Brain-derived neurotrophic factor (BDNF) is a potential therapeutic agent for degenerative disorders of the central nervous system. In this report, we investigated the ability of BDNF to cross the blood-brain barrier (BBB). BDNF was stable in blood up to 60 min after i.v. injection, with evidence for aggregation, and had an early, rapid influx into brain. By 10 min, most of the BDNF sequestered by the cerebral cortex was associated with the parenchyma rather than with the endothelial cells, demonstrating complete passage across the BBB. A small dose of unlabeled BDNF enhanced the entry of 125I-BDNF from blood to brain after an i.v. bolus injection, whereas larger doses had no effect. In contrast, a large dose of unlabeled BDNF inhibited the influx of 125I-BDNF during in situ brain perfusion. After intracerebroventricular injection, the efflux of BDNF from brain to blood occurred at a rate similar to that for reabsorption of cerebrospinal fluid, and no evidence for self-inhibition was found. Therefore, we conclude that intact BDNF in the peripheral circulation crosses the BBB by a high-capacity, saturable transport system.