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Abstract 

Tracking an object's 3D position and orientation from a 
color image can been accomplished with particle filters if 
its color and shape properties are known. Unfortunately, 
initialization in particle filters is often manual or random, 
thus rendering the tracking recovery process slow or no 
longer autonomous. A method that uses image data to 
generate likely pose hypotheses for known objects is 
proposed. These generated pose hypotheses are then used 
to guide visual attention and computer resources in a 
“top-down” tracking system such as a particle filter: 
speeding up the tracking process and making it more 
robust to unpredictable movement. 

1. Introduction 

Object pose estimation is a problem of great 
importance in applications such as robotics, 
video-surveillance or augmented reality. Often in these 
applications it is possible to know the object’s model, for 
example its shape or color information, beforehand. 

A class of methods used for 3D model-based object 
tracking is based on particle filters. These represent the 
distribution of an object’s 3D pose as a set of weighted 
hypotheses (particles) [1]. Their advantage, to contrast 
with Kalman filtering, is the fact that the distribution of 
hypotheses is not restricted to Gaussian, and a random 
distribution is assumed [2]. Hypotheses are tested by 
explicitly projecting the object model in the image and 
comparing actual image pixel information. This is an 
example of a top-down approach to tracking: they depend 
not only of image information but on knowledge such as 
the object's typical kind of movement and expected 
location in space. In every frame a better fit for the object 
position is looked for, according to appropriate motion 
and noise distributions. 

Initialization (or re-initialization), recovery after 
occlusions and dealing with unpredictable movement are, 
though, problems in particle (and basically all) top-down 
filters. When no a-priori information of an object's 
location is known, particles are scattered randomly in 
space – making the method difficult or slow to converge. 
Even if a high number of particles is available, it is 
difficult for the method to converge when it depends on 
hitting the right area of pose space by chance. In an 
attempt to address this problem, the method proposed in 
this paper focuses on quickly and intelligently choosing 
where to place particles and start or restart looking for the 

target, based on image information – to which we call a 
bottom-up approach to pose estimation. 

A few works have been made that explore this idea for 
2D tracking. [3] uses such an approach as a way to solve 
the problem of 2D tracking of people and their body parts: 
a bottom-up layer identifies candidates for body parts; 
while the top-down process searches for the whole body, 
constituted by several detected parts – assuming humans 
usually adopt certain poses. In [4], on the other hand, 
Adaboost is used as a bottom-up detector of objects 
(hockey players) and deals with the appearance of new 
players in the image. Then, a “mixture particle filter” 
(MPF) is used in the upper layer to track multiple players 
at the same time. This proposal’s goal is most similar to 
the aforementioned ones, although we extend these 
paradigms to complete 6 degree-of-freedom pose 
estimation and tracking of 3D objects. 

2. Bottom-up pose estimation 

In this paper, pose hypotheses are generated in an 
image driven – bottom-up – manner and used on a 3D 
tracking process through particle filters. This generalizes 
the concept of visual attention in the sense that 
computational resources are allocated to areas of the 
whole pose space, 3D position and orientation. With the 
integration of both approaches, top-down's precision is 
kept, while both initialization speed and robustness in 
object reappearance is obtained from the bottom layer. 

The proposed method is divided in 3 parts: 
segmentation, 3D localization and particle generation. 

2.1. Segmentation 
The first step in our method consists in segmenting the 

objects by color. We do so through color segmentation on 
the HSV color-space of the image, which was chosen in 
order to better achieve luminosity invariance. A color 
histogram of the object is known and so a Histogram 
Backprojection algorithm [5] is applied, building a map 
representing the likelihood of each pixel belonging to the 
object. 

A scale-space of this backprojection map is created to 
better deal with the simultaneous presence of both small 
and large objects. Each scale is computed by filtering the 
map with a Gaussian function of different variance. 

The segmentation algorithm used in each scale was 
obtained through a flood-fill method using local maxima 
of the map as seeds. Instead of the standard stop criteria, 
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Sauvola's binarization formula [6], usually used in 
document segmentation, was used to adapt the boundary 
detection threshold to the region’s standard deviation. 

After segmentation is completed in each scale, the 
results are condensed in a single binary map through an 
OR of all scales. 

2.2. Localization 
In order to estimate 3D pose from a segmented region, 

we compare its shape with trained ones. Since we use the 
perspective camera model, this training stage can be made 
independent of object position in the image. In run-time, 
if objects are not centered, we simulate a camera rotation 
to the centroid of the object. Training will therefore be 
made with the object centered in the image and a database 
is built that matches 2D shape to 3D orientation. The 
measured orientation can then be rectified using the 
equations for projecting rotated points in a pan-tilt camera 
[7]: 
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where ct,st,cp,sp represent cos(t), sen(t), cos(p), sen(p), 
respectively; (x0,y0) the initial point and (x1,y1) the point 
after a rotation of p and t degrees on a pan/tilt camera. We 
approximate the rotation of all pixels by the rotation of 
their average – the centroid. If we assume training is made 
with the object centered in the image then the initial point 
is equal to the origin (0,0) – and we compute the camera 
rotation that leads to moving that point to (x1,y1): 
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where (x1,y1) are the region’s normalized centroid 
coordinates and p,t are the pan and tilt rectification angles 
which, when applied after the measured rotation, give us 
the true orientation of the object. An orientation of the 
object should be defined as a single rotation sequence (as 
opposed to a rotation sequence followed by another of 
rectification). We therefore compute the angles of rotation 
Yaw, Pitch and Roll that define object orientation, from 
the final rotation matrix obtained from the composition of 
measured and rectification rotations. 

Because perspective projection deforms the object as it 
moves away from the image center, a change of 
coordinates is made to center the region before computing 
its shape features. A homogeneous transformation with p 
and t as the rotation angles will produce such result, thus 
rendering orientation estimation independent of position. 

 
After the object’s final orientation coordinates are 

computed, we can compute depth (Z) from the area of the 
projection, defined as: 
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(X,Y) being the coordinates of the object's points in the 
world, I(X,Y) the object’s shape represented on a binary 
image, and fx,fy intrinsic parameters of the perspective 
projection. We approximate that the object's points are all 
at the same depth, projecting on a plane which is parallel 
to the image. If so, depth (Z coordinate) can be computed 
from the relation of the segmented region's area and 
trained area and depth, which can both be stored in the 
database of projections. 
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Finally, X and Y are computed from the geometric 
center of the region, by assuming that the 3D geometric 
center of the object projects on the 2D center of the region 
given by (x,y)=(fx.X/Z, fy.Y/Z). 

These approximations in position estimation introduce 
some errors, but allow us to generate good hypotheses that 
will be refined in the subsequent particle filtering stage.  

 
To describe shape we use geometric moments, which 

hold point distribution information. Invariance to position 
and scale can easily be accomplished by using relative 
positions to the region's centroid and normalization to the 
area: 
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where upq is a normalized moment of order p+q and M00 
the area of the region. 

Normalized moments should be used as shape 
descriptors using orders of 2 onwards. Despite this fact, 
the maximum order used should always be the 4th or 
higher. This is because for some symmetric shapes, such 
as squares for example, only moments of the 4th order can 
fully distinguish all orientations. 

A normalized distance function between shapes, using 
moments, was then defined assuming a normal 
distribution: 
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ñpq being the observed moment, inpq the moment of the ith 
hypothesis and var(npq) the variance of the trained 
moment of order p+q. The most likely pose estimate of a 
segmented object will then be the one with minimum 
distance to the measured moments. 

2.3. Particle generation 
A likelihood function was defined from d as 

L=exp(-d/2). From this likelihood function, a cumulative 
distribution was computed, from where N particles can be 
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generated according to their likelihood by sampling the 
function in a uniform way. 

3. Results 

3.1. Localization error 
The method was tested on perfect segmentations to 

evaluate its localization error alone. These were generated 
by projecting the object in 200 random poses, covering 
untrained orientations. 

 

 
Figure 1. Set of 200 random poses generated to test 
localization error. 

Given the top-down integration context, the error that 
tracking will be subject to is related to the least error 
particle. A quaternion representation was used to compute 
a single error value between the real and estimated 
orientations.  

The average of the absolute angle error was then 
measured for different training resolutions and numbers 
of particles generated (N). Moments of order up to 7 were 
used as shape description features. 

Table 1. Error of best particle, N=100 

Res #Poses X (cm) Y (cm) Z (cm) Angle (º) 
20 3240 0,31 0,25 1,27 18,57 
15 7488 0,29 0,21 0,94 12,6 
10 24624 0,26 0,21 0,84 11,95 
5 191808 0,26 0,22 0,69 10,7 
 
From Table 1 we can confirm how lower orientation 

errors lead to lower error in the depth coordinate Z. Also, 
errors of 1cm in depth and lower than 0.5cm in X and Y 
can be achieved. 

In the proposed method, particles are generated in an 
uniform way along the cumulative distribution function, 
thus leading to unfair generations for low values of N – 
lower than 100 – because not enough samples were 
selected from the set of hypothesis. 

Table 2. Error of best particle, N=900 

Res #Poses X (cm) Y (cm) Z (cm) Angle (º) 
20 3240 0,32 0,25 1,25 16,62 
15 7488 0,26 0,2 0,7 8,19 
10 24624 0,25 0,21 0,59 6,13 
5 191808 0,24 0,2 0,43 4,2 
 
On the other hand, a high number of generated particles 

such as 900 (see Table 2) allows the top-down tracking 
layer to expect starting errors of as low as 5º in orientation. 
From both Tables 1 and 2 we can see how expected errors 

can be as low as the training's resolution. 
This kind of precision in visual attention gives greater 

flexibility in the management of resources for the 
top-down layer – which can make the whole process 
faster and more precise. 

Computational time was also registered (see Table 3) 
on experiments made with a 2.67GHz Intel CPU and 
NVIDIA Quadro FX 580 graphics card. 

Table 3. Computational time 

Res #Poses Time (ms) 
N=100 

Time (ms) 
N=500 

Time (ms) 
N=900 

20 3240 21 31 39 
15 7488 22 41 55 
10 24624 33 42 51 
5 191808 112 131 153 
 
According to our experiments, an almost 30Hz 

real-time performance can be achieved. Also, being the 
proposed process easily parallelized, a real-time 
application would possible even for thin resolution, high 
particle requirements. 

3.2. Pose estimation in real images 
The whole method was tested on real images as well, 

for simple and complex objects, demonstrating the 
credibility of pose estimates with highest likelihood. 

 

 

  

   
Figure 3. Two different objects, a box and “5”, 
their segmentation and highest likelihood pose. 
Objects were learned with a resolution of 15º. 

The method, and likelihood function of the hypothesis 
in particular, behaves well for real images, with either 
simple or complex objects (see Figure 3). Note that in the 
first example no likely hypothesis exists on the number 
“8” since its shape is too different from the object being 
looked for (a box). 

It is also possible to use this method for multiple object 
pose estimation (and, so, recognition). To accomplish that, 
the distance and likelihood measures must be made for all 
the known objects' databases, each pose now being 
basically assigned to an object. This way, generated 
particles will consist not only of pose but object 
identification. Two similar objects, a “5” and a “6”, were 
trained at 15º and tested on a real image – see Figure 4. 
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Figure 4. Result of pose estimation of a single 
object “5” (left) and multiple objects (right). 

3.3. Simple integration with top-down tracker 
Our pose estimation method was integrated with a 

top-down tracker [8] to evaluate the advantages of this 
joint approach to tracking. 

A ball was put on a pendulum movement with an 
obstacle which hides it in the middle of the image. This 
makes the top-down layer lose track of the object every 
time it disappears – and proves how 3D visual attention 
(though only 3D position is used in this case) is important. 

 
Figure 5. Estimate of x coordinate on the tracker 
before and after integration with our bottom-up 
particles. Pendulum movement with obstacle. 

As we can see from Figure 5, when the object's 
movement is unpredictable by the motion model, or 
suffers occlusions, a top-down approach to tracking is not 
reliable on its own. After integration, recovery of the 
object's position is easily achieved after the object enters 
the scene – since bottom-up generated particles with a 
small enough starting error for the tracker to refine. 

To better evaluate the advantage of combining both 
attention approaches we compute the average likelihood 
(Table 4), in the same sequence of images, for both 
top-down's and bottom-up's estimate when used by 
themselves; and also after integration. 

Table 4. Average likelihood of methods 

Top-down Bottom-up Integration 
0,030 0,010 0,078 

 
We can see how tracking improves with integration; 

and also that bottom-up's precision is low compared to 
top-down's when used by itself. Overall improvement in 
performance is obtained, be it in precision or robustness, 
after integration of the tracker with the proposed method. 

4. Conclusions and future work 

A method was introduced and tested, for generating 
pose hypotheses to be used on a 3D tracking paradigm 
that integrates both bottom-up and top-down approaches. 
Such joint approach was proven to take advantage of the 
upper layer's precision and lower layer's initialization 
speed and robustness to movement – obtaining a better 
performance than each of the layers independently. The 
proposed method's speed comes from the choice of shape 
descriptors and decoupling of orientation and position 
estimation problems. 

We can from experiments conclude that the proposed 
method generates credible pose hypotheses with a 
tolerable error (less than 1cm on position and equal to 
resolution on orientation). It is also shown that real-time 
estimation is possible for a reasonable number of 
generated particles, obtaining an average error of 10º in 
orientation. Using graphics libraries such as OpenGL 
allows to generalize the localization method to any 
segmented rigid object – and it is also shown how credible 
pose hypotheses are generated for both complex and 
simple objects. 

Generalizing pose estimation to part-based objects, just 
as in [3], would allow for general, multiple colored or 
textured objects – each part having its own characteristics. 
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