Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau

Neuron. 1994 Oct;13(4):989-1002. doi: 10.1016/0896-6273(94)90264-x.

Abstract

Tau from Alzheimer's disease (AD) paired helical filaments (PHF-tau) is phosphorylated at sites not found in autopsy-derived adult tau from normal human brains, and this suggested that PHF-tau is abnormally phosphorylated. To explore this hypothesis, we examined human adult tau from brain biopsies and demonstrated that biopsy-derived tau is phosphorylated at most sites thought to be abnormally phosphorylated in PHF-tau. These sites also were phosphorylated in autopsy-derived human fetal tau and rapidly processed rat tau. The hypophosphorylation of autopsy-derived adult human tau is due to rapid dephosphorylation postmortem, and protein phosphatases 2A (PP2A) and 2B (PP2B) in human brain biopsies dephosphorylate tau in a site-specific manner. The down-regulation of phosphatases (i.e., PP2A and PP2B) in the AD brain could lead to the generation of maximally phosphorylated PHF-tau that does not bind microtubules and aggregates as PHFs in neurofibrillary tangles and dystrophic neurites.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / metabolism*
  • Animals
  • Binding Sites
  • Brain Chemistry*
  • Humans
  • Phosphoprotein Phosphatases / metabolism
  • Phosphorylation
  • Postmortem Changes
  • Protein Structure, Secondary
  • Rats
  • tau Proteins / chemistry
  • tau Proteins / metabolism*

Substances

  • tau Proteins
  • Phosphoprotein Phosphatases