TREM2 in Alzheimer's disease

Mol Neurobiol. 2013 Aug;48(1):180-5. doi: 10.1007/s12035-013-8424-8. Epub 2013 Feb 14.

Abstract

Recent works have demonstrated a rare functional variant (R47H) in triggering receptor expressed on myeloid cells (TREM) 2 gene, encoding TREM2 protein, increase susceptibility to late-onset Alzheimer's disease (AD), with an odds ratio similar to that of the apolipoprotein E ε4 allele. The reduced function of TREM2 was speculated to be the main cause in the pathogenic effects of this risk variant, and TREM2 is highly expressed in white matter, as well as in the hippocampus and neocortex, which is partly consistent with the pathological features reported in AD brain, indicating the possible involvement of TREM2 in AD pathogenesis. Emerging evidence has demonstrated that TREM2 could suppress inflammatory response by repression of microglia-mediated cytokine production and secretion, which may prevent inflammation-induced bystander damage of neurons. TREM2 also participates in the regulation of phagocytic pathways that are responsible for the removal of neuronal debris. In this article, we review the recent epidemiological findings of TREM2 that related with late-onset AD and speculate the possible roles of TREM2 in progression of this disease. Based on the potential protective actions of TREM2 in AD pathogenesis, targeting TREM2 might provide new opportunities for AD treatment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / pathology
  • Animals
  • Humans
  • Membrane Glycoproteins / chemistry
  • Membrane Glycoproteins / genetics
  • Membrane Glycoproteins / metabolism*
  • Models, Biological
  • Protein Transport

Substances

  • Membrane Glycoproteins