A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway

Oncotarget. 2015 Oct 13;6(31):31927-43. doi: 10.18632/oncotarget.5578.

Abstract

Tumor-initiating cell (TIC) is a subpopulation of cells in tumors that are responsible for tumor initiation and progression. Recent studies indicate that hepatocellular carcinoma-initiating cells (HCICs) confer the high malignancy, recurrence and multi-drug resistance in hepatocellular carcinoma (HCC). In this study, we found that Icaritin, a prenylflavonoid derivative from Epimedium Genus, inhibited malignant growth of HCICs. Icaritin decreased the proportion of EpCAM-positive (a HCICs marker) cells, suppressed tumorsphere formation in vitro and tumor formation in vivo. We also found that Icaritin reduced expression of Interleukin-6 Receptors (IL-6Rs), attenuated both constitutive and IL-6-induced phosphorylation of Janus-activated kinases 2 (Jak2) and Signal transducer and activator of transcription 3 (Stat3), and inhibited Stat3 downstream genes, such as Bmi-1 and Oct4. The inhibitory activity of Icaritin in HCICs was augmented by siRNA-mediated silencing of Stat3 but attenuated by constitutive activation of Stat3.Taken together, our results indicate that Icaritin is able to inhibit malignant growth of HCICs and suggest that Icaritin may be developed into a novel therapeutic agent for effective treatment of HCC.

Keywords: HCC; HCC initiating cells; IL-6 receptors; Icaritin; Stat3.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Apoptosis
  • Blotting, Western
  • Carcinoma, Hepatocellular / drug therapy
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Cell Proliferation
  • Female
  • Flavonoids / pharmacology*
  • Humans
  • Immunoenzyme Techniques
  • Interleukin-6 / genetics
  • Interleukin-6 / metabolism*
  • Janus Kinase 2 / genetics
  • Janus Kinase 2 / metabolism*
  • Liver Neoplasms / drug therapy
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology*
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Phosphorylation
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • STAT3 Transcription Factor / genetics
  • STAT3 Transcription Factor / metabolism*
  • Signal Transduction*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Flavonoids
  • Interleukin-6
  • RNA, Messenger
  • STAT3 Transcription Factor
  • Janus Kinase 2
  • icaritin