Mutant strains of the yeast Saccharomyces cerevisiae that require branched-chain amino acids must be supplemented with large concentrations (up to 10 mM) of these amino acids to satisfy their nutritional requirement. The utilization of one branched-chain amino acid, leucine, was examined in several leul strains of yeast grown aerobically in a glucose-ammonium salts minimal medium containing a limiting concentration (0.2 mM) of leucine. In this medium, the leucine requirement of the auxotrophic strains could be reduced by valine, another branched-chain amino acid. Increasing the valine concentration increased the cell yields of cultures and also reduced the levels of 3-methyl-1-butanol detected in the medium by gas chromatography. The concentration of 3-methyl-1-butanol was reduced from 122.0 to 48.9 muM when 5.0 mM valine was supplemented to limiting-leucine cultures. The amino acids isoleucine, threonine, norleucine, norvaline, alpha-amino-butyrate, alanine, and glycine also spared the leucine requirement of leucine auxotrophs, most likely because they resembled leucine and competed for its uptake. We propose that leucine analogs restrict the entry and degradation of leucine and thus reduce its conversion to 3-methyl-1-butanol, a major component of fusel oil.