
Image driven generation of pose hypotheses
for 3D model-based tracking

Martim Brandão, Alexandre Bernardino, José Santos-Victor
ISR – Instituto Superior Técnico

1049-001 Lisboa - Portugal
mbrandao@isr.ist.utl.pt, alex@isr.ist.utl.pt, jasv@isr.ist.utl.pt

Abstract

Tracking an object's 3D position and orientation from a
color image can been accomplished with particle filters if
its color and shape properties are known. Unfortunately,
initialization in particle filters is often manual or random,
thus rendering the tracking recovery process slow or no
longer autonomous. A method that uses image data to
generate likely pose hypotheses for known objects is
proposed. These generated pose hypotheses are then used
to guide visual attention and computer resources in a
“top-down” tracking system such as a particle filter:
speeding up the tracking process and making it more
robust to unpredictable movement.

1. Introduction

Object pose estimation is a problem of great
importance in applications such as robotics,
video-surveillance or augmented reality. Often in these
applications it is possible to know the object’s model, for
example its shape or color information, beforehand.

A class of methods used for 3D model-based object
tracking is based on particle filters. These represent the
distribution of an object’s 3D pose as a set of weighted
hypotheses (particles) [1]. Their advantage, to contrast
with Kalman filtering, is the fact that the distribution of
hypotheses is not restricted to Gaussian, and a random
distribution is assumed [2]. Hypotheses are tested by
explicitly projecting the object model in the image and
comparing actual image pixel information. This is an
example of a top-down approach to tracking: they depend
not only of image information but on knowledge such as
the object's typical kind of movement and expected
location in space. In every frame a better fit for the object
position is looked for, according to appropriate motion
and noise distributions.

Initialization (or re-initialization), recovery after
occlusions and dealing with unpredictable movement are,
though, problems in particle (and basically all) top-down
filters. When no a-priori information of an object's
location is known, particles are scattered randomly in
space – making the method difficult or slow to converge.
Even if a high number of particles is available, it is
difficult for the method to converge when it depends on
hitting the right area of pose space by chance. In an
attempt to address this problem, the method proposed in
this paper focuses on quickly and intelligently choosing
where to place particles and start or restart looking for the

target, based on image information – to which we call a
bottom-up approach to pose estimation.

A few works have been made that explore this idea for
2D tracking. [3] uses such an approach as a way to solve
the problem of 2D tracking of people and their body parts:
a bottom-up layer identifies candidates for body parts;
while the top-down process searches for the whole body,
constituted by several detected parts – assuming humans
usually adopt certain poses. In [4], on the other hand,
Adaboost is used as a bottom-up detector of objects
(hockey players) and deals with the appearance of new
players in the image. Then, a “mixture particle filter”
(MPF) is used in the upper layer to track multiple players
at the same time. This proposal’s goal is most similar to
the aforementioned ones, although we extend these
paradigms to complete 6 degree-of-freedom pose
estimation and tracking of 3D objects.

2. Bottom-up pose estimation

In this paper, pose hypotheses are generated in an
image driven – bottom-up – manner and used on a 3D
tracking process through particle filters. This generalizes
the concept of visual attention in the sense that
computational resources are allocated to areas of the
whole pose space, 3D position and orientation. With the
integration of both approaches, top-down's precision is
kept, while both initialization speed and robustness in
object reappearance is obtained from the bottom layer.

The proposed method is divided in 3 parts:
segmentation, 3D localization and particle generation.

2.1. Segmentation
The first step in our method consists in segmenting the

objects by color. We do so through color segmentation on
the HSV color-space of the image, which was chosen in
order to better achieve luminosity invariance. A color
histogram of the object is known and so a Histogram
Backprojection algorithm [5] is applied, building a map
representing the likelihood of each pixel belonging to the
object.

A scale-space of this backprojection map is created to
better deal with the simultaneous presence of both small
and large objects. Each scale is computed by filtering the
map with a Gaussian function of different variance.

The segmentation algorithm used in each scale was
obtained through a flood-fill method using local maxima
of the map as seeds. Instead of the standard stop criteria,

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN4-6

59

Sauvola's binarization formula [6], usually used in
document segmentation, was used to adapt the boundary
detection threshold to the region’s standard deviation.

After segmentation is completed in each scale, the
results are condensed in a single binary map through an
OR of all scales.

2.2. Localization
In order to estimate 3D pose from a segmented region,

we compare its shape with trained ones. Since we use the
perspective camera model, this training stage can be made
independent of object position in the image. In run-time,
if objects are not centered, we simulate a camera rotation
to the centroid of the object. Training will therefore be
made with the object centered in the image and a database
is built that matches 2D shape to 3D orientation. The
measured orientation can then be rectified using the
equations for projecting rotated points in a pan-tilt camera
[7]:

00

0
1

00

00
1

....
.

....

....

ycpstxspcpct
yctst

y

ycpstxspspct
yspstxcpspct

x

��
�

�

��
��

�

 (2)

where ct,st,cp,sp represent cos(t), sen(t), cos(p), sen(p),
respectively; (x0,y0) the initial point and (x1,y1) the point
after a rotation of p and t degrees on a pan/tilt camera. We
approximate the rotation of all pixels by the rotation of
their average – the centroid. If we assume training is made
with the object centered in the image then the initial point
is equal to the origin (0,0) – and we compute the camera
rotation that leads to moving that point to (x1,y1):

))cos(.arctan(
)arctan(

1

1

pyt
xp

�
�

 (3)

where (x1,y1) are the region’s normalized centroid
coordinates and p,t are the pan and tilt rectification angles
which, when applied after the measured rotation, give us
the true orientation of the object. An orientation of the
object should be defined as a single rotation sequence (as
opposed to a rotation sequence followed by another of
rectification). We therefore compute the angles of rotation
Yaw, Pitch and Roll that define object orientation, from
the final rotation matrix obtained from the composition of
measured and rectification rotations.

Because perspective projection deforms the object as it
moves away from the image center, a change of
coordinates is made to center the region before computing
its shape features. A homogeneous transformation with p
and t as the rotation angles will produce such result, thus
rendering orientation estimation independent of position.

After the object’s final orientation coordinates are

computed, we can compute depth (Z) from the area of the
projection, defined as:

dXdY

Z
f

Z
f

YXIdxdyyxIArea
y

x

���� ��
0

0
).,(),((4)

(X,Y) being the coordinates of the object's points in the
world, I(X,Y) the object’s shape represented on a binary
image, and fx,fy intrinsic parameters of the perspective
projection. We approximate that the object's points are all
at the same depth, projecting on a plane which is parallel
to the image. If so, depth (Z coordinate) can be computed
from the relation of the segmented region's area and
trained area and depth, which can both be stored in the
database of projections.

Area
AreaZZ

training
training� (6)

Finally, X and Y are computed from the geometric
center of the region, by assuming that the 3D geometric
center of the object projects on the 2D center of the region
given by (x,y)=(fx.X/Z, fy.Y/Z).

These approximations in position estimation introduce
some errors, but allow us to generate good hypotheses that
will be refined in the subsequent particle filtering stage.

To describe shape we use geometric moments, which

hold point distribution information. Invariance to position
and scale can easily be accomplished by using relative
positions to the region's centroid and normalization to the
area:

2
1

00

00),(.).()(

qp
x y

qp

pq

M

yxIyyxx

u
�

�

�� ��

� (7)

where upq is a normalized moment of order p+q and M00
the area of the region.

Normalized moments should be used as shape
descriptors using orders of 2 onwards. Despite this fact,
the maximum order used should always be the 4th or
higher. This is because for some symmetric shapes, such
as squares for example, only moments of the 4th order can
fully distinguish all orientations.

A normalized distance function between shapes, using
moments, was then defined assuming a normal
distribution:

�
�

�
qp pq

pq
i

pq

n
nñ

d
,

2

)var(
)(

 (8)

ñpq being the observed moment, inpq the moment of the ith
hypothesis and var(npq) the variance of the trained
moment of order p+q. The most likely pose estimate of a
segmented object will then be the one with minimum
distance to the measured moments.

2.3. Particle generation
A likelihood function was defined from d as

L=exp(-d/2). From this likelihood function, a cumulative
distribution was computed, from where N particles can be

60

generated according to their likelihood by sampling the
function in a uniform way.

3. Results

3.1. Localization error
The method was tested on perfect segmentations to

evaluate its localization error alone. These were generated
by projecting the object in 200 random poses, covering
untrained orientations.

Figure 1. Set of 200 random poses generated to test
localization error.

Given the top-down integration context, the error that
tracking will be subject to is related to the least error
particle. A quaternion representation was used to compute
a single error value between the real and estimated
orientations.

The average of the absolute angle error was then
measured for different training resolutions and numbers
of particles generated (N). Moments of order up to 7 were
used as shape description features.

Table 1. Error of best particle, N=100

Res #Poses X (cm) Y (cm) Z (cm) Angle (º)
20 3240 0,31 0,25 1,27 18,57
15 7488 0,29 0,21 0,94 12,6
10 24624 0,26 0,21 0,84 11,95
5 191808 0,26 0,22 0,69 10,7

From Table 1 we can confirm how lower orientation

errors lead to lower error in the depth coordinate Z. Also,
errors of 1cm in depth and lower than 0.5cm in X and Y
can be achieved.

In the proposed method, particles are generated in an
uniform way along the cumulative distribution function,
thus leading to unfair generations for low values of N –
lower than 100 – because not enough samples were
selected from the set of hypothesis.

Table 2. Error of best particle, N=900

Res #Poses X (cm) Y (cm) Z (cm) Angle (º)
20 3240 0,32 0,25 1,25 16,62
15 7488 0,26 0,2 0,7 8,19
10 24624 0,25 0,21 0,59 6,13
5 191808 0,24 0,2 0,43 4,2

On the other hand, a high number of generated particles

such as 900 (see Table 2) allows the top-down tracking
layer to expect starting errors of as low as 5º in orientation.
From both Tables 1 and 2 we can see how expected errors

can be as low as the training's resolution.
This kind of precision in visual attention gives greater

flexibility in the management of resources for the
top-down layer – which can make the whole process
faster and more precise.

Computational time was also registered (see Table 3)
on experiments made with a 2.67GHz Intel CPU and
NVIDIA Quadro FX 580 graphics card.

Table 3. Computational time

Res #Poses Time (ms)
N=100

Time (ms)
N=500

Time (ms)
N=900

20 3240 21 31 39
15 7488 22 41 55
10 24624 33 42 51
5 191808 112 131 153

According to our experiments, an almost 30Hz

real-time performance can be achieved. Also, being the
proposed process easily parallelized, a real-time
application would possible even for thin resolution, high
particle requirements.

3.2. Pose estimation in real images
The whole method was tested on real images as well,

for simple and complex objects, demonstrating the
credibility of pose estimates with highest likelihood.

Figure 3. Two different objects, a box and “5”,
their segmentation and highest likelihood pose.
Objects were learned with a resolution of 15º.

The method, and likelihood function of the hypothesis
in particular, behaves well for real images, with either
simple or complex objects (see Figure 3). Note that in the
first example no likely hypothesis exists on the number
“8” since its shape is too different from the object being
looked for (a box).

It is also possible to use this method for multiple object
pose estimation (and, so, recognition). To accomplish that,
the distance and likelihood measures must be made for all
the known objects' databases, each pose now being
basically assigned to an object. This way, generated
particles will consist not only of pose but object
identification. Two similar objects, a “5” and a “6”, were
trained at 15º and tested on a real image – see Figure 4.

61

Figure 4. Result of pose estimation of a single
object “5” (left) and multiple objects (right).

3.3. Simple integration with top-down tracker
Our pose estimation method was integrated with a

top-down tracker [8] to evaluate the advantages of this
joint approach to tracking.

A ball was put on a pendulum movement with an
obstacle which hides it in the middle of the image. This
makes the top-down layer lose track of the object every
time it disappears – and proves how 3D visual attention
(though only 3D position is used in this case) is important.

Figure 5. Estimate of x coordinate on the tracker
before and after integration with our bottom-up
particles. Pendulum movement with obstacle.

As we can see from Figure 5, when the object's
movement is unpredictable by the motion model, or
suffers occlusions, a top-down approach to tracking is not
reliable on its own. After integration, recovery of the
object's position is easily achieved after the object enters
the scene – since bottom-up generated particles with a
small enough starting error for the tracker to refine.

To better evaluate the advantage of combining both
attention approaches we compute the average likelihood
(Table 4), in the same sequence of images, for both
top-down's and bottom-up's estimate when used by
themselves; and also after integration.

Table 4. Average likelihood of methods

Top-down Bottom-up Integration
0,030 0,010 0,078

We can see how tracking improves with integration;

and also that bottom-up's precision is low compared to
top-down's when used by itself. Overall improvement in
performance is obtained, be it in precision or robustness,
after integration of the tracker with the proposed method.

4. Conclusions and future work

A method was introduced and tested, for generating
pose hypotheses to be used on a 3D tracking paradigm
that integrates both bottom-up and top-down approaches.
Such joint approach was proven to take advantage of the
upper layer's precision and lower layer's initialization
speed and robustness to movement – obtaining a better
performance than each of the layers independently. The
proposed method's speed comes from the choice of shape
descriptors and decoupling of orientation and position
estimation problems.

We can from experiments conclude that the proposed
method generates credible pose hypotheses with a
tolerable error (less than 1cm on position and equal to
resolution on orientation). It is also shown that real-time
estimation is possible for a reasonable number of
generated particles, obtaining an average error of 10º in
orientation. Using graphics libraries such as OpenGL
allows to generalize the localization method to any
segmented rigid object – and it is also shown how credible
pose hypotheses are generated for both complex and
simple objects.

Generalizing pose estimation to part-based objects, just
as in [3], would allow for general, multiple colored or
textured objects – each part having its own characteristics.

Acknowledgements
This work was partially funded by the EU Commission

within the Seventh Framework Programme FP7, under
grant agreement 248258 (First-MM), 248366 (RoboSoM)
and 231640 (HANDLE).

References
[1] A. Doucet, J. de Freitas and N. Gordon, Sequential Monte

Carlo Methods in Practice. Springer Verlag, New York,
2001.

[2] V. Lepetit and P. Fua. “Monocular model-based 3d tracking
of rigid objects: A survey”, Foundations and Trends in
Computer Graphics and Vision, 1(1), 2005, pp1-89.

[3] D. Ramanan, D. A. Forsyth, and A. Zisserman. Tracking
people by learning their appearance. IEEE PAMI,
29(1):65–81, Jan 2007.

[4] K. Okuma, A. Taleghani, N. de Freitas, J. Little, D. Lowe.
A Boosted Particle Filter: Multi Target Detection and
Tracking. ECCV, 2004.

[5] M.J. Swain and D.H. Ballard, Color Indexing, International
Journal of Computer Vision, vol. 7:1, 1991

[6] J. Sauvola and M. Pietaksinen. “Adaptive document image
binarization”, Pattern Recognition, 33, 2000.

[7] B. Tworek, A. Bernardino and J. Santos-Victor, “Visual
self-calibration of pan-tilt kinematic structures”, Proc.
ROBOTICA 2008, April, 2008.

[8] M. Taiana, J. Nascimento, J. Gaspar and A. Bernardino.
“Sample-Based 3D Tracking of Colored Objects: A Flexible
Architecture”, BMVC2008, Leeds, UK, 2008.

62

