
Solving Nonlinear SVM in Linear Time? A Nyström
Approximated SVM with Applications to Image Classification∗

Ming-Hen Tsai
Dept. of Computer Science
Columbia University, USA
mt2767@columbia.edu

Yi-Ren Yeh
Intel-NTU Connected Context Comp. Center

National Taiwan University, Taiwan
yryeh@ntu.edu.tw

Yuh-Jye Lee
Dept. of CSIE

National Taiwan Univ. Science & Tech., Taiwan
yuh-jye@mail.ntust.edu.tw

Yu-Chiang Frank Wang
Research Center for IT Innovation

Academia Sinica, Taiwan
ycwang@citi.sinica.edu.tw

Abstract

In this paper, we improve the efficiency of kernelized
support vector machine (SVM) for image classification
using linearized kernel data representation. Inspired
by Nyström approximation, we propose a decomposi-
tion technique for converting the kernel data matrix
into an approximated primal form. This allows us to
apply the approximated kernelized data in the primal
form of linear SVMs, and achieve comparable recogni-
tion performance as nonlinear SVMs do. Several ben-
efits can be observed for our proposed method. First,
we advance basis matrix selection for decomposing our
proposed approximation, which can be viewed as fea-
ture/instance selection with performance guarantees.
More importantly, the proposed selection technique sig-
nificantly reduces the computation complexity for both
training and testing. Therefore, the resulting computa-
tion time is comparable to that of linear SVMs. Exper-
iments on two benchmark image datasets will support
the use of our approach for solving the tasks of image
classification.

1 Introduction

Support vector machines (SVM) have been widely
applied for solving machine learning tasks due to its
generalization. Using kernel functions, SVM can be
learned with its dual form in a higher order feature
space and solves classification problems which are lin-
early non-separable. However, construction of kernel
matrices in an SVM dual form is computationally ex-
pensive, and the size of the kernel matrix is super-
linearly proportional to that of the dataset. Therefore,
it is typically undesirable (or even infeasible) to train
nonlinear SVMs for large-scale problems. Inspired by
the recent success of LIBLINEAR [1] and PEGASOS
[2], which solve linear SVMs with a fast convergence
guarantee, researchers have been utilizing the linear
SVM models for solving nonlinear problems for solving
larger-scale problems. For example, exact explicit fea-
ture mapping [3], approximated explicit feature map-
ping [4], and projection methods [5] are among the
representative techniques.
Among the above approaches, projection methods

are commonly used since they need not determine non-
linear feature mapping explicitly, and one can directly

∗A longer version of this paper (including code) is available
at http://github.com/scan33scan33/kernel-decomposition.

apply the kernelized data as inputs to learn linear
SVMs. For example, the generalized support vector
machine (GSVM) [6] takes the full kernel matrix as a
form of kernelized input data for solving linear SVM.
Since its computational load depends on the number
of columns in the kernel matrix, the reduced SVM
(RSVM) [7] is proposed to construct a reduced ker-
nel matrix for decreasing the computation complexity.
However, the performance of this type of approaches
will be sensitive to the derived projection bases, and
how to select a proper set of such bases is typically a
challenging task.

In this paper, we investigate a well-known kernel ap-
proximation technique, Nyström approximation. We
propose to decompose a kernelized data matrix with
Nyström approximation for generating lower dimen-
sional data, and thus one can apply linear SVMs
in solving larger-scale problems. We present a fea-
ture/instance selection strategy for approximating the
kernelized data by selecting a compact subset from the
original kernel data matrix. The proposed technique
allows us to take the advantages of computation ef-
ficiency of linear SVM models, while preserving the
classification capability of the nonlinear ones. As ver-
ified later by our experiments, our proposed SVM is
able to achieve comparable performance as nonlinear
SVMs do, while the computation complexity for both
training and test is remarkably reduced and compara-
ble to that of linear SVMs.

2 Nyström Approximation for SVM

We first briefly review the SVM in two equivalent
formulations, i.e., primal and dual forms. Advantages
and challenges using the dual form will be discussed,
and we present the existing Nyström approximation for
solving SVM on large-scale problems. Note that we as-
sume there exist � training instances in a d-dimensional
space, i.e., X = [x1,x2, . . . , x�]

T ∈ R�×d with labels
y = [y1, y2, . . . , y�]

T .

2.1 SVM in Primal and Dual Spaces

The primal-form support vector machine (SVM)
learns an optimal separating hyperplane to distinguish
data between two classes, and it solves the following
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optimization problem:

min
w,b

R(w) + C
�∑

i=1

ξ(w;φ(xi), yi). (1)

R(w) is the regularization term (e.g., R(w) = 1
2w

Tw),
ξ(·) is the loss function, and C is the trade-off between
R(w) and ξ(·).

We note that φ in (1) maps w and xi into a higher
order feature space, which exhibits improved classifica-
tion capability. Since solving (1) in a high-dimensional
space is typically not tractable, one can apply a proper
kernel function K(xi,xj) = φ(xi)

Tφ(xj) and derive
Q = K(X,X) = {K(xi,xj)}ij as an � × � kernel
matrix. As a result, without the need to calculate φ
explicitly, one can convert (1) into the following dual
form, which can be easily solved using quadratic pro-
gramming techniques:

min
α

1

2
αTQα− eTα

s.t. αTy = 0 and 0 ≤ αi ≤ C ∀i. (2)

2.2 Nyström Approximation for Large-Scale
SVM

Although the use of mapping functions and kernels
provides improved classification ability, computation of
a kernel matrix takes O(�2d) and thus is very compu-
tationally expensive especially for large-scale problems
(i.e., � is large). Among low-rank approximation tech-
niques to alleviate this problem, we advance Nyström
approximation [8] due to its simplicity in decomposing
the bases of the kernel matrix.
We now discuss the use of Nyström approximation

for large-scale SVMs. Suppose that we require a rank-d̃
approximation of the kernel matrix Q = K(X,X), and

we assume d̃ � l as in common low-rank approxima-
tion settings. Nyström approximation takes the form

Q̃ = PWd̃P
T , where we have P = K(X,B) ∈ R�̃×d,

and the matrix B ∈ Rd̃×d consists of d̃ landmark ex-
amples which can be viewed as projection bases. Here,
we use Wd̃ = W−1, where W = K(B,B) as proposed
in [8]. Alternatively, as pointed out in [7], one can
use Wd̃ = I as an aggressive approximation. In this

case, the computation time for P and W−1 are O(�d̃d)

and O(d̃3), respectively. Evaluation of each element

takes O(d̃) time. It is worth noting that, although
the computation time is reduced remarkably, it may
be still proportional to �2 if all kernel elements need
to be computed. To further reduce the computational
cost, we utilize the Nyström Approximation for solving
SVM in the primal, which decreases the computation
time to O(�dd̃) (as detailed in Section 3).

3 Solving the Approximated Dual Problems
in the Primal

For large-scale classification problems, it is always
desirable to design classifiers with performance guar-
antees without remarkably sacrificing computation or
memory costs (even training can be done off-line). Al-
though the primal linear SVM model is able to per-
form both training and testing in linear time, nonlin-
ear SVMs often exhibit improved capability in solving

Algorithm 1 Nyström-Approximated Primal SVM

Input Training data with labels (y, X), kernel function
K, and the expected basis size s.

Predefined A basis selection algorithm A(y, X,K, s).
1. Get B ← A(y, X,K, s)

2. Compute R← Cholesky decomposition of K(B,B)

3. Let f(X) ≡ K(X,B)R−1 be the hash function to do
the data transform

Return f(X)

more challenging tasks. To address the above prob-
lems, we propose to use L1-regularized SVM and derive
a compact set of Nyström approximated bases for non-
linear SVMs. As detailed later, the proposed method
will be linear in both selecting the basis and construct-
ing the primal formulation. More importantly, it will
be sub-linear in performing subsequent training and
testing processes, and thus achieves comparable per-
formance as nonlinear SVMs do.

3.1 Scaling Up : Nyström Approximation in the
Primal

In this paper, we aim at utilizing a linear SVM
model to address nonlinear problems via decomposing
Nyström approximation. With φ(x) = x and no pa-
rameter b in (1), we have a linear SVM model in which
the kernel data matrix X satisfies K(X,X) = XXT .
When applying Nyström approximation, the approxi-
mated kernel Q̃ (see Section 2.2) can be decomposed
into X̄X̄T = {x̄i

T x̄j}ij . Thus, solving a nonlinear

SVM with Q̃ can be viewed as learning a linear SVM
model with data X̄. To construct X̄, we have:

Q̃ = PW−1PT = P (RTR)−1PT = PR−1(PR−1)T , (3)

where RTR = W+σI is derived by Cholesky decompo-
sition with a small positive σ (for the full-rank guaran-

tee). With X̄ = PR−1 ∈ R�×d̃, we obtain the primal-
form data as desired.

Although the above decomposition technique allows
one to solve nonlinear SVMs with linear models, select-
ing a preferable basis matrix will not be trivial. More
specifically, even using the kernelized data in its pri-
mal form, it still requires high computational costs in
constructing the kernel matrix and deriving the opti-
mal basis matrix for such a decomposition. Therefore,
we need a fast and effective way to choose a compact
and representative basis matrix to make our algorithm
feasible, and thus this decomposition technique would
be preferable for large-scale problems. Algorithm 1
shows a general framework for performing basis selec-
tion, which utilizes a hash function to transform data
to an approximated non-linear space.

3.2 Random Basis Selection for Nyström Ap-
proximation

A simple and straightforward way to address the
above concern is to randomly sample instances from
the training set as the basis matrix. When utilizing
the matrix W = K(B,B), a PAC-style theorem has
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Algorithm 2 Basis Selection Algorithm A
Input Training data with labels (y, X), kernel function

K, and the expected basis size s

1. Get a initial set of basis Binitial with size
√
� from X.

Select a total of
√
� instances (by stratified random

sampling) from each class as (ysubset, Xsubset).

2. Xselect ← K(Xsubset, Binitial).

3. Train L1-regularized SVM on (ysubset, Xselect) and a
sparse solution w for each class.

4. B ← columns in Binitial where the corresponding ele-
ment in w is non-zero.

5. If s is defined, B ← s centroids generated by k-means
of B (as proposed in [9]).

Return B

been provided in [5] suggesting that only O(1/ε) in-
stances are required in order to achieve ε error in ideal
cases. The effectiveness of such a random sampling
strategy has been verified in reduced support vector
machine (RSVM) from a statistical point of view [7].
In practice, a stratified random sampling is applied,
which randomly samples subsets with the same size
from each class to alleviate unbalanced data learning
problems. In practice, however, it is not clear how to
determine the optimal size when sampling such ran-
dom basis matrices. Performing cross-validation will
not be preferable for large-scale problems, since it is
still very time consuming even with the use of primal-
form kernelized data and linear SVM models.

3.3 Informative Basis Selection for Nyström Ap-
proximated SVM

Recall that, in Section 2.2, we have the j-th col-
umn of X̄ generated by the j-th column of B when
W = I. Therefore, finding a basis set that maximizes
the accuracy of the approximated model on X will be
equivalent to performing feature selection on X̄. In
our work, we have R(w) = ‖w‖1 in (1), and we solve
this L1-regularized SVM for obtaining a sparse solu-
tion w. The reason why we choose this selection tech-
nique is that it shares the same loss as the SVM ob-
jective function does. Moreover, it is able to identify
a sparse subset of features/instances with complexity
O(�d)×#iterations, which is linear to the dataset size.

However, solving the L1-regularized optimization
problem can be intractable. Inspired by the advan-
tages of randomness utilized in [5, 7], we start from
a randomly chosen subset, followed by the above L1-
regularized SVM for basis selection. Let B be the can-
didate basis vector set with size �b. A naive way for
designing A is to generate the primal data byK(X,B).
It takesO(�b�d) to compute such a kernel matrix. How-
ever, Its computational cost is still high when � is large.
To alleviate this problem, we choose a sampled subset
with size �s and limit the size of the candidate basis �b
when computing the primal data during the selection
process. We further enforce �s�b ∼ � in our implemen-
tation. As a result, the kernel computation time turns
into O(�b�sd) = O(�d). It can be seen that the re-
sulting computation time is now linearly proportional
to the size of the sampled subset. In our framework,
we choose �s =

√
� and �b =

√
�. Our proposed basis

(a) USPS

(b) MNIST
Figure 1. Example images from the USPS and
MNIST handwritten digit datasets.

Table 1. Dataset descriptions (with the number
� of instances and the dimension d of the data).
The sizes for storing the data �d and the associ-
ated kernel matrices �2 are also listed.

� d kernel size �2 data size �d
USPS 7291 256 53M 2M
MNIST 60000 780 3.6G 47M

selection algorithm is shown in Algorithm 2.
We note that, in Algorithm 2, we first apply the same

stratified sampling strategy when selecting the candi-
date instances for boosting classification performance.
Since our proposed method only requires a subset of
instances (and the associated class labels) for learning
the compact data representation, our framework can
be extended to semi-supervised or privacy preserving
classification problems. Furthermore, our setting can
also be easily extended for learning models with multi-
ple kernels. In such cases, the selection of representa-
tive bases using L1-regularized SVMs (i.e., Algorithm
2) can be performed on all random bases generated by
different base kernels.

4 Experiments

4.1 Experimental Settings

We conduct experiments on two benchmark image
datasets: USPS and MNIST. Table 1 describes these
two datasets, including the sizes of the data and those
of the corresponding kernel matrices. It can be seen
that, when the dataset is large (e.g., MNIST), comput-
ing and storing the entire kernel matrix for nonlinear
SVMs will be very expensive.

For experiments, we randomly split 70% of the data
for training and the remaining 30% for testing. We
repeat this process five times and report the average
recognition rates with their standard deviations. Each
instance is scaled to unit-length (‖xi‖2 = 1), since this
is observed to produce better performance.

4.2 Discussions

In our experiments, we consider the use of RBF ker-
nels for nonlinear SVM classification. We compare the
performance and computation time of our Nyström ap-
proximated SVM in primal form to those produced by
standard linear and nonlinear SVMs. We perform a
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Table 2. Comparisons of accuracy and compu-
tation time on the two datasets. Training time
(in seconds) is computed for the entire data set,
while testing time is the average time computed
for each instance (in milliseconds).

USPS Acc. Training Time Test Time
Ours 97.057 3.764 (s) 1.486 (ms)
RBF SVM 98.007 14.507 (s) 1.888 (ms)
Linear SVM 95.009 2.274 (s) 0.036 (ms)
MNIST Acc. Training Time Test Time
Ours 95.983 57.318 (s) 0.578 (ms)
RBF SVM 98.547 3650.334 (s) 29.138 (ms)
Linear SVM 91.917 14.510 (s) 0.156 (ms)

five-fold cross validation to select the parameters γ and
C, and the search spaces are log2 γ ∈ {−7,−5, . . . , 1}
and log2 C ∈ {−3,−1, . . . , 15}, respectively.
Table 2 shows the experimental results for the three

SVM models. As observed, our method achieved im-
proved recognition rates than linear SVMs, while the
time for training and testing using our proposed model
is comparable to that of linear SVMs. On the other
hand, although the use of nonlinear SVMs reported a
slightly better recognition performance than ours, it
required remarkably longer time for both training (e.g.
3650.3 vs. 57.3 seconds) and testing (e.g. 29.1 vs. 0.5
seconds). This is because that the standard nonlinear
SVM utilizes the full kernel matrix, and its compu-
tation time will be quadratically scaled-up with �. It
is worth noting that, training and test time reported
in Table 2 involves feature hashing and deriving the
SVM model/ouput. If needed, hashing features can be
performed off-line.

4.3 Comparisons to Random Basis Selection

To verify the effectiveness of our proposed basis
selection approach, we compare the performance us-
ing the basis matrix determined by our method with
that derived by the random sampling strategy (as the
RSVM did [7]). We plot the recognition rates using
these two different methods on the two datasets in Fig-
ure 2, in which the horizontal axis shows the number of
selected bases, and the vertical axis denotes the recog-
nition rates. From this figure, it can be seen that our
selection method yielded higher accuracy than random
sampling did given the same basis size. This confirms
that we are able to identify a better (i.e., more informa-
tive) basis matrix for designing our Nyström approxi-
mated SVM.

5 Conclusion

We proposed a method to solve an approximated
dual SVM in the primal based on Nyström approxi-
mation. Without the need to store the entire kernel
data matrix like nonlinear SVM does, our approach
automatically determines the optimal basis matrix
for decomposing Nyström approximated kernel data,
which allows us to solve linear SVMs with complex-
ity only linearly scaling up with the dataset size.
Experiments on two image datasets confirmed that
our proposed model achieved improved recognition
accuracy than the standard linear SVM did and with
comparable computation time. Training and testing
time using our proposed was remarkably reduced
compared to that of nonlinear SVMs. Future research
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Figure 2. Performance comparisons using our ba-
sis selection method (in blue) vs. random sam-
pling (in green) on USPS and MNIST datasets.

directions include the extension of our proposed model
for a multiple kernel setting, possible integration of
unsupervised feature selection approaches, and our
proposed model for semi-supervised or unsupervised
learning problems.
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