Platelet-rich plasma (PRP) is a common therapy for acceleration of maxillofacial and spinal fusion bone-graft healing. This study analyzes the therapeutic role of PRP during long-bone fracture healing evaluated Lewis rats. Following creation of unilateral open femur fractures, either 500 microL thrombin-activated PRP (PRP treated group) or 500 microL saline (control group) were applied once to the fracture site. Fracture healing was analyzed after 1 and 4 weeks. Following 4 weeks of fracture healing, radiographic analysis demonstrated higher callus to cortex width ratio (P < 0.05) in the PRP group (PRP: 1.65 +/- 0.06; control: 1.48 +/- 0.05). Three-point load bearing showed increased bone strength following PRP treatment (PRP: 60.85 +/- 6.06 Newton, control: 47.66 +/- 5.49 Newton). Fracture histology showed enhanced bone formation in the PRP group. Immunohistochemistry and Western-blotting demonstrated healing-associated changes in transforming growth factor (TGF)-beta1 and bone morphogenetic protein (BMP)-2. Our results suggest that PRP accelerates bone fracture healing of rat femurs via modulation of TGF-beta1 and BMP-2 growth factor expression.