BP prescription until an occurrence of an AF diagnosis (index date, i.e., ID), cancer, death, or the end of the study period, whichever came first. For the risk estimation, any AF case was matched by age and sex to up to 10 controls from the same source population. A conditional logistic regression was performed to obtain the odds ratio with 95% confidence intervals (CI). The BP exposure was classified into current (<90 days prior to ID), recent (91-180), past (181-364), and distant past (≥365) use, with the latter category being used as a reference point. A subgroup analysis by individual BP was then carried out. RESULTS: In comparison with distant past users of BP, current users of BP showed an almost twofold increased risk of AF, odds ratio (OR) = 1.78 and 95% CI = 1.46-2.16. Specifically, alendronate users were mostly associated with AF as compared with distant past use of BP (OR, 1.97; 95% C CONCLUSION: In our nested case-control study, current users of BP are associated with a higher risk of atrial fibrillation as compared with those who had stopped BP treatment for more than 1 year. Related information Articles frequently viewed together PMID: 25752621 [PubMed - Indexed for MEDLINE] PMCID: PMC4428862 Free PMC Article MedGen 13 × 10 References for this PMC Article Free in PMC Images from this publication. See all images (1) Free text Recent Activity # Observational research results in literature ## What went wrong? Observational study bias Publication bias P-hacking ## Observational study bias One week later... ## **Publication bias** WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05). WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE WE FOUND NO LINK BETWEEN BEANS AND ACNE (P>0.05) RED JELLY WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05) WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P > 0.05) WE FOUND NO LINK BETWEEN CYAN JELLY WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P > 0.05). WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05) WE FOUND NO WE FOUND A WE FOUND NO LINK BETWEEN LINK BETWEEN GREEN JELLY MAUVE JELLY BEANS AND ACNE BEANS AND ACNE (P<0.05) (P > 0.05). WE FOUND NO WE FOUND NO LINK BETWEEN LINK BETWEEN BLACK JELLY PEACH JELLY BEANS AND ACNE BEANS AND ACNE (P > 0.05)(P > 0.05). ## P-hacking ## A solution? Stop doing one study at a time! ## What if we considered all outcomes? ### Duloxetine vs. Sertraline for these 22 outcomes: | Acute liver injury | Hypotension | |-----------------------------|---| | Acute myocardial infarction | Hypothyroidism | | Alopecia | Insomnia | | Constipation | Nausea | | Decreased libido | Open-angle glaucoma | | Delirium | Seizure | | Diarrhea | Stroke | | Fracture | Suicide and suicidal ideation | | Gastrointestinal hemorrhage | Tinnitus | | Hyperprolactinemia | Ventricular arrhythmia and sudden cardiac death | | Hyponatremia | Vertigo | ## All outcomes ### All outcomes # What if we consider all treatments? | Туре | Class | Treatment | |-----------|---------------|---------------------------| | Drug | Atypical | Bupropion | | Drug | Atypical | Mirtazapine | | Procedure | ECT | Electroconvulsive therapy | | Procedure | Psychotherapy | Psychotherapy | | Drug | SARI | Trazodone | | Drug | SNRI | Desvenlafaxine | | Drug | SNRI | duloxetine | | Drug | SNRI | venlafaxine | | Drug | SSRI | Citalopram | | Drug | SSRI | Escitalopram | | Drug | SSRI | Fluoxetine | | Drug | SSRI | Paroxetine | | Drug | SSRI | Sertraline | | Drug | SSRI | vilazodone | | Drug | TCA | Amitriptyline | | Drug | TCA | Doxepin | | Drug | TCA | Nortriptyline | ## Large-scale estimation for depression - 17 treatments - 17 * 16 = 272 comparisons - 22 outcomes - 272 * 22 = 5,984 effect size estimates - 4 databases (Truven CCAE, Truven MDCD, Truven MDCR, Optum) - 4 * 5,984 = **23,936** estimates # Propensity models for all comparisons (Truven CCAE) ## Large-scale estimation for depression # Example 1 Fluoxetine vs. psychotherapy Suicide ideation Database: Truven MDCR Calibrated HR = 1.05 (0.51 - 2.51) # Example 2 ## Estimates are in line with expectations ## Large-scale estimation for depression - Each estimate produced with same rigor, and could be published as a paper - Propensity score adjustment - Cox regression - Calibrated using negative and positive controls - **—** ... - Not "data-mining"! - Results should be interpreted considering multiple testing - This can't be done for literature # OHDSI recommendations for evidence dissemination ### ✓ Address observation study bias Addressed by adjusting for confounding, and **verifying** bias was addressed. Disseminate your diagnostics and evaluations. ### ✓ Address publication bias Avoided by showing all tests that were performed, not just those with p < 0.05 ### ✓ Address p-hacking Very hard to fine-tune analysis to one specific result ## Population-level effect estimation Evidence Generation Evidence Evaluation Evidence Dissemination - Write and share protocol - Open source study code - Use validated software - Replicate across databases - Produce standard diagnostics - Include negative controls - Create positive controls - Calibrate confidence interval and pvalue - Don't provide only the effect estimate - Also share protocol, study code, diagnostics and evaluation - Produce evidence at scale # Building the LHC of observational research?