The primary biological function of platelets is to form hemostatic thrombi that prevent blood loss and maintain vascular integrity. These multi-responding cells are activated by different endogenous, physiological agonists due to the vast number of receptors present on the surface of the platelets. Collagen represents up to 40% of the total protein presented in the vessel wall and is the major activator of the platelets' response after tissue injury, and is the only matrix protein which supports both platelet adhesion and complete activation. The aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on collagen-induced blood platelets' activation, adhesion, aggregation and secretion of PF-4. We observed that depending on the dose, silychristin and silybin have anti-platelet properties observed as inhibition of collagen-induced activation (formation of blood platelet aggregates and microparticles, as well as decreased expression of P-selectin and activation of integrin αIIbβ3), aggregation, adhesion and secretion of PF-4. These effects highlight the potential of silybin and silychristin as supplementation to prevent primary and secondary thrombotic events wherein excessive blood platelet response to a physiological agonist is observed.
Keywords: blood platelet; collagen; flavonolignans.
Copyright © 2017 Elsevier B.V. All rights reserved.