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Finding Consensus Strings With Small Length Difference Between
Input and Solution Strings

Markus L. Schmid, Universität Trier

The CLOSEST SUBSTRING PROBLEM is to decide, for given strings s1, . . . , sk of length at most ` and numbers
m and d, whether there is a length-m string s and length-m substrings s′i of si, such that s has a Hamming
distance of at most d from each s′i. If we instead require the sum of all the Hamming distances between
s and each s′i to be bounded by d, then it is called the CONSENSUS PATTERNS PROBLEM. We contribute
to the parameterised complexity analysis of these classical NP-hard string problems by investigating the
parameter (`−m), i. e., the length difference between input and solution strings. For most combinations of
(` −m) and one of the classical parameters (m, `, k or d), we obtain fixed-parameter tractability. However,
even for constant (` − m) and constant alphabet size, both problems remain NP-hard. While this follows
from known results with respect to the CLOSEST SUBSTRING, we need a new reduction in the case of the
CONSENSUS PATTERNS. As a by-product of this reduction, we obtain an exact exponential-time algorithm
for both problems, which is based on an alphabet reduction.
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1. INTRODUCTION
Consensus string problems consist in finding a (preferably long) string that is suffi-
ciently similar to a given set of strings (or to substrings of these given strings). They
are among the most classical hard string problems and have many applications, mostly
in computationally biology and coding theory (see [Bulteau et al. 2014]). In order to
give a mathematically sound definition, we need a measure for the similarity of strings
– or rather a distance function – and a classical approach is to use the Hamming dis-
tance dH. In this regard, the central problem considered in this paper is to find, for
given strings s1, s2, . . . , sk, a string s of length m that has a Hamming distance of at
most d from some length-m substrings s′1, s′2, . . . , s′k of the input strings.

CLOSEST SUBSTRING

Instance: Strings s1, s2, . . . , sk over some alphabet Σ with |si| ≤ `, 1 ≤ i ≤ k, for some
` ∈ N, and numbers m, d ∈ N.
Question: Is there a string s with |s| = m such that, for every i, 1 ≤ i ≤ k, si has a
length-m substring s′i with dH(s, s′i) ≤ d?
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If we interpret d as an upper bound for the sum of all the Hamming distances between
s and the substrings s′i, then we obtain the following variant:

CONSENSUS PATTERNS

Instance: Strings s1, s2, . . . , sk over some alphabet Σ with |si| ≤ `, 1 ≤ i ≤ k, for some
` ∈ N, and numbers m, d ∈ N.
Question: Is there a string s with |s| = m such that, for every i, 1 ≤ i ≤ k, si has a
length-m substring s′i with

∑k
i=1 dH(s, s′i) ≤ d?

Both CLOSEST SUBSTRING and CONSENSUS PATTERNS are NP-hard and they have
been intensely studied in the multivariate setting (see [Evans et al. 2003], [Fel-
lows et al. 2006], [Frances and Litman 1997], [Marx 2008] and, for a survey, [Bul-
teau et al. 2014]). The most commonly considered parameters are k, m, d and |Σ|.
The existing results show that CLOSEST SUBSTRING and CONSENSUS PATTERNS
are fixed-parameter intractable, even for strong parameterisations. For example,
CLOSEST SUBSTRING is W[1]-hard if parameterised by (k,m, d) ([Fellows et al. 2006])
or (k, d, |Σ|) ([Marx 2008]). For CONSENSUS PATTERNS, the situation looks slightly
better: CONSENSUS PATTERNS parameterised by (k,m, d) or (k, |Σ|) is still W[1]-
hard ([Fellows et al. 2006]), but it becomes fixed-parameter tractable if parame-
terised by (d, |Σ|) ([Marx 2008]). By simple enumeration, CLOSEST SUBSTRING and
CONSENSUS PATTERNS are in FPT with respect to (m, |Σ|).

This paper contributes to the multivariate analysis of these consensus string prob-
lems by investigating the role of the new parameter (`−m), i. e., the length difference
between the input strings and the solution string, which can also be seen as an attempt
towards Challenge 4 formulated by [Bulteau et al. 2014], which consists in finding new
parameters for CLOSEST SUBSTRING that yield fixed-parameter tractability. The rel-
evance of the parameter (`−m) is pointed out by the following considerations.

A consensus string problem that is also NP-hard, but which exhibits a better
parameterised complexity is CLOSEST STRING, which is defined analogously to
CLOSEST SUBSTRING, but with the strong additional restriction that |s1| = |s2| =
. . . = |sk| = m. In contrast to CLOSEST SUBSTRING, the problem CLOSEST STRING
is fixed-parameter tractable with respect to any of the parameters k, d or m (= `).
Since CLOSEST STRING can be described as CLOSEST SUBSTRING with the restriction
(` − m) = 0, restricting the parameter (` − m) (in the strongest possible way) makes
CLOSEST SUBSTRING much easier. In fact, as shall be demonstrated in this work, the
fixed-parameter tractability of CLOSEST STRING with respect to k, d and m carries
over to CLOSEST SUBSTRING as long as we take (`−m) as a second parameter. How-
ever, the single parameter (` − m) is of not much use, since even if we bound it by
0 and in addition bound the alphabet size by 2, we still have an NP-hard variant of
CLOSEST STRING (see [Frances and Litman 1997]).

With respect to CONSENSUS PATTERNS, the parameter (`−m) plays a quite different
role, since the NP-hardness is not preserved if (`−m) = 0; in fact, in this case obtaining
the closest string is a trivial task. So the question arises, whether bounding (`−m) by a
constant c ≥ 1 yields a polynomial-time solvable variant of CONSENSUS PATTERNS or
whether it is fixed-parameter tractable with respect to the parameter (` −m). In this
regard, we can show a strong negative result, namely that CONSENSUS PATTERNS
remains NP-hard, even if (` − m) ≤ 4 and |Σ| ≤ 4. Similar to CLOSEST SUBSTRING,
some fixed-parameter tractable variants can be obtained by parameterising by (`−m)
and additional parameters.1

1A compact presentation of the results of this paper is provided by Tables I to IV.

ACM Transactions on Computation Theory, Vol. 0, No. 0, Article 0, Publication date: 0.



Consensus Strings With Small Difference Between Input and Solution Strings 0:3

For proving our main result, i. e., the hardness of CONSENSUS PATTERNS with
(` − m) ≤ 4 and |Σ| ≤ 4, we apply an alphabet reduction technique, which
also yields an exact exponential-time algorithm for both CLOSEST SUBSTRING and
CONSENSUS PATTERNS.

This paper is organised as follows: In Section 2, we define some basic nota-
tions and concepts about strings and complexity theory, and we illustrate the con-
sensus string problems in more detail. Then, in Section 3, we present the al-
phabet reduction technique in terms of an exact exponential-time algorithm for
CLOSEST SUBSTRING and CONSENSUS PATTERNS. The following two sections are
then devoted to a parameterised complexity analysis of CLOSEST SUBSTRING (Sec-
tion 4) and CONSENSUS PATTERNS (Section 5) with respect to the parameter (`−m).
Finally, we conclude this work by Section 6.

2. PRELIMINARIES
The set of strings over an alphabet Σ is denoted by Σ∗, by |v| we denote the length of a
string v, alph(v) is the smallest alphabet Γ with v ∈ Γ∗, a string u is called a substring
of v, if v = v′uv′′; if v′ = ε or v′′ = ε, then u is a prefix or suffix, respectively, where ε is
the empty string. For a position j, 1 ≤ j ≤ |v|, we refer to the symbol at position j of v by
the expression v[j] and v[j..j′] = v[j]v[j+ 1] . . . v[j′], j < j′ ≤ |v|. The Hamming distance
for strings u and v with |u| = |v| is defined by dH(u, v) = |{j | 1 ≤ j ≤ |u|, u[j] 6= v[j]}|.

We assume the reader to be familiar with the basic concepts of (classical) complexity
theory. Next, we shall briefly summarise the fundamentals of parameterised complex-
ity (see also [Flum and Grohe 2006]). Decision problems are considered as languages
over some alphabet Γ. A parameterisation (of Γ) is a polynomial-time computable map-
ping κ : Γ∗ → N and a parameterised problem is a pair (Q, κ), where Q is a problem
(over Γ) and κ is a parameterisation of Γ. We usually define κ implicitly by describing
which part of the input is the parameter. A parameterised problem (Q, κ) is fixed-
parameter tractable if there is an fpt-algorithm for it, i. e., an algorithm that solves
Q on input x in time f(κ(x)) × p(|x|) for recursive f and polynomial p. The class of
fixed-parameter tractable problems is denoted by FPT. Note that if a parameterised
problem becomes NP-hard if the parameter is set to a constant, then it is not in FPT
unless P = NP.

For the problems CLOSEST SUBSTRING and CONSENSUS PATTERNS, we con-
sider the parameters k, m, d, |Σ|, ` and (` − m), which shall always be denoted
in this way. The parameterised versions of the problems are denoted by sim-
ply listing the considered parameters in parentheses; if a parameter is bounded
by a constant, we explicitly state the constant, e. g., CLOSEST SUBSTRING(d, (` −
m)) is the problem CLOSEST SUBSTRING parameterised by d and (` − m), and
CONSENSUS PATTERNS((` − m) = c, |Σ| = c′), c, c′ ∈ N, denotes the variant of
CONSENSUS PATTERNS, where the parameters (` −m) and |Σ| are bounded by c and
c′, respectively.

We now illustrate the concensus string problems defined in Section 1 with some ex-
amples. In Figure 1a, a CLOSEST STRING instance with 8 length-7 input strings is
represented as an 8 × 7 matrix. For a Hamming distance bound of d = 2, the string
s = abcabca, shown below the matrix, is a possible solution string, since each input
string contains at most two mismatches with s (mismatches are highlighted in grey).
If we interpret the same input strings as a CLOSEST SUBSTRING instance with m = 4,
then we first have to identify a length-4 substring in each of the input strings. Hence,
we need a suitable alignment of the input strings, i. e., we have to align them in such
a way that an 8× 4 matrix is obtained (the grey rectangle in Figure 1b). Once such an
alignment is fixed, we have to solve CLOSEST STRING for these aligned substrings. If
we consider the case d = 1, then abca would be a possible solution string (as illustrated
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c b c a b a a
c b c a b c b
a b c c c c a
c c c a b c a
c b c a a c a
c b c a a c a
a b b a b a a
b b c a a c a

a b c a b c a

(a) d = 2

c b c a b a a
c b c a b c b

a b c c c c a
c c c a b c a
c b c a a c a

c b c a a c a
a b b a b a a

b b c a a c a

a b c a

(b) m = 4, d = 1

c b c a b a a
c b c a b c b

a b c c c c a
c c c a b c a
c b c a a c a
c b c a a c a
a b b a b a a
b b c a a c a

c b c a

(c) m = 4, d = 5

Fig. 1: CLOSEST STRING, CLOSEST SUBSTRING and CONSENSUS PATTERNS instance.

in Figure 1b). However, the total sum of mismatches is 7, which means that this is not
a solution if we interpret the input strings as an instance of CONSENSUS PATTERNS
with d = 5. In this case, we can choose a different alignment (see Figure 1c) and
solution string cbca. It is interesting to note that even though for this alignment
and solution string the total number of mismatches is only 5, it is not a solution for
CLOSEST SUBSTRING with d = 1, since one of the substrings has a Hamming distance
of 2. This illustrates the difference between the problems CLOSEST SUBSTRING and
CONSENSUS PATTERNS.2

The naive approach to solve CLOSEST SUBSTRING or CONSENSUS PATTERNS is to
enumerate all possible length-m strings and check whether they are valid solution
strings. Obviously, there are an exponential number of strings to check, but checking
for a fixed string whether or not it is a valid solution string is not a difficult task. Since
we shall use this simple observation at different places in the remainder of this paper,
we discuss it here in a bit more detail.

Let s1, s2, . . . , sk be strings of size at most ` ∈ N over Σ and m, d ∈ N, and let w ∈ Σ∗.
For every i, 1 ≤ i ≤ k, we compute δi = min{dH(w, s[j..j +m− 1]) | 1 ≤ j ≤ |si| −m+ 1},
which can be done in time O((

∑k
i=1(|si| −m+ 1)m) = O((`−m+ 1)mk). Then we only

have to check whether δi ≤ d, for every 1 ≤ i ≤ k, (in the case of CLOSEST SUBSTRING),
or whether

∑k
i=1 δi ≤ d (in the case of CONSENSUS PATTERNS).

PROPOSITION 2.1. For a given CLOSEST SUBSTRING or CONSENSUS PATTERNS
instance, we can check in time O((` − m + 1)mk), whether or not a given string is a
solution string.

We conclude this section by introducing some more convenient notation concerning
alignments. Position j of the solution string s is said to be aligned to position j′ of
an input string si if si[j′ − j + 1..j′ − j + m] is the chosen length-m substring of si.
Furthermore, we say that s is aligned to si at position j′ if position 1 of s is aligned to
position j′ of si.

3. ALPHABET REDUCTION AND EXACT EXPONENTIAL-TIME ALGORITHM
In this section we present a technique to transform a CLOSEST SUBSTRING or
CONSENSUS PATTERNS instance into an equivalent one by reducing the alphabet over
which the input strings are defined. The value of this alphabet reduction is twofold.

2In Figure 1, we illustrate the problems CLOSEST STRING, CLOSEST SUBSTRING and
CONSENSUS PATTERNS by using the same input strings, in order to point out their differences and
similarities. In general, the input strings for CLOSEST SUBSTRING and CONSENSUS PATTERNS can have
different lengths.
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� � � � � � �
� � � � �
� � � � � �
� � � � � � � �
� � � � � � �

� � � � �

(a) First symbol

� � � � � � �
� � � � �
� � � � � �
� � � � � � � �
� � � � � � �

� � � � �

(b) Second symbol

� � � � � � �
� � � � �
� � � � � �
� � � � � � � �
� � � � � � �

� � � � �

(c) Third symbol

Fig. 2: Alignment regions for the first, second and third symbol.

Firstly, it is crucial for proving our main result in Section 5.1, where it is used in order
to bound the number of symbols that we need in our hardness reduction.

In order to explain its second purpose, we recall that we can solve
CLOSEST SUBSTRING or CONSENSUS PATTERNS in time O∗(|Σ|m) by enumerating all
length-m substrings over Σ (see Proposition 2.1).3 Consequently, reducing the alpha-
bet will improve this running time. Obviously, |Σ| ≤ k`; thus, this brute-force algorithm
has running-time O∗((k`)m). In the following, we shall show that the alphabet can al-
ways be reduced to a size of at most k(` −m + 1), yielding an exact exponential-time
algorithm with running-time O∗((k(`−m+ 1))m).

We shall now illustrate the basic idea of the alphabet reduction. To this
end, let s1, . . . , sk ∈ Σ∗, m, d ∈ N be an instance for CLOSEST SUBSTRING or
CONSENSUS PATTERNS (in fact, the difference between these problems does not mat-
ter in this section). Furthermore, let s be the hypothetical solution string that we are
looking for. No matter how we choose our alignment, for every i, 1 ≤ i ≤ k, the first
symbol of s can only be aligned with positions 1, 2, . . . , |si|−m+1 of input string si. Anal-
ogously, the second symbol of s can only be aligned with positions 2, 3, . . . , |si|−m+2 and
so on. This situation is illustrated in Figure 2 for some example instance and the first
three symbols of the solution string (since the actual symbols do not matter in these
considerations, they are represented by dummy symbols). In this way, every position
of the solution string corresponds to an alignment region (the grey areas in Figure 2)
of the input strings. The mismatches caused by a position of the solution string only
depend on the substrings of its alignment region. This suggests that renaming the in-
put strings, such that, for every j, 1 ≤ j ≤ m, the structure of the alignment region of
position j of the solution string is preserved, yields an equivalent instance.

Before we present this renaming procedure in detail (see Algorithm 1), we sketch it
in an intuitive way. Let p the maximum number of symbols that occur in any alignment
region and let Σ′ be some alphabet of size p. We now injectively rename the first align-
ment region by symbols from Σ′. Then we consider the second alignment region and
note that only its k rightmost symbols are new, meaning they are not contained in the
first alignment region (thus, not already renamed), whereas the k leftmost symbols of
the first alignment region are not contained in the second anymore (see also Figure 2).
We then rename the k new symbols in the following way. If a new symbol also occurs
somewhere else in the second alignment region, then this new symbol is renamed in
the same way as the earlier occurrence. If, on the other hand, the new symbol has no
other occurrence in the second alignment region, then we rename it by a symbol from
Σ′ that is not already used in the part of the second alignment region that has already
been renamed. We shall now formally prove that there are always enough symbols in

3By O∗ we denote the O-notation that suppresses polynomial factors.
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order to carry out this procedure and that it yields an equivalent instance over the
alphabet Σ′. After that, we consider an example.

LEMMA 3.1. Let P ∈ {CLOSEST SUBSTRING,CONSENSUS PATTERNS} and let
s1, s2, . . . , sk ∈ Σ∗, m, d ∈ N be an instance of P . Then there exists an equivalent
P instance t1, t2, . . . , tk ∈ Σ′∗, m, d, with |ti| = |si|, 1 ≤ i ≤ k, and |Σ′| is of size
max{|

⋃k
i=1 alph(si[j..j + (|si| −m)])| | 1 ≤ j ≤ m}. The strings t1, t2, . . . , tk can be com-

puted in linear time.

PROOF. For every i, 1 ≤ i ≤ k, we define γi = |si| −m. Furthermore, let Σ′ be some
alphabet with |Σ′| = max{|

⋃k
i=1 alph(si[j..j + γi])| | 1 ≤ j ≤ m}. In order to understand

the following Algorithm 1 (i. e., how it implements the renaming procedure sketched
above), it is helpful to keep in mind the purpose of the different data-structures. The
stack S contains all symbols from Σ′ that are currently free to be used in order to
rename symbols from Σ (i. e., they are not already used in the current alignment re-
gion), table T on the other hand contains those symbols of Σ that have already been
renamed in the current alignment region (along with the symbol from Σ′ they are
renamed with). The sets A and B store the symbols of the current alignment region
of the original strings si, whereas the sets C and D store the symbols of the current
alignment region of the renamed strings ti. More precisely, A stores all the symbols
on positions that also belong to the previous alignment region, while B stores the new
symbols, and C stores all symbols on positions that belong to the next alignment re-
gion as well, while D stores only the symbols on the first positions of the alignment
regions, i. e., the ones that do not belong to the next alignment region as well.

ALGORITHM 1: Alphabet reduction by renaming
Input : s1, s2, . . . , sk over Σ
Output: t1, t2, . . . , tk over Σ′

1 ti = si, 1 ≤ i ≤ k;
2 initialise table T : Σ→ Σ′ ∪ {�} by T (a) = �, for all a ∈ Σ;
3 initialise stack S by S. push(a), for all a ∈ Σ′;
4 construct A =

⋃k
i=1 alph(si[1..γi]);

5 construct B = {si[γi + 1] | 1 ≤ i ≤ k};
6 for every i, 1 ≤ i ≤ k, j, 1 ≤ j ≤ γi + 1, do
7 if T (ti[j]) = � then
8 T (ti[j]) = S. pop;
9 replace ti[j] by T (ti[j]);

10 construct C =
⋃k

i=1 alph(ti[2..1 + γi]);
11 construct D = {ti[1] | 1 ≤ i ≤ k};
12 for j = 2 to m do
13 for a ∈ (D \ C) do
14 S. push(a);
15 A = (A \ {si[j − 1] | 1 ≤ i ≤ k}) ∪B;
16 B = {si[j + γi] | 1 ≤ i ≤ k};
17 for a ∈ B do
18 if a /∈ A then
19 T (a) = S. pop;
20 replace all occurrences of a in substrings ti[j + γj ], 1 ≤ i ≤ k, by T (a);
21 D = {ti[j] | 1 ≤ i ≤ k};
22 C = (C \D) ∪ {ti[j + γi] | 1 ≤ i ≤ k};
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As an invariant that is satisfied at the beginning of any iteration of the main loop in
Line 12, we formulate the following:

—A =
⋃k

i=1 alph(si[j − 1..j − 1 + γi − 1]),
—B = {si[j − 1 + γi] | 1 ≤ i ≤ k},
—C =

⋃k
i=1 alph(ti[j..j + γi − 1]),

—D = {ti[j − 1] | 1 ≤ i ≤ k} and
— the substrings ti[j − 1..j − 1 + γi], 1 ≤ i ≤ k, are isomorphic to the substrings si[j −

1..j − 1 + γi], 1 ≤ i ≤ k.

It is straightforward to verify that the invariant is satisfied with respect to the prop-
erties of the sets A,B,C and D: by Lines 4, 5, 10 and 11, these sets satisfy the claimed
properties at the beginning of the first iteration and in Lines 15, 16, 22 and 21, they
are updated correctly. It remains to check the last property of the invariant.

At the beginning of the first iteration, the substrings ti[1..1 + γi], 1 ≤ i ≤ k, are
isomorphic to the substrings si[1..1 + γi], 1 ≤ i ≤ k, due to the loop of Line 6, in which
the substrings si[1..1 + γi], 1 ≤ i ≤ k, are renamed in an injective way. Note that this is
only possible, since we can assume |

⋃k
i=1 alph(si[1..γi + 1])| ≤ |S| = |Σ′|; thus, there are

enough symbols in S to perform this renaming. We have to show that the last property
of the invariant is maintained by an iteration of the main loop.

In the loop of Line 13, we push back into S all symbols of Σ′ that have been used
before, but are not present in C, which contains all the renamed symbols of ti[j..j+γi−
1]. Hence, S contains exactly the symbols of Σ′\C. Then, in Lines 15 and 16, we update
the setsA undB, such thatA =

⋃k
i=1 alph(si[j..j+γi−1]) andB = {si[j+γi] | 1 ≤ i ≤ k}.

Consequently, by the loop in Line 17, in the substrings si[j + γi], 1 ≤ i ≤ k, we replace
all symbols of B ∩A in the same way as they have been replaced before. All remaining
symbols in B \ A are replaced by new symbols from S. Let p = |B \ A|. If p ≤ |S|, then
this leads to substrings ti[j..j + γi], 1 ≤ i ≤ k, that are isomorphic to the substrings
si[j..j+ γi]. If, on the other hand, p > |S|, then |Σ′| < |

⋃k
i=1 alph(ti[j..j+ γi− 1])|+ p. By

the inductive hypothesis, the substrings ti[j..j+γi−1], 1 ≤ i ≤ k, are isomorphic to the
substrings si[j..j+γi− 1], 1 ≤ i ≤ k, which means that |

⋃k
i=1 alph(ti[j..j+γi− 1])|+p =

|
⋃k

i=1 alph(si[j..j + γi])|. This is a contradiction, since |Σ′| = max{|
⋃k

i=1 alph(si[j..j +
γi])| | 1 ≤ j′ ≤ m}.

The invariant stated above is correct; thus, for every j, 1 ≤ j ≤ m, the substrings
ti[j..j + γi], 1 ≤ i ≤ k, are isomorphic to the substrings si[j..j + γi], 1 ≤ i ≤ k.

Next, we estimate the running time of Algorithm 1. Let α =
∑k

i=1 |si|, i. e., the total
size of the input. We first note that B and D can never contain more than k elements.
Therefore, we implement the sets B and D as collections of at most k elements and
the sets A and C as bit vectors, which means that membership queries, insertions
and deletions with respect to A and C can be done in constant time. Initialising T
and S requires time O(|Σ| + |Σ′|) = O(α), constructing B and D needs time O(k) =

O(α) and constructing A and C can be done in time O(|Σ| + |Σ′| +
∑k

i=1 γi + 1) =
O(α). Furthermore, every iteration of the loop in Line 6 needs constant time; thus, the
whole loop requires time O(

∑k
i=1 γi +1) = O(α) as well. Hence, the initialisation phase

requires time O(α).
The update operations of the sets A,B,C and D in Lines 15, 16, 22 and 21 can all

be done in time O(k) (since A and C are represented as bit vectors, and B and D have
at most k elements). Furthermore, the loop in Line 13 needs time O(k) as well, and
the loop in Line 17 can be implemented in such a way that time O(k) is sufficient, too.
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A B C A C
D B E F
G H A B C F

(a)

1 2 3 A C
4 2 E F
5 6 1 2 C F

(b)

1 2 3 1 C
4 2 4 F
5 6 1 2 3 F

(c)

1 2 3 1 3
4 2 4 5
5 6 1 2 3 5

(d)

Fig. 3: Renaming of an example instance.

Consequently, the main loop requires time O(mk) = O(α). We conclude that the total
running time of Algorithm 1 is O(α).

It remains to prove that the renamed instance t1, t2, . . . , tk,m, d is equivalent to the
original instance s1, s2, . . . , sk,m, d. Let us assume that a length-m string s is aligned
with the strings s1, s2, . . . , sk in some way. For every j, 1 ≤ j ≤ m, position j of s
must be aligned with a column x1x2 . . . xk such that, for every i, 1 ≤ i ≤ k, xi is
a symbol from si[j..j + γi], and, without loss of generality, we can also assume that
s[j] ∈ {x1, x2, . . . , xk}. Consequently, if we align s in the same way with the strings
t1, t2, . . . , tk, then, for every j, 1 ≤ j ≤ m, position j of s must be aligned with a column
y1y2 . . . yk that is isomorphic with x1x2 . . . xk. Hence, under the considered alignment,
the weight of s with respect to strings s1, s2, . . . , sk is identical to the weight of t with
respect to strings t1, t2, . . . , tk, where t has been obtained from s by renaming the sym-
bols according to the renaming that translates the strings si to ti. In the same way,
the existence of a string t with weight d with respect to t1, t2, . . . , tk implies the exis-
tence of a string s with weight d with respect to s1, s2, . . . , sk. This directly implies the
statement of the lemma.

As an example for the renaming procedure, we consider the input strings s1 = ABCAC,
s2 = DBEF, s3 = GHABCF over the 8-letter alphabet Σ = {A, B, . . . , G, H} and m = 3.
Figure 3 illustrates how Algorithm 1 renames these strings to strings over the 6-letter
alphabet Σ′ = {1, 2, 3, 4, 5, 6}. In Figure 3a, the first alignment region is highlighted,
which is then consistently renamed as shown in Figure 3b. In Figures 3b and 3c, the
second and third alignment regions are highlighted, which consist in a left part that
is already renamed and the new symbols to be renamed next. The final result is then
shown in Figure 3d.

In order to solve CLOSEST SUBSTRING or CONSENSUS PATTERNS, we can now apply
the renaming procedure given by Algorithm 1 and then solve the instance in a brute-
force way by enumerating all length m-strings over Σ′. Since |Σ′| is bounded by k(` −
m+ 1), we obtain the following result:

THEOREM 3.2. The problems CLOSEST SUBSTRING and CONSENSUS PATTERNS
can each be solved in time O(k`+ (k(`−m+ 1))mkm(`−m+ 1)) = O∗((k(`−m+ 1))m).

As a concluding remark to this section, we note that the above algorithm is also
an fpt-algorithm with respect to the parameters k, (` − m) and m. However, fixed-
parameter tractability with respect to this parameterisation is trivial, since the total
input size is bounded in terms of these parameters.

4. CLOSEST SUBSTRING
The parameterised complexity of CLOSEST SUBSTRING is well understood with re-
spect to parameters k, m, d, |Σ| and ` (see Table I).4

4In all tables, p means that the label of this column is treated as a parameter and an integer entry means
that the result holds even if this parameter is set to the given constant; problems that are hard for W[1] are
not in FPT (under complexity-theoretical assumptions, see [Flum and Grohe 2006]).
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k m d |Σ| ` Result Reference
– – – – p FPT [Evans et al. 2003]
p – – 2 – W[1]-hard [Fellows et al. 2006]
p p p – – W[1]-hard [Fellows et al. 2006]
– p – p – FPT Trivial
p – p 2 – W[1]-hard [Marx 2008]

Table I: Old results about CLOSEST SUBSTRING.

In the following, we shall take a closer look at the parameter (` −m). If we restrict
the parameter (`−m) in the strongest possible way, i. e., requiring (`−m) = 0, then the
input strings and the solution string have the same length; thus, CLOSEST SUBSTRING
collapses to the problem CLOSEST STRING. Unfortunately, CLOSEST STRING is NP-
hard even if |Σ| = 2 (see [Frances and Litman 1997]), which shows the fixed-parameter
intractability of CLOSEST SUBSTRING with respect to (`−m) and |Σ|:

PROPOSITION 4.1. CLOSEST SUBSTRING((`−m) = 0, |Σ| = 2) is NP-hard.

However, as we shall see next, adding one of k, m or d to the parameter (`−m) yields
fixed-parameter tractability. For the parameters (k, (` −m)) and (m, (` −m)) this can
be easily concluded from known results.

THEOREM 4.2. CLOSEST SUBSTRING(k, (` − m)), CLOSEST SUBSTRING(m, (` −
m)) ∈ FPT.

PROOF. Every input string si has at most (`−m+ 1) substrings of length m, so the
number of possible alignments of a candidate solution string is at most (` −m + 1)k.
After an alignment is chosen, the problem is equivalent to solving CLOSEST STRING,
which is fixed-parameter tractable if parameterised by k (see [Gramm et al. 2003]).
This proves the first statement.

If both m and (` − m) are parameters, then also ` is a parameter. From
CLOSEST SUBSTRING(`) ∈ FPT (see Evans [Evans et al. 2003]), the second statement
follows.

The only case left is the one where (` − m) and d are parameters. In comparison
to the cases discussed above, an fpt-algorithm for this variant of the problem is more
difficult to find. It turns out that an fpt-algorithm for CLOSEST STRING(d) presented
in Gramm [Gramm et al. 2003] can be adapted to CLOSEST SUBSTRING(d, (`−m)).

THEOREM 4.3. CLOSEST SUBSTRING(d, (`−m)) ∈ FPT.

PROOF. Let s1, s2, . . . , sk ∈ Σ∗ and m, d ∈ N be a CLOSEST SUBSTRING instance. If
a solution string s exists, then it must be possible to construct s by changing at most
d symbols in some length-m substring of some si. This yields a search tree approach:
we start with a length-m substring of s1 and then we branch into m|Σ| new nodes by
considering all possibilities of changing a symbol of s into another one. We repeat this
procedure d times and for every such constructed string, we check in polynomial-time
whether it is a solution string. We shall now improve this procedure such that the
branching factor is bounded by (`−m+ 1)(d+ 1), which results in a search tree of size
((`−m+ 1)(d+ 1))d.

In a first step, we branch from the root into the at most (` − m + 1) substrings
of s1. After that, we branch in every node according to the following rule. Let s′ be
the string at the current node. We first check whether s′ is a solution string in time
O((` −m + 1)mk) (see Proposition 2.1). If s′ is a solution string, then we can stop. If,
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k m d |Σ| (`−m) Results Ref.
– – – 2 0 NP-hard [Frances and Litman 1997]
p – – – p FPT Thm. 4.2
– p – – p FPT Thm. 4.2
– – p – p FPT Thm. 4.3

Table II: New results about CLOSEST SUBSTRING.

on the other hand, s′ is not a solution string, then there exists an input string si such
that all its length-m substrings have too large a distance from s′. Let s′i be the length-
m substring of si that is aligned to s (i. e., the assumed solution string). In order to
transform s′ into s, we have to change s′[j] into s′i[j] for a position j, 1 ≤ j ≤ m, with
s′[j] 6= s′i[j] and s′i[j] = s[j] (since otherwise this modification cannot lead to s). Since
dH(s, s′i) ≤ d, there are at most d positions j with s′i[j] 6= s[j]; thus, if we choose any d+1
positions among all positions j with s′[j] 6= s′i[j], we will necessarily also select one that
satisfies the properties described above (note that there are at least d+1 positions with
s′[j] 6= s′i[j], since dH(s′, s′i) > d). Consequently, for some A ⊆ {j | 1 ≤ j ≤ m, s′[j] 6=
s′i[j]}, |A| = d+ 1, and every j ∈ A, we construct a new string from s′ by changing s′[j]
to s′i[j]. This procedure is correct under the assumption from above that s′i is aligned
with s in a solution. Since we have no knowledge of the correct solution alignment, we
have to construct d + 1 new strings for each of the (` −m + 1) substrings of si, which
results in a branching factor of (`−m+ 1)(d+ 1).

The total running time of this procedure is O((` −m + 1)((` −m + 1)(d + 1))dk(` −
m+ 1)m) = O(((`−m+ 1)(d+ 1))d+1k(`−m+ 1)m).

The fixed-parameter tractability results for CLOSEST SUBSTRING established in
this section are summarised in Table II.

We now conclude this section by some remarks about Theorem 4.3. The funda-
mental idea of the algorithm, i. e., changing only d + 1 symbols in every branching,
is the same as for the fpt-algorithm for CLOSEST STRING of [Gramm et al. 2003].
However, to demonstrate that this idea also works for the more general problem
CLOSEST SUBSTRING if (`−m) is also parameter, and for the sake of self-containment
of this paper, it is necessary to present it in a comprehensive way.

In every node, the construction of the successor nodes depends on some si, which we
are free to choose. Furthermore, the successor nodes can be partitioned into (`−m+ 1)
groups of (d + 1) successors that all correspond to the same choice of the length-m
substring of si. Thus, in the d + 1 branches of each group, whenever successors are
constructed again with respect to si, we can always choose the same substring, which
results in a branching factor of only d+ 1. Moreover, if we can choose between several
si’s, then we could always select one for which the substring has already been chosen
in some predecessor. This heuristic may considerably decrease the size of the search
tree.

5. CONSENSUS PATTERNS
Apart from the fact that CONSENSUS PATTERNS(d, |Σ|) is fixed-parameter tractable
(see [Marx 2008]), CONSENSUS PATTERNS shows a comparatively unfavourable fixed-
parameter behaviour in comparison with CLOSEST SUBSTRING (see Table III).

We note that the parameter ` is missing from Table III and, to the knowledge of the
author, it seems as if this parameter has been neglected in the multivariate analysis
of the problem CONSENSUS PATTERNS. Unfortunately, we are not able to answer the
most important respective question, i. e., whether or not CONSENSUS PATTERNS(`) ∈
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k m d |Σ| Results Ref.
p – – 2 W[1]-hard [Fellows et al. 2006]
p p p – W[1]-hard [Fellows et al. 2006]
– p – p FPT Trivial
– – p p FPT [Marx 2008]

Table III: Old results about CONSENSUS PATTERNS.

FPT. Since ` is a trivial upper bound for the parameters m and (` −m), we state this
open question in the following way:

OPEN PROBLEM 1. Is CONSENSUS PATTERNS(`,m, (`−m)) in FPT?

For all other combinations of parameters including `, fixed-parameter tractability
can be easily shown:

THEOREM 5.1. CONSENSUS PATTERNS(|Σ|, `), CONSENSUS PATTERNS(k, `),
CONSENSUS PATTERNS(d, `) ∈ FPT.

PROOF. The problem CONSENSUS PATTERNS(|Σ|,m) is in FPT, since we can solve
it by enumerating all |Σ|m length-m strings over Σ (see also Table III). Since m ≤ ` and
|Σ| ≤ `k, this directly implies the first two statements.

Obviously, ` bounds (`−m). Furthermore, CONSENSUS PATTERNS((`−m), d) ∈ FPT
(see Theorem 5.2 below), which proves the third statement.

We shall now turn to the parameter (` − m). Unlike as for CLOSEST SUBSTRING,
the NP-hardness of CONSENSUS PATTERNS is not preserved if (`−m) is bounded by 0.
More precisely, if |s1| = |s2| = . . . = |sk| = m, then the length-m string s that minimises∑k

i=1 dH(s, si) is easily constructed by setting s[j], 1 ≤ j ≤ m, to one of the symbols that
occur the most often among the symbols s1[j], s2[j], . . . , sk[j].

Consequently, the question arises whether CONSENSUS PATTERNS can still be
solved in polynomial-time if (` − m) is bounded by larger constants or whether
it is fixed-parameter tractable with respect to (` − m). Unfortunately, similar to
CLOSEST SUBSTRING, CONSENSUS PATTERNS((` − m) = c, |Σ| = c′) is NP-hard, too,
for small constants c, c′ ∈ N (see Theorem5.3). Before we prove this main result of the
paper, we consider the other combinations of parameters including (`−m).

THEOREM 5.2. CONSENSUS PATTERNS(k, (`−m)), CONSENSUS PATTERNS(d, (`−
m)) ∈ FPT.

PROOF. We can solve CONSENSUS PATTERNS by first choosing length-m substrings
s′1, s

′
2, . . . , s

′
k of the input strings and then compute in polynomial-time a length-m

string s that minimises
∑k

i=1 dH(s, s′i) as described above. Since there are at most
(`−m+ 1)k possibilities of choosing the substrings, the first statement is implied.

In order to prove the second statement, we observe that if k ≤ d,
then we can solve CONSENSUS PATTERNS(d, (` − m)) by the fpt-algorithm for
CONSENSUS PATTERNS(k, (` − m)). If, on the other hand, k > d, then the possi-
ble solution string s must be a substring of some input string si, since otherwise∑k

i=1 dH(s, s′i) ≥ k > d. Thus, we only have to check the (` − m + 1)k length-m sub-
strings of the input strings.

If CONSENSUS PATTERNS is parameterised by (`−m) and m, then we arrive again
at the case already mentioned in Open Problem 1. Consequently, there are only two
cases left open: the parameter (` −m) and the combined parameter ((` −m), |Σ|). We
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k m d (`−m) |Σ| ` Results Ref.
– p – p – p Open Open Prob. 1
– – – – p p FPT Thm. 5.1
p – – – – p FPT Thm. 5.1
– – p – – p FPT Thm. 5.1
– – – 4 4 – NP-hard Thm. 5.3
p – – p – – FPT Thm. 5.2
– – p p – – FPT Thm. 5.2

Table IV: New results about CONSENSUS PATTERNS.

answer the question whether for these cases we have fixed-parameter tractability in
the negative, by showing that CONSENSUS PATTERNS remains NP-hard, even if (`−m)
and |Σ| are bounded by small constants.

THEOREM 5.3. CONSENSUS PATTERNS((`−m) = 4, |Σ| = 4) is NP-complete.

Before we prove Theorem 5.3 in Section 5.1, we summarise the results (and open
questions) of this section in Table IV.

We wish to emphasise here that, in order to prove Theorem 5.3, it is not enough to
merely modify existing hardness reductions. This is due to the fact that the existing
hardness reductions (see, e. g., [Fellows et al. 2006]) necessarily require the parameter
(` − m) to be unbounded. More precisely, for a given graph G = (V,E) and a given
number k, the existing reductions transform G into

(
k
2

)
strings of |E|many blocks each,

where every block encodes an edge. The idea is then that a solution string selects an
edge of each of those

(
k
2

)
strings in such a way that the selected edges form a k-clique.

This selection is done by aligning the solution string with the different blocks of the
strings. Consequently, since it must be possible to select any of the edges, it must be
possible to align the solution string in at least |E| different ways, which implies that
(`−m) is necessarily unbounded.

In the next section, we present a different kind of reduction in order to prove Theo-
rem 5.3.

5.1. Proof of Theorem 5.3
We shall prove Theorem 5.3 by a reduction from a variant of the satisfiability prob-
lem for Boolean formulas. To this end, we first introduce some notations. The Boolean
values are denoted by 0 and 1. We represent a clause of a Boolean formula as a set of
literals (i. e., a variable or its negation) and a Boolean formula in conjunctive normal
form as a tuple of clauses. For k ∈ N, a formula in conjunctive normal form is a k-CNF
formula if every clause contains at most k literals. An assignment for a formula is a
mapping π : V → {0, 1}, where V is the set of variables of the formula. An assign-
ment for a 3-CNF formula is 1-in-3 satisfying, if it assigns exactly one variable in every
clause to 1, and a 3-CNF formula is 1-in-3 satisfiable if it has a 1-in-3 satisfying assign-
ment. For our reduction, we shall use a variant of the following well-known NP-hard
problem (see [Garey and Johnson 1979]).

1-IN-3 3SAT

Instance: A 3-CNF formula C.
Question: Is C 1-in-3 satisfiable?

For our purpose, we need to further restrict this problem, i. e., we require that every
clause has exactly 3 literals, that no variable is negated and that every variable occurs
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in exactly 3 clauses. By standard modifications of Boolean formulas, we can show that
the NP-hardness of 1-IN-3 3SAT is preserved under these conditions.

LEMMA 5.4. 1-IN-3 3SAT is NP-complete for the restriction that every clause has
exactly 3 literals, no variable is negated and every variable occurs in exactly 3 clauses.

PROOF. Let C1 be a 3-CNF formula and without loss of generality, we assume that
C1 does not contain clauses with only one literal. We transform C1 by the following 3
steps:

(1) For every variable x that occurs in negated form, we add a new clause {x, x′}, where
x′ is a new variable. Then we replace all negations of x by x′.

(2) We add clauses {x1, x2, x3}, {x1, x4, x5}, {x2, x3, x5}, where every xi, 1 ≤ i ≤ 5, is a
new variable. Then we add x1 to every clause of size 2.

(3) We copy every clause twice, such that there are three identical occurrences of every
clause (in particular, this means that every variable x has 3(kx) occurrences, for
some kx ∈ N). For every variable x with k = 3` > 3 occurrences, we introduce new
variables {xi, yi, zi, pj , qj , rj , sj | 1 ≤ i ≤ k, 1 ≤ j ≤ `} and we add the clauses
— {x1, y1, z1}, {x1, yk, zk}, {xi, yi−1, zi−1} and {xi, yi, zi}, 2 ≤ i ≤ k,
— {y3j−2, pj , qj}, {y3j−1, pj , qj}, {y3j , pj , qj}, 1 ≤ j ≤ `,
— {z3j−2, rj , sj}, {z3j−1, rj , sj}, {z3j , rj , sj}, 1 ≤ j ≤ `.
Then, for every i, 1 ≤ i ≤ k, we substitute the ith occurrence of x by xi.

Let C2, C3 and C4 be the formulas after Step 1, 2 and 3, respectively.

Claim 1: C4 is a 3-CNF formula in which every clause has exactly 3 literals, no variable
is negated and every variable occurs in exactly 3 clauses.
Proof of Claim 1: In Step 1, we remove all negations and Steps 2 and 3 do not introduce
negated variables, so C4 does not contain negated variables. In Step 2, we only add
clauses of size 3 and we turn every clause of size 2 in one of size 3. Furthermore,
in Step 3, we only add clauses of size 3. Hence, every clause of C4 contains exactly
3 variables. It remains to show that the construction of Step 3 produces a formula in
which every variable has exactly 3 occurrences. To this end, let x be a variable with k =
3` > 3 occurrences. We note that each of the new variables yi, zi, 1 ≤ i ≤ k, pj , qj , rj , sj ,
1 ≤ j ≤ `, occur in exactly 3 clauses and each of the new variables xi, 1 ≤ i ≤ k,
have 2 occurrences in the new clauses and, after replacing all k occurrences of x, one
more occurrence in the original part of the formula. Since we apply this construction
to every variable with strictly more than 3 occurrences (note that every variable has
at least 3 occurrences), all variables in C4 have exactly 3 occurrences.

(Claim 1) �

It remains to prove the correctness of this construction.

Claim 2: C1 is 1-in-3 satisfiable if and only if C4 is 1-in-3 satisfiable.
Proof of Claim 2: We prove this claim by showing that, for every i, 1 ≤ i ≤ 3, there exists
a 1-in-3 satisfying assignment πCi for Ci if and only if there exists a 1-in-3 satisfying
assignment πCi+1 for Ci+1.

Due to the clauses {x, x′} in C2, πC2(x) 6= πC2(x′) holds; thus, πC2 is also 1-in-3 sat-
isfying for C1. Furthermore, πC2 can be obtained from πC1 by extending it such that
πC1

(x) 6= πC1
(x′).

Formula C3 equals C2 except for the new clauses {x1, x2, x3}, {x1, x4, x5}, {x2, x3, x5}
and occurrences of x1, which are added to all clauses of size 2. We can obtain πC3

from
πC2

, by extending it with πC3
(x2) = πC3

(x4) = 1 and πC3
(x1) = πC3

(x3) = πC3
(x5) = 0.

On the other hand, πC3
(x1) = 0 must be satisfied, since πC3

(x1) = 1 implies πC3
(x2) =

πC3
(x3) = πC3

(x4) = πC3
(x5) = 0, which leads to the contradiction that {x2, x3, x5} is
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not 1-in-3 satisfied. Hence, in every clause containing x1, one of the other two variables
must be assigned to 1 by πC3 , so πC3 is also 1-in-3 satisfying for C2.

We can extend πC3 to πC4 in the following way. We set πC4(xi) = πC3(x), 1 ≤ i ≤ k.
If πC3(x) = 1, then πC4(yi) = πC4(zi) = 0, 1 ≤ i ≤ k, πC4(pj) = πC4(rj) = 0 and
πC4(qj) = πC4(sj) = 1, 1 ≤ j ≤ `, and if πC3(x) = 0, then πC4(yi) = 1, πC4(zi) = 0,
1 ≤ i ≤ k, πC4(pj) = πC4(qj) = πC4(rj) = 0 and πC4(sj) = 1, 1 ≤ j ≤ `. On the
other hand, πC4(x1) = πC4(x2) = . . . = πC4(xk) must be satisfied, which can be seen as
follows. If πC4(xi) = 1, then, due to {xi, yi, zi}, both πC4(yi) = πC4(zi) = 0. This means
that, due to {xi+1, yi, zi}, πC4(xi+1) = 1. If, on the other hand, πC4(xi) = 0, then either
πC4(yi) = 1 or πC4(zi) = 1, which means that πC4(xi+1) = 0. By induction, it follows
that all xi are assigned to the same value, which means that πC3 can be obtained from
πC4

by setting πC3
(x) = πC4

(x1). (Claim 2) �

This concludes the proof of the lemma.

Remark 5.5. It is a well-known fact that 1-IN-3 3SAT remains NP-hard, even if
no variable is negated and every clause has size 3 (see [Garey and Johnson 1979]).
However, to the knowledge of the author, this further restricted case from above is not
discussed in the literature.

Tailored to the reduction to be introduced next, we define our clauses to be sets,
whereas the whole formula is a tuple, such that clauses can be repeated. However,
this does not constitute a loss of generality. If we consider clauses that can contain a
variable more than once, then (since we are looking for 1-in-3 satisfying assignments)
we could remove these variables by assigning them to 0. Furthermore, the hardness of
1-IN-3 3SAT with no repeated clauses trivially carries over to the case, where clauses
can be repeated.

For the sake of convenience, in the following, we represent an assignment for a
Boolean formula by the set of variables that are assigned to 1. In this regard, there
exists a 1-in-3 satisfying assignment for a 3-CNF formula C = (c1, c2, . . . , cn) over a set
of variables V and without negations if and only if there exists a subset D ⊆ V , such
that, for every i, 1 ≤ i ≤ n, |D ∩ ci| = 1.

We now define a reduction from this restricted version of 1-IN-3 3SAT to
CONSENSUS PATTERNS. To this end, let C = (c1, c2, . . . , cn) be an instance of
1-IN-3 3SAT, where no variable is negated, every variable occurs in exactly three
clauses and the set of variables is V = {v1, v2, . . . , vn̂}. In order to define the clauses in a
more convenient way, we use mappings ℘r : {1, 2, . . . , n} → {1, 2, . . . , n̂}, 1 ≤ r ≤ 3, that
map an i ∈ {1, 2, . . . , n} to the index of the rth variable (with respect to some arbitrary
order) of clause ci, i. e., for every i, 1 ≤ i ≤ n, ci = {v℘1(i), v℘2(i), v℘3(i)}.

The formula C shall now be transformed into strings over Σ = V ∪ {?} as follows.5
For every i, 1 ≤ i ≤ n, ci is transformed into

si = ?4 ti,1 ti,2 . . . ti,n ?
4,with

ti,j = αi,j,1 ? αi,j,2 ? αi,j,3 ?, for every j, 1 ≤ j ≤ n,

where, for every r, 1 ≤ r ≤ 3, αi,j,r = v℘r(i) if v℘r(i) ∈ cj and αi,j,r = ? otherwise.
Furthermore, for every r, 1 ≤ r ≤ 3, we construct a string

qr = ?4 v℘r(1) ?
5 v℘r(2) ?

5 . . . v℘r(n) ?
5 .

5The size of Σ obviously depends on |V | and therefore is not constant; we shall later show how our construc-
tion can be modified in such a way that an alphabet of size 4 is sufficient.
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Moreover, m = 6n + 4 and d = 3n2 + 5n. Note that ` = 6n + 8; thus, (` − m) = 4.
The CONSENSUS PATTERNS instance, denoted by IC , consists now of the strings
s1, s2, . . . , sn and n+ 1 copies of each of the strings qr, 1 ≤ r ≤ 3.

Let us explain this reduction in an intuitive way and illustrate it with an example.
For every i, 1 ≤ i ≤ n, the string si contains the substrings ti,j , which each is a list of
exactly the variables from ci ∩ cj . However, how the elements ci ∩ cj are represented
in ti,j is crucial. If, for example, exactly the first and third variable of ci is also in cj ,
i. e., ci∩ cj = {v℘1(i), v℘3(i)}, then ti,j = v℘1(i) ? ? ? v℘3(i) ?. Thus, for every i, 1 ≤ i ≤ n, ti,i
represents the complete clause ci, i. e., ti,i = v℘1(i) ? v℘2(i) ? v℘3(i) ?, whereas every ti,j ,
1 ≤ j ≤ n, i 6= j, equals ti,i after all variables have been erased (i. e., replaced by ?)
that are not in ci ∩ cj . In order to illustrate this, let ci1 = {v1, v3, v7}, ci2 = {v3, v4, v1},
ci3 = {v2, v1, v8}, ci4 = {v7, v8, v9} and ci5 = {v10, v7, v3} be example clauses, for some
1 ≤ ij ≤ n. Then si1 = ?4 ti1,1ti1,2 . . . ti1,n ?

4 with

ti1,i1 = v1 ? v3 ? v7 ? ,
ti1,i2 = v1 ? v3 ? ? ? ,
ti1,i3 = v1 ? ? ? ? ? ,
ti1,i4 = ? ? ? ? v7 ? ,
ti1,i5 = ? ? v3 ? v7 ? ,

and ti1,j = ?6, for every j, 1 ≤ j ≤ n, j /∈ {i2, i3, i4, i5}.
Before moving on, we first introduce more convenient notations in order to fa-

cilitate the following technical statements. Let s be a solution string for some
CONSENSUS PATTERNS instance. For every j, 1 ≤ j ≤ m, the weight of position j
(of s) is the number of mismatches between s[j] and the aligned symbols in the input
strings. Hence, s is a solution string if its total weight, i. e., the sum of the weights of
all positions, is at most d. If s has minimal weight among all possible solution strings,
then it is an optimal solution string. We note that the strings qr of IC have a length
of m; thus, the alignment of a candidate solution string s only concerns the strings si.
For every j, 1 ≤ j ≤ n, we define the position δj = 5 + 6(j − 1), i. e., the δj are the
positions of the strings qr that contain a symbol from V and the positions of the strings
si, where a substring ti,j starts. The following observation shall simplify our further
argumentation.

OBSERVATION 1. For every i, 1 ≤ i ≤ n, si has exactly 9 occurrences of symbols
from V . More precisely, if ci = {x1, x2, x3}, then, for every r, 1 ≤ r ≤ 3, si has exactly 3
occurrences of xr at positions δj1 + 2(r − 1), δj2 + 2(r − 1) and δj3 + 2(r − 1), for some
j1, j2, j3, 1 ≤ j1, j2, j3 ≤ n.

Next, we will show that an optimal solution string for IC necessarily has a certain
structure, from which we can later conclude the existence of 1-in-3 satisfying assign-
ment for C.

LEMMA 5.6. Let s be an optimal solution string for the instance IC . Then s =
?4 vp1 ?

5 vp2 ?
5 . . . vpn ?

5 with vpi ∈ ci, 1 ≤ i ≤ n, and s is aligned to si at position 1, 3
or 5, 1 ≤ i ≤ n.

PROOF. We assume that s and the way it is aligned results in a total weight of
d′ ≤ d. By a sequence of separate claims, we show that s satisfies the structure claimed
in the satement of the lemma. We start with the symbols at positions δi, 1 ≤ i ≤ n.

Claim 1: s[δi] ∈ ci, for every i, 1 ≤ i ≤ n.
Proof of Claim 1: We assume to the contrary that, for some i, 1 ≤ i ≤ n, s[δi] /∈ ci. The
symbol s[δi] is aligned to a symbol from ci in every qr and to a symbol from ci ∪ {?}
in every sj (the latter is due to the fact that, since (` − m) = 4, s must be aligned to
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sj at one of the positions 1, 2, . . . , 5, and therefore position δi of s must be aligned with
one of the positions of tj,i). Thus, position δi of s contributes at least 3n+ 3 to the total
weight, if s[δi] = ? and at least 4n + 3, if s[δi] ∈ V \ ci. If we change s[δi] to v℘1(i) ∈ ci,
then it matches the aligned symbol in all n+ 1 copies of q1. Hence, in the worst case, it
can only cause mismatches with respect to the remaining (2n+ 2) +n = 3n+ 2 strings,
so s[δi] contributes at most 3n + 2 to the total weight, which is a contradiction to the
optimality of s. (Claim 1) �
Next, we prove that all remaining positions of s must carry the symbol ?.
Claim 2: s[j] = ?, for every j, 1 ≤ j ≤ m, with j /∈ {δ1, δ2, . . . , δn}.
Proof of Claim 2: If, for some j, 1 ≤ j ≤ m, with j /∈ {δ1, δ2, . . . , δn}, s[j] 6= ?, then po-
sition j contributes at least 3n + 3 to the total weight, since it constitutes a mismatch
with the aligned symbol in all strings qr. If we change s[j] to ?, then position j con-
tributes a weight of at most n, since it matches with respect to all strings qr and can
only have mismatches with respect to the n strings si. This is a a contradiction to the
optimality of s. (Claim 2) �
Finally, it only remains to show that the solution string s can only be aligned at cer-
tain positions, which can be concluded from its structure, established by the previous
claims.
Claim 3: For every i, 1 ≤ i ≤ n, s is aligned to si at position 1, 3 or 5.
Proof of Claim 3: Due to the fact that (` − m) = 4, the only possible positions where
s can be aligned to some si are 1, 2, . . . , 5. We now assume that s is aligned to some si
at position 2 or 4 and we recall that s contains exactly n occurrences of symbols from
V and the rest are occurrences of ?, while si contains exactly 9 occurrences of symbols
from V and the rest are occurrences of ? (see Observation 1). Hence, the maximum
number of mismatches between s and si is n+ 9. If s is aligned to si at position 2 or 4,
then, for every j, 1 ≤ j ≤ n, position δj is aligned to the 2nd or 4th position of ti,j , which
is ?. Moreover, every occurrence of a symbol from V in si is aligned to some symbol of
s (this is due to the fact that si starts and ends with ?4) and since all symbols from
V in s are already aligned to symbol ? of si, all symbols from V in si must be aligned
with occurrences of ? of s. This yields the maximum number of n + 9 mismatches be-
tween s and si. If, on the other hand, s is aligned at a position 1, 3 or 5, then, since
ti,i = v℘1(i) ? v℘2(i) ? v℘3(i) ?, position s[δi] is necessarily aligned to a symbol from V in
si, which implies that the total number of mismatches must be strictly less than n+ 9
(in fact, we can also conclude that there are at least two more positions δj that must
be aligned with a symbol from V in si). This is a contradiction to the optimality of s.
(Claim 3) �
This conludes the proof of the lemma.

We are now ready to show that the existence of a solution string (which, by the previ-
ous lemma, implies the existence of a solution string of the form ?4 vp1

?5 vp2
?5 . . . vpn

?5,
with vpi

∈ ci, 1 ≤ i ≤ n), implies the existence of a 1-in-3 satisfying assignment of C.
The idea is to collect all symbols vpj , 1 ≤ j ≤ n, and then show that if vpj (which is
in cj) is also in ci, then vpi is necessarily aligned to an occurrence of vpj in sj , which
allows us to argue that, in order to not exceed the bound d on the Hamming distance,
vpi = vpj must hold. From this property, it follows that the set {vp1 , vp2 , . . . , vpn} is a
1-in-3 satisfying assignment.

LEMMA 5.7. If there exists a solution string, then C is 1-in-3 satisfiable.

PROOF. We assume that s is an optimal solution string. With Lemma 5.6, we can
conclude that s = ?4 vp1

?5 vp2
?5 . . . vpn

?5 with vpi
∈ ci, 1 ≤ i ≤ n, and s is aligned to si
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at position 1, 3 or 5, 1 ≤ i ≤ n. In the following two claims, we count the mismatches
between s and the input strings.
Claim 1: The number of mismatches between s and all copies of the strings qr,
1 ≤ r ≤ 3, is 2n2 + 2n.
Proof of Claim 1: For every i, 1 ≤ i ≤ n, the symbol at position δi of s matches with
the aligned symbol of exactly one of the 3 strings qr, 1 ≤ r ≤ 3, and therefore causes
2(n+1) mismatches. All other positions j /∈ {δ1, δ2, . . . , δn} of s are matching the aligned
positions of the strings qr, 1 ≤ r ≤ 3. Thus, the number of mismatches between s and
all copies of the strings qr, 1 ≤ r ≤ 3, is 2(n+ 1)n = 2n2 + 2n. (Claim 1) �
Claim 2: For every i, 1 ≤ i ≤ n, the number of mismatches between s and si is n+ 3.
Proof of Claim 2: Due to Claim 1, there are 2n2 + 2n mismatches between s and all
copies of the strings qr, 1 ≤ r ≤ 3. Thus, since s is a solution string, there are at most
d − (2n2 + 2n) = n2 + 3n = n(n + 3) mismatches between s and all the strings si,
1 ≤ i ≤ n. For every i, 1 ≤ i ≤ n, s is aligned to si at a position r ∈ {1, 3, 5}, which
implies that every δj , 1 ≤ j ≤ n, is aligned to the rth position of ti,j . However, only
for j, 1 ≤ j ≤ n, with v℘ r+1

2
(i) ∈ cj (of which there are only 3), the rth position of ti,j

carries a symbol different from ?. Hence, (n−3) positions δj of s are aligned to a symbol
? in si and, consequently, at most 3 of the 9 occurrences of symbols from V in si (see
Observation 1) can be aligned to a symbol different from ? in s. This results in at least
(n− 3) + 6 = n+ 3 mismatches between s and si. Together with the fact that the total
number of mismatches between s and all the strings si, 1 ≤ i ≤ n, is at most n(n + 3),
this implies that, for every i, 1 ≤ i ≤ n, the number of mismatches between s and si is
n+ 3. (Claim 2) �
We define D = {vp1

, vp2
, . . . , vpn

}. In order to conclude that D is a 1-in-3 satisfying as-
signment, we have to show that, for every i, 1 ≤ i ≤ n, |ci∩D| = 1, which is established
by the following claim.
Claim 3: Let i ∈ {1, 2, . . . , n}, r ∈ {1, 3, 5}, u = r+1

2 and let j1, j2, j3, 1 ≤ j1 < j2 < j3 ≤ n,
be such that v℘u(i) ∈ cj1 ∩ cj2 ∩ cj3 . If s is aligned to si at position r, then vpj1

= vpj2
=

vpj3
= v℘u(i).

Proof of Claim 3: We first assume that s is aligned with si at position r = 1 (note
that this means that u = 1). Every vpj

, 1 ≤ j ≤ n, is aligned with position δj of si,
i. e., with the first symbol of ti,j . By the structure of si, only the 3 positions δj1 , δj2 ,
δj3 of si carry a symbol from V , namely v℘1(i), whereas all other n − 3 positions δj′
with j′ /∈ {j1, j2, j3} of si carry the symbol ?. Hence, there are n − 3 mismatches re-
sulting from these positions δj′ . Moreover, all other 6 occurrences of symbols from V
in si (i. e., the ones not corresponding to a position δj) constitute mismatches with an
occurrence of ? in s. Consequently, there are already n + 3 mismatches between s and
si, which, according to Claim 2, are all the mismatches between s and si. In particular,
this means that the positions δj1 , δj2 and δj3 of si constitute matches, which implies
that s[δj1 ] = s[δj2 ] = s[δj3 ] = v℘1(i), which means that vpj1

= vpj2
= vpj3

= v℘u(i). The
cases r ∈ {3, 5} can be handled analogously; the only difference is that positions δj of s
are aligned with positions δj + (r − 1) of si. (Claim 3) �
From this claim, it follows that if vpi

∈ cj for some i, j, 1 ≤ i, j ≤ n, i 6= j, then vpi
= vpj

.
Hence, if, for some j, 1 ≤ j ≤ n, |cj ∩D| ≥ 2, then there exists an i, 1 ≤ i ≤ n, j 6= i, with
vpi
∈ cj and vpj

6= vpi
, which is a contradiction. Consequently, |D ∩ ci| = 1, for every i,

1 ≤ i ≤ n; thus, D is a 1-in-3 satisfying assignment.

It remains to prove the other direction, i. e., that a 1-in-3 satisfying assignment for
C can be translated into a solution string for IC .
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LEMMA 5.8. If C is 1-in-3 satisfiable, then there exists a solution string.

PROOF. Let D = {vp1 , vp2 , . . . , vpn} be a 1-in-3 satisfying assignment with vpj ∈ cj ,
1 ≤ j ≤ n. We shall show that s = ?4 vp1 ?

5 vp2 ?
5 . . . vpn ?

5, which is of length m, is a
solution string. First, we measure the weight caused by the strings qr. All occurrences
of ? in s match the aligned symbols in the strings qr and therefore the only mismatches
can occur at positions δi. However, for every i, 1 ≤ i ≤ n, s[δi] = vpi matches the aligned
symbol in exactly 1 of the strings qr, 1 ≤ r ≤ 3, because vpi

∈ ci. Consequently, all
copies of the strings qr contribute a weight of 2n(n+ 1).

For every i, 1 ≤ i ≤ n, we align s with si at position 2r− 1, where r is such that vpi
=

v℘r(i), i. e., we align vpi
of s with the matching symbol of ti,i in si. By the structure of si,

this implies that every symbol at a position δj with vpi
∈ cj matches the aligned symbol

in si and all other n− 3 positions δj with vpi
/∈ cj are aligned with ? and are therefore

mismatches. All the remaining 6 occurrences of symbols from V in si must also be
aligned with symbols of s (due to the fact that si starts and ends with ?4). Moreover,
they all are aligned with occurrences of ? and therefore constitute mismatches as well.
Since all remaining positions are matches, we conclude that the strings si contribute
a weight of n(n − 3 + 6), which leads to a total weight of 2n(n + 1) + n(n − 3 + 6) =
3n2 + 5n = d.

In order to complete the proof of Theorem 5.3, it remains to show how the alphabet
size can be bounded by 4. To this end, we first slightly modify the reduction by adding
occurrences of the string ?4 to every si, 1 ≤ i ≤ n, between the substrings ti,j and ti,j+1,
1 ≤ j ≤ n−1, and to every qr, 1 ≤ r ≤ 3, between the substrings v℘r(j) ?

5 and v℘r(j+1) ?
5,

i. e.,

si = ?4 ti,1 ?
4 ti,2 ?

4 . . . ti,n ?
4, 1 ≤ i ≤ n ,

qr = ?4 v℘r(1) ?
5 ?4 v℘r(2) ?

5 ?4 . . . v℘r(n) ?
5, 1 ≤ r ≤ 3 .

Consequently, also the positions δj slightly change, i. e., δj = 5 + 10(j − 1), 1 ≤ j ≤ n.
Furthermore, we set m = 6n + 4 + 4(n − 1) = 10n and d = 3n2 + 5n. We note that
` = 6n+ 8 + 4(n− 1) = 10n+ 4 and therefore (`−m) = 4. This reduction is still correct
(in fact, the proofs apply in the same way).

For every i, 1 ≤ i ≤ n, r, 1 ≤ r ≤ 3, and j, 1 ≤ j ≤ m, we define

Γi,j = alph(si[j..j + (|si| −m)]), and
∆r,j = alph(qr[j..j + (|qr| −m)]) .

This means that, using the terminology of Section 3, for every j, 1 ≤ j ≤ m, (
⋃n

i=1 Γi,j)∪
(
⋃3

r=1 ∆r,j) is the alphabet of the alignment region of position j of the solution string.
By Lemma 3.1, the modified instance from above can be transformed into an equivalent
one over an alphabet of size σ = max{|(

⋃n
i=1 Γi,j)∪ (

⋃3
r=1 ∆r,j)| | 1 ≤ j ≤ m}. Hence, we

have to show that σ = 4.
We first note that, for every j, |si[j..j + (|si| − m)]| = 5, 1 ≤ i ≤ n, and |qr[j..j +

(|qr| − m)]| = 1, 1 ≤ r ≤ 3. Consequently, for every j, 1 ≤ j ≤ m, and r, 1 ≤ r ≤ 3,
(
⋃3

r=1 ∆r,j) = {?} if j /∈ {δ1, δ2, . . . , δn} and (
⋃3

r=1 ∆r,j) = ci if j = δi. Furthermore, for
every i, 1 ≤ i ≤ n − 1, and j, δi − 4 ≤ j ≤ δi+1 − 5, (

⋃n
i=1 Γi,j) ⊆ ci ∪ {?} and, for every

j, δn − 4 ≤ j ≤ m, (
⋃n

i=1 Γi,j) ⊆ cn ∪ {?}. Hence, for every j, 1 ≤ j ≤ m, |(
⋃n

i=1 Γi,j)| ≤ 4

and, since (
⋃3

r=1 ∆r,j) ⊆ (
⋃n

i=1 Γi,j), also |(
⋃n

i=1 Γi,j)∪(
⋃3

r=1 ∆r,j)| ≤ 4. We conclude that
σ ≤ 4, which implies (with Lemma 3.1) that the modified instance can be transformed
into an equivalent one over an alphabet of size 4. This finally concludes the proof of
Theorem 5.3.
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6. CONCLUSIONS
We investigated the role of the parameter (` − m) for the consensus string problems
CLOSEST SUBSTRING and CONSENSUS PATTERNS. In a sense, this parameter mea-
sures the difference between a CLOSEST SUBSTRING instance and an instance of the
easier problem CLOSEST STRING (or between a CLOSEST SUBSTRING instance and an
instance of the trivial variant of CONSENSUS PATTERNS, where every input string has
length m). While parameterising by (`−m) and at least one additional parameter typ-
ically allows fpt-algorithms, the parameter (`−m) alone is too weak in order to obtain
fixed-parameter tractability.

In this regard, our main negative result is the NP-hardness of
CONSENSUS PATTERNS((` − m) = 4, |Σ| = 4) (and, thus, the fixed-parameter
intractability of CONSENSUS PATTERNS((` − m), |Σ|), assuming P 6= NP).
This result improves the one that is reported in the extended abstract
[Schmid 2015] of this paper, in which we could only show the NP-hardness of
CONSENSUS PATTERNS((` − m) = 6, |Σ| = 5). Although this seems like a small
difference, the stronger result presented here is a significant improvement, since
consensus string problems are mainly motivated by applications on DNA-strings,
which have an alphabet of size 4. However, this stronger result, too, leaves a
gap with respect to smaller constant bounds. More precisely, it is open whether
CONSENSUS PATTERNS((` − m) = c, |Σ| = c′), can be solved in polynomial-time for
constants c and c′, where c or c′ is strictly smaller than 4.
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