Cell-surface heparan sulfate proteoglycans participate in molecular events that regulate cell adhesion, migration, and proliferation. The present study was performed to elucidate whether glypican-2 plays a role in interactions of neurons with midkine (MK), a heparin-binding neuroregulatory factor. MK bound to heparan sulfate chains of glypican-2 in a manner similar to syndecan-3. Microbeads coated with MK or poly-L-lysine induced clustering of glypican-2 as well as syndecan-3. Substratum-bound MK or poly-L-lysine induced cell adhesion of N2a neuroblastoma cells, while only MK promoted neurite outgrowth of these cells. Ligation of cell-surface glypican-2 with MK or an antibody against epitope-tagged glypican-2 induced cell adhesion and promoted neurite outgrowth. These results verified that cell-surface glypican-2 bound to MK and suggested that MK-glypican-2 interactions participate in neuronal cell migration and neurite outgrowth. In addition, we observed different localization of epitope-tagged glypican-2 and syndecan-3 on the surface of N2a cells; the result suggested that they may play different roles in MK-mediated neural function.