Two novel conotoxins from vermivorous cone snails Conus pulicarius and Conus tessulatus, designated as Pu14.1 and ts14a, were identified by cDNA cloning and peptide purification, respectively. The signal sequence of Pu14.1 is identical to that of α-conotoxins, while its predicted mature peptide, pu14a, shares high sequence similarity with ts14a, with only one residue different in their first intercysteine loop, which contains 10 residues and is rich in proline. Both pu14a and ts14a contain four separate cysteines in framework 14 (C-C-C-C). Peptide pu14a was chemically synthesized, air oxidized, and the connectivity of its two disulfide bonds was determined to be C1-C3, C2-C4, which is the same as found in α-conotoxins. The synthetic pu14a induced a sleeping symptom in mice and was toxic to freshwater goldfish upon intramuscular injection. Using the Xenopus oocyte heterologous expression system, 1μM of pu14a demonstrated to inhibit the rat neuronal α3β2-containing as well as the mouse neuromuscular α1β1γδ subtypes of nicotinic acetylcholine receptors, and then rapidly dissociated from the receptors. However, this toxin had no inhibitory effect on potassium channels in mouse superior cervical ganglion neurons. According to the identical signal sequence to α-conotoxins, the unique cysteine framework and molecular target of pu14a, we propose that pu14a and ts14a may represent a novel subfamily in the A-superfamily, designated as α1-conotoxins.
Copyright © 2010 Elsevier Inc. All rights reserved.