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Complete nonlinear dynamic manoeuvering models of ships, with numerical
values, are hard to find in the literature. This paper presents a modeling, identifica-
tion, and control design where the objective is to manoeuver a ship along desired
paths at different velocities. Material from a variety of references have been used
to describe the ship model, its difficulties, limitations, and possible simplifications
for the purpose of automatic control design. The numerical values of the para-
meters in the model is identified in towing tests and adaptive manoeuvering
experiments for a small ship in a marine control laboratory.

Introduction

Model-based control for steering and positioning of ships has become state-of-
the-art since LQG and similar state-space techniques were applied in the 1960s. For
a rigid-body the dynamic equations of motion are divided into two distinctive parts:
kinematics, which is the study of motion without reference to the forces that cause
motion, and kinetics, which relates the action of forces on bodies to their resulting
motions (Meriam & Kraige, 1993). The rigid-body and hydrodynamic equations of
motion for a ship are in reality given by a set of (very complicated) differential
equations describing the 6 degrees-of-freedom (6 DOF); surge, sway, and heave for
translation, and roll, pitch, and yaw for rotation. The models used to represent the
physics of the real world, however, vary as much as the underlying control objectives
vary. Roughly divided these control objectives are either slow speed positioning or
high speed steering. The first is called dynamical positioning (DP) and includes
station keeping, position mooring, and slow speed reference tracking. For DP the 6
DOF model is reduced to a simpler 3 DOF model that is linear in the kinetic part.
Such applications with references are thoroughly described by Strand (1999) and
Lindegaard (2003). High speed steering, on the other hand, includes automatic course
control, high speed position tracking, and path following; see for instance Holzhüter
(1997), Lefeber et al. (2003) and Fossen et al. (2003). For these applications, Coriolis
and centripetal forces together with nonlinear viscous effects become increasingly
important and therefore make the kinetic part nonlinear. By port-starboard sym-
metry, the longitudinal (surge) dynamics are essentially decoupled from the lateral
(steering; sway-yaw) dynamics and can therefore be controlled independently by
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forward propulsion. Moreover, for cruising at a nearly constant surge speed and only
considering first order approximations of the viscous damping, a linear parametrically
varying approximation of the steering dynamics is applicable. The origin of these
types of models are traced back to Davidson & Schiff (1946), while Nomoto et al.
(1957) gave an equivalent representation. See Clarke (2003) for a historical back-
ground and Fossen (2002) for a complete reference on these original models and
their later derivations.

The contribution of this paper is a 3 DOF nonlinear manoeuvering model for a
ship. This model can be simplified further to either a 3 DOF model for DP, a steering
model according to Davidson and Schiff or Nomoto, or it can be used as is for
nonlinear control design. Furthermore, system identification procedures for a model
ship called CyberShip II (CS2) in a towing tank facility have produced numerical
values for nearly all the hydrodynamic coefficients. To find the other values, an
adaptive manoeuvering control law was implemented for CS2, and free-running
manoeuvering experiments were performed. The adaptive parameter estimates in
these experiments then give approximate values for the other hydrodynamic
coefficients.

Notation: Total time derivatives of x(t) are denoted ẋ, ẍ, x�3�, . . . , x�n �, while a
superscript denotes partial differentiation:

at(x, h, t):óLa
Lt

, ax2(x, h, t):ó
L2a
Lx2

and a�n(x, h, t):óLna
Lhn

, etc.

The Euclidean vector norm is Dx D :ó(xTx)1�2 which reduces to the absolute value for
a scalar.

1. The 3 DOF ship manoeuvering model

Ship dynamics are described by 6 degrees-of-freedom (6 DOF) differential equa-
tions of motion. The modes are (x, y, z), referred to as surge, sway, and heave,
describing the position in three-dimensional space, and ({, h,t), called roll, pitch,
and yaw, describing the orientation of the ship. Assuming that the ship is longi-
tudinally and laterally metacentrically stable with small amplitudes {óhó{̇óḣB0,
one can discard the dynamics of roll and pitch. Likewise, since the ship is floating
with zB0 in mean, one can discard the heave dynamics. The resulting model for the
purpose of manoeuvering the ship in the horizontal plane becomes a 3 DOF model.
Let an inertial frame be approximated by the earth-fixed reference frame {e} called
NED (North-East-Down) and let another coordinate frame {b} be attached to the
ship as seen in Figure 1. The states of the vessel can then be taken as gó [x, y,t]T

and ló [u, v, r]T where (x, y) is the Cartesian position, t is the heading (yaw) angle,
(u, v) are the body-fixed linear velocities (surge and sway), and r is the yaw rate.

1.1. Rigid-body dynamics

The earth-fixed velocity vector is related to the body-fixed velocity vector through
the kinematic relationship

ġóR(t)l (1)
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Figure 1. Figure showing the inertial earth-fixed frame and the body-fixed frame for a ship
with the earth-fixed position (x, y), the heading t, and the corresponding body-fixed velocities

(u, v) and rotation rate r.

where

R(t)ó�
cost ñsint 0

sint cost 0

0 0 1�
is a rotation matrix. It has the properties that R(t)TR(t)óI, ER(t) Eó1 for all t,
and (d/dt){R(t)}óṫR(t)S where

Só�
0 ñ1 0

1 0 0

0 0 0�óñST

is skew-symmetric. By Newton’s second law it is shown in Fossen (2002) that the
rigid body equations of motion can be written

M
RB
l̇òC

RB
(l)lóq

RB
(2)

where M
RB

is the rigid-body system inertia matrix, C
RB

(l) is the corresponding matrix
of Coriolis and centripetal terms, and q

RB
ó [X, Y, N ]T is a generalized vector of

external forces (X, Y) and moment N. Let the origin ‘O’ of the body frame be taken
as the geometric center point (CP) in the ship structure. Under the assumption that
the ship is port-starboard symmetric, the center-of-gravity (CG) will be located a
distance x

g
along the body x

b
-axis. In this case, M

RB
takes the form

M
RB
ó�

m 0 0

0 m mx
g

0 mx
g

I
z
� (3)
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where m is the mass of the ship and I
z

is the moment of inertia about the z
b
-axis

(that is, yaw rotation). Several representations for the Coriolis matrix are possible.
Based on Theorem 3.2 in Fossen (2002), we choose the skew-symmetric representation

C
RB

(l)ó�
0 0 ñm(x

g
ròv)

0 0 mu

m(x
g
ròv) ñmu 0 � (4)

The force and moment vector q
RB

is given by the superposition of actuator forces
and moments qó [q

u
, q

v
, q

r
]T, hydrodynamic effects q

H
, and exogenous disturbances

w(t) due to, for instance, waves and wind forces (Sørensen et al., 1996). The forces
and moments in q

RB
are all expressed with reference to the center point (CP) such

that the full set of dynamical equations is given in the body-fixed reference frame.

1.2. Hydrodynamic forces and moments

The vector q
H

is the result of several hydrodynamic phenomena, some not yet
fully understood. For an ideal fluid, some of these components are added mass,
radiation-induced potential damping, and restoring forces. For the 3 DOF states
considered here, restoring forces are only important in case of mooring which is not
in the scope of this paper. In addition to potential damping there are also other
damping effects such as skin friction, wave drift damping, and damping due to vortex
shedding (Faltinsen, 1990).

Due to currents in the ocean fluid, the velocity l is different than the relative
velocity l

r
between the ship hull and the fluid. The hydrodynamic forces and moments

depend on this relative velocity. For a nonrotational current with fixed speed V
c

and
angle b

c
in the earth-fixed frame, the current velocity is given by

v
c
:ó�

V
c
cosb

c
V

c
sinb

c
0 � (5)

Normally V
c
and b

c
should be modeled as stochastic processes. However, in the deter-

ministic setting of this paper we simply assume that V̇
c
óḃ

c
ó0. In the body-frame

this gives the current component l
c
:óR(t)Tv

c
and the relative velocity l

r
:ólñl

c
ó

[u
r
, v

r
, r]T. With these definitions it is common (Sørensen, 2002) to model the hydro-

dynamic effects as

q
H
óñM

A
l̇
r
ñC

A
(l

r
)l

r
ñd(l

r
) (6)

where M
A

accounts for added mass, C
A

(l
r
) accounts for the corresponding added

Coriolis and centripetal terms, and d(l
r
) sums up the damping effects. By the notation

of The Society of Naval Architects and Marine Engineers (1950) the matrix M
A

is
given by

M
A
ó�

X
u�

0 0

0 ñY
v�
ñY

r�

0 ñN
v�
ñN

r�
� (7)
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where the assumption of port-starboard symmetry again is applied. For zero relative
velocity, l

r
ó0, zero frequency of motion due to water surface effects, and assuming

an ideal fluid, the added mass matrix is constant and M
A
óMT

A
[0. However, under

non-ideal conditions with waves and high velocity, M
A
óM

A
(u

e
)ÖM

A
(u

e
)T where

u
e

is the frequency of encounter given by

u
e
ó �u0

ñu0
2

g
U cosb � (8)

Here u
0

is the dominating wave frequency, g is the acceleration of gravity,
Uó�u2òv2 is the total ship speed, and b is the angle of encounter defined by
bó0º for following sea. For control design it is common to assume that
M

A
ó lim�e�0

M
A

(u
e
) is constant and strictly positive.

Since M
A

is not necessarily symmetric, Theorem 3.2 in Fossen (2002) is not
directly applicable to find C

A
(l

r
). To solve this obstacle, we observe that this theorem

is deduced from the kinetic energy Tó1
2
lTMl. A modification for the added mass

kinetic energy is

T
A
ó1

2
lT
r
M

A
l
r
ó1

4
l
r
(M

A
òMT

A
)l

r
ó1

2
l
r
M̄

A
l
r

where M̄
A

:ó1
2
(M

A
òMT

A
)óM̄T

A
. This means that C

A
(l

r
), for a nonsymmetric M

A
, is

derived from Theorem 3.2 of Fossen (2002) using M̄
A

instead of M
A

, and this gives

C
A

(l
r
)ó�

0 0 Y
v�
v
r
ò1

2
(N

v�
òY

r�
)r

0 0 ñX
u�
u
r

ñY
v�
v
r
ñ1

2
(N

v�
òY

r�
)r X

u�
u
r

0 � (9)

The most uncertain component in the hydrodynamic model (6) is the damping vector
d(l

r
), to which many hydrodynamic phenomena contribute. Let d(l

r
)ó [X

D
(l

r
),

Y
D
(l

r
), N

D
(l

r
)]T. For a constant cruise speed l

r
ól

0
B [u

0
, 0, 0]T one can fit the

damping forces and moments at l
0

to the linear functions

X
D
(l

r
)óñX

u
(u

r
ñu

0
)ñX

v
v
r
ñX

r
r

Y
D
(l

r
)óñY

u
(u

r
ñu

0
)ñY

v
v
r
ñY

r
r (10)

N
D
(l

r
)óñN

u
(u

r
ñu

0
)ñN

v
v
r
ñN

r
r

where the hydrodynamic coefficients {X
���

, Y
���

, N
���

} are called hydrodynamic deriva-
tives because they are the partial derivatives of the forces and moment with respect
to the corresponding velocities, for instance,

Y
r
:óLYD

(l
r
)

Lr
Seeking in this paper a more globally valid model of the damping effects, we consider
a nonlinear representation. Abkowitz (1964) proposed using a truncated Taylor series
expansion of d(l

r
). Since in general d(l

r
) is dissipative for both positive and negative

relative velocities, it must be an odd function, and, hence, only odd terms in the
Taylor expansion are required. Using first and third order terms only, and assuming
port-starboard symmetry, this gives
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X
D
(l

r
)óñX

u
u
r
ñX

uuu
u3
r

Y
D
(l

r
)óñY

v
v
r
ñY

r
rñY

vvv
v3
r
ñY

vvr
v2
r
rñY

vrr
v
r
r2ñY

rrr
r3 (11)

N
D
(l

r
)óñN

v
v
r
ñN

r
rñN

vvv
v3
r
ñN

vvr
v2
r
rñN

vrr
v
r
r2ñN

rrr
r3

which is valid for all feasible velocities. Fedyaevsky and Sobolev (1963) and later
Norrbin (1970) gave another nonlinear representation

X
D
(l

r
)óñX

u
u
r
ñX

�u �u
D u

r
D u

r

Y
D
(l

r
)óñY

v
v
r
ñY

r
rñY

�v �v
D v

r
D v

r
ñY

�v � r
D v

r
D rñY

� r �v
D r D v

r
ñY

� r � r
D r D r (12)

N
D
(l

r
)óñN

v
v
r
ñN

r
rñN

�v �v
D v

r
D v

r
ñN

�v � r
D v

r
D rñN

� r �v
D r D v

r
ñN

� r � r
D r D r

called the second order modulus model. These functions are not continuously differen-
tiable, and strictly speaking they therefore cannot represent the physical system.
However, experiments have shown that they match the damping effects quite accu-
rately and are therefore often used. Based on the experimental data presented in the
next section and curve fitting, we choose in this paper the damping model

d(l
r
)óD

L
l
r
òD

NL
(l

r
)l

r
ó:D(l

r
)l

r
(13)

where

D
L
:ó�
ñX

u
0 0

0 ñY
v
ñY

r
0 ñN

v
ñN

r
�

D
NL

(l
r
):ó�

ñX
�u �u
D u

r
DñX

uuu
u2
r

0 0

0 ñY
�v �v
D v

r
DñY

� r �v
D r D ñY

�v � r
D v

r
DñY

� r � r
D r D

0 ñN
�v �v
D v

r
DñN

� r �v
D r D ñN

�v � r
D v

r
DñN

� r � r
D r�

which essentially is the second order modulus model with an extra third order term
in surge. The reason for picking this model was that it gave the best fit to the
experimental data.

With q
RB
óqòq

H
òw(t) the kinetic equation of motion (2) becomes

M
RB
l̇òM

A
l̇
r
òC

RB
(l)lòC

A
(l

r
)l

r
òD(l

r
)l

r
óqòw(t) (14)

where

l
r
ólñR(t)Tv

c

l̇
r
ól̇ñrSTR(t)Tv

c

For the kinetic model (14) one must decide upon using either the relative velocity l
r

or the inertial velocity l as the velocity state. There are different practices in the
literature, and the current velocity v

c
must in either case be measured or somehow

estimated to account for it in equation (14). A simplifying technique was applied by
Fossen & Strand (1999) who used l as the velocity state and assumed that the
dynamics related to the current v

c
(and other unmodeled dynamics) are captured by

a slowly varying bias b in the earth frame. This gives the simplified model

Ml̇òC(l)lòD(l)lóqòR(t)Tbòw(t) (15)
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where M :óM
RB
òM

A
and C(l):óC

RB
(l)òC

A
(l). The alternative, applied among

others by Holzhüter (1997), is to use l
r

as the state, but in this case the kinematic
relationship (1) must be rewritten as

ġóR(t)l
r
òv

c
(16)

which means that v
c

enters both the kinematic and kinetic equations of motion.
For simulator design, a model according to equation (14) or more advanced

should be used. For control design, on the other hand, experience shows that
equations (1) and (15) are adequate provided some type of integral action is used in
the controller to compensate for the bias b; see for instance Skjetne & Fossen (2004).

1.3. Simplified models

For special applications, simpler models than equation (15) can be used. For
instance, for DP a linearization of equation (15) around ló0 yields

Ml̇òD
L
lóqòR(t)Tbòw(t) (17)

where the Coriolis and nonlinear damping terms were eliminated. Note that the
curve-fitted coefficients in D

L
for DP will be different from those fitted to the

nonlinear (globally valid) model equation (13); see next section.
Another special application is steering a ship at (nearly) constant surge speed.

Separating the surge dynamics from the steering dynamics, using equation (10),
and assuming port-starboard symmetry and v

c
•0, we get a manoeuvering model

consisting of the surge dynamics

(mñX
u�
)u̇ñX

u
(uñu

0
)ñ(mñY

v�
)vrñ�mx

g
ñ1

2
N

v�
ñ1

2
Y

r�� r2óq
u

(18)

and the sway-yaw (steering) dynamics

�
mñY

v�
mx

g
ñY

r�

mx
g
ñN

v�
I
z
ñN

r�
��

v̇

ṙ�
(19)

ò�
ñY

v
ñY

r
ò(mñX

u�
)u

ñN
v
ò( X

u�
ñY

v�
)u ñN

r
ò�mx

g
ñ1

2
N

v�
ñ1

2
Y

r� � u��v

r�ó�
q
v
q
r
�

For each fixed surge speed uóu
0
, the steering dynamics become linear. Hence,

treating u as a parameter, equation (19) is a linear parametrically varying (LPV)
model of the form of Davidson & Schiff (1946). This can be further related to a
Nomoto model as described by Clarke (2003). For conventional ships, the inputs are
usually linearly related to the rudder angle d as q

v
óñY�d and q

r
óñN�d. As a

result, linear design techniques as gain scheduling or similar can be applied to solve
a steering task.

1.4. Actuator forces

The actuator forces and moments are generated by a set of thrusters with
revolutions per second nó [n

1
, n

2
, . . . , n

p1
]T éRp1 and a set of control surfaces (or
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Figure 2. Actuator configuration of CyberShip II.

propeller blade pitch) with angles dó [d
1
,d

2
, . . . , dp2 ]T éRp2. They are related to the

input vector q through the mapping

qóB f
c
( l

r
, n, d) (20)

where B éR3��p1�p2� is an actuator configuration matrix, and f
c
: R3îRp1î

[ñn,n)p2�Rp1�p2 is a function that for each velocity l
r

relates the actuator set-
points (n, d) to a vector of forces.

As a case we consider CyberShip II which has two main propellers and two
rudders aft, and one bow thruster fore; see Figure 2. The main propellers generate
thrust forces {T

1
, T

2
}, the bow thruster generates {T

3
}, while the rudders generate

lift forces {L
1
, L

2
} and drag forces {D

1
, D

2
}. Disregarding the drag forces, the force

vector becomes

f
c
(l

r
, n, d)ó [T

1
(n

1
, u

r
), T

2
(n

2
, u

r
), T

3
(n

3
), L

1
(d

1
, u

rud�1
), L

2
(d

2
, u

rud�2
)]T

where u
rud� i

, ió1, 2, are given below. Let the force attack points of {T
1
, T

2
, T

3
} be

located at coordinates {(l
xT1

, l
yT1

), (l
xT2

, l
yT2

), (l
xT3

, l
yT3

)} in the body-frame, and

1We will show in the next section that the rudder drag forces can be viewed as a perturbation
of the hull drag in surge motion and can therefore be eliminated from the actuator model.
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likewise {(l
xR1

, l
yR1

), (l
xR2

, l
yR2

)} for the rudders. Then the actuator configuration
matrix is

Bó�
1 1 0 0 0

0 0 1 1 1

D l
yT1
D ñD l

yT2
D D l

xT3
D ñD l

xR1
D ñD l

xR2
D� (21)

The propeller thrust forces {T
1
, T

2
} are according to Blanke (1981) and later Fossen

(1994), expressed as

T
i
óod4

i
K

T
(J

i
) D n

i
D n

i
(22)

where o is the water density, d
i
is the propeller diameter, and K

T
is a nondimensional

thrust coefficient which depends on the advance ratio

J
i
óu

a
n
i

d
i

of thruster i. The ambient flow velocity u
a

is given by u
a
ó(1ñw)u

r
where w é (0, 1)

is the wake fraction number usually assumed constant (generally it is a slowly varying
dynamic variable). For a range of J

i
, K

T
(J

i
) is nearly linear and may be expressed

according to Blanke (1981) as

K
T

(J
i
)Ba

0
ña

1
J
i
óa

0
ña

1

u
a

n
i
d
i

(23)

where a
0
, a

1
[0. An approximate formula for the thrust forces is then obtained by

substituting equations (23) into (22) and grouping all constants, that is

T
i
óT

�n �n
D n

i
D n

i
ñT

�n �u
D n

i
D u

r
(24)

where T
�n �n
[0, T

�n �u
[0 are the new parameters. However, the experimental results

show that the thrust force T
i

primarily is dependent on the propeller revolutions n
i

and less sensitive to the ambient flow velocity u
a
. Additional accuracy is therefore

obtained if equation (24) is separated into the equations

T
i
ó�

T�
�n �n
D n

i
D n

i
ñT�

�n �u
D n

i
D u

r
n
i
P n̄

T�
�n �n
D n

i
D n

i
ñT�

�n �u
D n

i
D u

r
n
i
On

¯
0 otherwise

(25)

ió1, 2, where

n̄ómax�0,
T�

�n �u
T�

�n �n

u
r�, n

¯
ómin�0,

T�
�n �u

T�
�n �n

u
r� and {T�

�n �n
, T�

�n �u
, T�

�n �n
, T�

�n �u
}

are positive coefficients. For each u
r
, equation (25) is a monotone function for which

the inverse function becomes:

n
i
ó�

T�
�n �u

2T�
�n �n

u
r
ò 1

2T�
�n �n

�T�
�n �u

u
r
)2ò4T�

�n �n
T
i

T
i
[0

0 T
i
ó0

T�
�n �u

2T�
�n �n

u
r
ñ 1

2T�
�n �u

�(T�
�n �u

u
r
)2ñ4T�

�n �n
T
i

T
i
\0

(26)
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The thrust force produced by the bow thruster will also depend on the velocity of
the ship. However, because the exact form of this relationship is not known, we rather
choose the speed independent equation used by Lindegaard & Fossen (2003), that is,

T
3
óT

�n3 � n3
D n

3
D n

3
T
�n3 � n3

[0 (27)

This has the inverse function

n
3
ósgn(T

3
)

T
�n3 �n3

�T
�n3 �n3

DT
3
D (28)

Finally we must find the rudder lift forces as a function of rudder angle and the
relative velocity of the fluid u

rud
at the rudder surface. From momentum theory

(Lewis, 1988) it can be shown that for a positive velocity u
r
P0 then at rudder i,

ió1,2,

u
rud� i
óu

r
òk

u�� 8
nod2

i

T
i
òu2

r
ñu

r�
where T

i
is the thrust force from the preceding propeller, d

i
is the propeller diameter,

and k
u

is an induced velocity factor. Normally k
u
B0.5 when the rudder is close to

the propeller. This equation tells that for a positive surge speed and positive propeller
thrust, the fluid velocity at the rudder is larger than the surge velocity u

r
. However,

for T
i
\0 the argument inside the root may become negative. In this case we make

the blanket assumption that this argument is zero. For negative surge speed we simply
assume u

rud� i
óu

r
. In summary we then have

u
rud� i
ó�u

r
òk

u��max�0,
8
nod2

i

T
i
òu2

r�ñu
r� u

r
P0

u
r

u
r
\0

(29)

From foil theory (Newman, 1999) the lift and drag forces are modeled as

L
i
óo

2
Ae

rud�i
C

L
(d

i
) D u

rud� i
D u

rud� i
(30)

D
i
óño

2
Ae

rud� i
C

D
(d

i
) D u

rud� i
D u

rud� i
(31)

where Ae
rud� i

is the effective rudder area, C
L

is the nondimensional lift coefficient, and
C

D
is the nondimensional drag coefficient. These latter coefficients are further

modeled as C
L
(d

i
)óc

1
d
i
ñc

2
D d

i
D d

i
and C

D
(d

i
)óc

3
D d

i
D where c

1
, c

2
, and c

3
are

positive constants. Putting this together and grouping all constants, we get the lift
and drag force models

L
i
ó�

(L�� diñL�
�� �� D di D di) D urud� i

D u
rud� i

u
rud� i
P0

(L�� diñL�
�� �� D di D di) D urud� i

D u
rud� i

u
rud�i
\0

(32)

D
i
óñD

�� � D di D D urud� i
D u

rud� i
(33)

where {L�� , L�
�� �� , L�� , L�

�� �� , D
�� �} are positive coefficients. We allow the lift forces

to have different coefficients for positive and negative velocities. The drag forces
should now be added to the propeller thrust forces, T

i
òD

i
, in the overall actuator
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Figure 3. A picture of CyberShip II in the Marine Cybernetics Laboratory at NTNU.

model. However, since D
i

depends on T
i

through u
rud�i

this expression becomes
excessively complicated. To make it less complicated, experimental data suggest that
D

i
can be viewed as a perturbation of the hull drag force d

1
(l

r
) in surge. Assuming

that a robust manoeuvering controller is able to deal with this perturbation, we do
not consider it hereafter. The inverse function of equation (32) is

d
i
ó�

sgn(L
i
)

2L�
�� �� �L�� ñ

1
u2
rud� i

�(L�� u2
rud� i

)2ñ4L�
�� ��u2

rud� i
DL

i
D� u

rud� i
Pe

0 D u
rud� i
D\e

ñsgn(L
i
)

2L�
�� �� �L�� ñ

1
u2
rud� i

�(L�� u2
rud� i

)2ñ4L�
�� ��u2

rud� i
DL

i
D� u

rud� i
Oñe

(34)

where we have introduced an e-neighbourhood around the non-effective point u
rud� i
ó0

to avoid division by zero.

2. System Identification

The Marine Cybernetics Laboratory (MCLab) is an experimental facility2 for
testing of ships, rigs, underwater vehicles, and propulsion systems at the Centre for
Ships and Ocean Structures (CESOS) at the Norwegian University of Science and
Technology (NTNU). The dimensions of the basin are LîBîDó40 mî6.45 mî
1.5 m, and it is equipped with a towing carriage, a position measurement system,
and a wave maker system, while a wind and current system are under construction.

CyberShip II (CS2; see Figure 3 is a 1:70 scale replica of a supply ship for the
North Sea. Its mass is mó23.8 kg, its length is L

CS2
ó1.255 m, and its breadth is

B
CS2
ó0.29 m. It is fully actuated with two main propellers and two rudders aft, and

one bow thruster; see Figure 2. It is further equipped with a PC104-bus driven by a
QNX� real-time operating system which controls the internal hardware achitecture
and communicates with onshore computers through a WLAN. For position and

2The MCLab is a Marie Curie EU training site.
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attitude measurements, four cameras onshore in the MCLab observe three infrared
emitters on the ship, and a kinematic computer algorithm calculates the 6 degrees-
of-freedom (6 DOF) data. The accuracy of these measurements are very high which
means that the corresponding velocities can be estimated with high precision to
render a full state feedback design possible. To facilitate real-time feedback control
of the ship, Opal RT-Lab� is used for rapid prototyping of a desired control structure
programmed in Matlab� and Simulink�. For execution of free-running experiments,
a LabVIEW� interface has been developed for commanding and monitoring the ship.

Since we do not expose the ship to any currents or exogenous disturbances in the
model basin, the CS2 ship model becomes

Ml̇òC(l)lòD(l)lóBf
c
(l, n, d) (35)

where the parameters in M
RB

, M
A

, D
L
, D

NL
(l), B and f

c
(l, n, d) must be identified.

We choose the following strategy:

(1) The matrices M
RB

, M
A

, and B are found from the main particulars of CS2
(weight, mass distribution, lengths, area, volume, etc.)

(2) By towing CS2 at different constant surge and sway velocities, with f
c
ó0, and

measuring the average towing forces, one can use least square interpolation to
find the damping parameters in D

L
and D

NL
(l) that are excited by pure surge

and sway motions; see Figure 4.

Figure 4. Two force rings, forward and backward, were applied to measure the drag and
propulsion forces when towing CyberShip II longitudinally at different speeds. Four force rings,
two port and two starboard, were used to measure the drag force and moment for lateral motion.
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Table 1. Mass-related parameters with respect to CP for CyberShip II

m 23.800 Y
v�

ñ10.0 (l
xT1

, l
yT1

) (ñ0.499,ñ0.078)
I
z

1.760 Y
r�

ñ0.0 (l
xT2

, l
yT2

) (ñ0.499, 0.078)
x

g
0.046 N

v�
ñ0.0 (l

xT3
, l

yT3
) (0.466, 0.000)

X
u�

ñ2.000 N
r�

ñ1.0 (l
xR1

, l
yR1

) (ñ0.549,ñ0.078)
(l

xR2
, l

yR2
) (ñ0.549, 0.078)

(3) When the damping parameters for pure surge and sway motions are known,
the actuator parameters in f

c
(l, n, d) are found by repeating the above towing

experiments at different thruster revolutions and rudder angles.
(4) The remaining parameters are those damping coefficients excited by the yaw rate.

Lacking equipment for turning experiments and moment measurements on the
towing carriage, we choose to use adaptive estimation in free-running adaptive
manoeuvering experiments to find those remaining parameters.

The parameters in the rigid-body system inertia matrix M
RB

and the input matrix B
are found from straight-forward measurements of the main particulars of the ship,
that is, its dimensions, weight, mass distribution, volume, area, and the actuator
setup. The zero frequency added mass coefficients in M

A
can be found from semi-

empirical formulas or simple engineering ‘rules-of-thumb’. For commercial ships,
however, strip theory is usually applied (Faltinsen, 1990). This requires a ship
geometry computation program that produces a geometry file which is fed into a
hydrodynamic computation program based on strip theory. Nevertheless, for CS2
these parameters have all been roughly estimated beforehand by Lindegaard (2003),
and their values are given in Table 1. The ship model used by Lindegaard (2003) was
for DP using a linear damping model according to equation (17). Since we seek a
nonlinear representation of the damping effects, the DP values cannot be used. The
system identification procedure next will therefore be concerned with the damping
and actuator coefficients.

The parameters to be identified in the surge direction are {X
u
, X

�u �u
, X

uuu
} and

{T�
�n �n

, T�
�n �u

, T�
�n �n

, T�
�n �u

. Using the towing carriage, CS2 was pulled both forward
and backward at different constant speeds, and for each run the average pull force
X

pull
was measured and recorded; see Figure 4. Since u̇óvóró0, and letting n

1
ón

2
at each run, we have for pure surge motion that

0ó�
X

pull
òX

drag
ò2T�

�n �n
D n

1
D n

1
ñ2T�

�n �u
D n

1
D u n

1
\0

X
pull
òX

drag
ò2T�

�n �n
D n

1
D n

1
ñ2T�

�n �u
D n

1
D u n

1
P0

(36)

where X
drag
óX

u
uòX

�u �u
D u D uòX

uuu
u3. Setting this up as a linear set of equations,

Axób, where x contains the unknown parameters, A contains the applied speeds u
and propeller rps n

1
, and b contains the corresponding measured forces X

pull
, the

unknown coefficients are calculated by a least square fit. For n
1
ón

2
ó0 then

X
drag
óñX

pull
. Figure 5 shows these measured forces and the corresponding inter-

polation. In addition it shows the linear DP curve X
drag
óX

u
u fitted to those measured

points that are within the slow speed region u é [ñ0.15, 0.15]. Clearly, there is a large
discrepancy for higher speeds. Having the nominal drag forces for n

1
ón

2
ó0, then

the same towing experiments are repeated for different propeller revolutions. These
were chosen as n

1
ón

2
é {ô200, ô500, ô1000, ô2000}, and the thrust forces were

estimated from 2T
1
óñX

pull
ñX

drag
. The result is shown in Figure 6 where it is
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Figure 5. Measured drag forces of CyberShip II for n
1
ón

2
ó0 at different speeds and the

corresponding fitted nonlinear curve as well as a linear curve for DP.

Figure 6. Measured and interpolated thrust forces T
1
óT

2
for different propeller revolutions

at different speeds for CyberShip II.
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Figure 7. The measured and curve fitted drag forces for different rudder angles d
1
ód

2
for

CyberShip II.

observed that for each revolution set-point, the surge speed has very little effect at
positive revolutions, while for negative revolutions the slope is higher. Figure 7 shows
how the rudders affect the drag in surge motion at different speeds. This justifies the
argument, previously discussed, of not including the the rudder drag force D

i
in the

actuator model, but rather viewing it as perturbations of the nominal drag coefficients.
A robust control design should compensate for this.

The next step is to identify the parameters {Y
v
, Y

�v �v
, N

v
, N

�v �v
} which can be

found from pure sway motion measurements. In this case we have v̇óuóró0,
and the force equation becomes Y

pull
òY

drag
ó0 where Y

drag
óY

v
vòY

�v �v
Dv Dv. Force

rings are set up according to Figure 4 to measure the pull forces at both positive and
negative sway speeds. The full set of measurements constitutes a set of linear equations
that are solved by least square minimization, see Figure 8. These measurements are
also used to identify the moment coefficients {N

v
, N

�v �v
}. The moment equation is

N
pull
òN

drag
ó0 where N

drag
óN

v
vòN

�v �v
D v D v. Let the moment arms from CP to

the stern and bow measurement points for Y
pull

be l
stern

and l
bow

respectively;
see Figure 4. Then v[0�N

pull
óY

pull�bow� stbd
· l

bow
ñY

pull� stern� stbd
· l

stern
and v\0�

N
pull
ó Y

pull� stern�port
· l

stern
ñY

pull�bow�port
· l

bow
. The result of this interpolation is shown

in Figure 9.
To identify the rudder lift forces {L�� , L�

�� �� , L�� , L�
�� ��}, CS2 is towed forward

with d
1
ód

2
\0 and backward with d

1
ód

2
[0 for different (equal) rudder angles,

and for each run the average force Y
pull� stern� stbd

is recorded. The moment equation is
N

pull
òN

lift
ó0 where N

lift
ó2 D l

xR1
DL

1
and L

1
is given by equation (32) with u

rud
óu .

For these runs, the sideslip angle bóarctan(v/u)B0 such that we can assume that
N

pull
BñY

pull� stern� stbd
· l

stern
, that is, not affected by the moment arms from X

pull
.
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Figure 8. Measured drag forces in sway motion and the corresponding fitted nonlinear curve
as well as a linear curve for DP for CyberShip II.

Separating positive and negative motion according to equation (32), Figure 10 shows
that the rudders are most effective in forward motion. Finally, we repeat the same
experiment for the bow thruster to find the parameter {T

�n3 �n3
} in equation (27).

Unfortunately, the sideslip angle b was rather high in these runs so that hull
drag distorted the measurements for higher speeds. Nevertheless, Y

pull�bow� stbd
was

measured, and since equation (27) is an odd function it is enough to test with
negative revolutions for n

3
. Figure 11 shows the measured points and the weighted

least square fitted curve.
To sum up, the parameters identified thus far are given in Tables 1 and 2.
Since no yaw motion was induced in these towing experiments, the parameters

{Y
r
, Y

� r �v
, Y

�v � r
, Y

� r � r
, N

r
, N

� r �v
, N

�v � r
, N

� r � r
} are yet to be identified. We leave

these to be estimated in the adaptive manoeuvering controller developed and
experimentally tested in the next section.

3. Adaptive Ship Manoeuvering With Experiments

We consider the dynamic ship model equations (1) and (35) which for
qóBf

c
(l, n, d) can be rewritten as

ġóR(t)l
(37)

Ml̇óqñC(l)lòg(l)ò'(l)r
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Figure 9. Measured drag moments in sway motion and the corresponding fitted nonlinear
curve as well as a linear curve for DP for CyberShip II.

Figure 10. Curve interpolation to the measured lift forces for the rudders. Notice that
CyberShip II generate more lift force in forward motion than backward motion.



20 R. Skjetne et al.

Figure 11. Measured and interpolated bow thrust force T
3

for forward and backward motion
of CyberShip II and different negative propeller revolutions.

Table 2. Experimentally identified parameters for CyberShip II

X
u

ñ0.72253 N
v

0.03130 T�
�n�n

3.65034E-3
X

�u�u
ñ1.32742 N

�v�v
3.95645 T�

�n�u
1.52468E-4

X
uuu

ñ5.86643 L�� 6.43306 T�
�n�n

5.10256E-3
Y

v
ñ0.88965 L�

���� 5.83594 T�
�n�u

4.55822E-2
Y

�v�v
ñ36.47287 L�� 3.19573 T

�n3�n3
1.56822E-4

L�
���� 2.34356

where g(l) is the known part of ñD(l)l and

r :ó [ Y
� r �v

, Y
r
, Y

�v � r
, Y

� r � r
, N

� r �v
, N

r
, N

�v � r
, N

� r � r
]T

'(l):ó�
0 0 0 0 0 0 0 0

D r D v r D v D r D r D r 0 0 0 0

0 0 0 0 D r D v r D v D r D r D r�
are the vector of unknown parameters and the regressor matrix, respectively, so that
g(l)ò'(l)róñD(l)l. The objective is to design a robust adaptive control law
that ensures tracking of g(t) to a time-varying reference g

d
(t) while adapting the

parameters r.
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Remark 1
Using adaptive tracking to estimate unknown parameters will not in general guarantee
convergence to the true values. This is only obtained if the inputs to the closed-loop
system (references and disturbances) are persistently exciting the regressor matrix
(Anderson et al., 1986). Consequently, this step in the parameter identification strategy
involves most uncertainty. Nonetheless, the success in the design of a robust tracking
control law with subsequent accurate tracking in experiments indicate that 100%
parameter accuracy of the model is not necessary. Using the obtained (numerical)
model with integral action to compensate for the bias b in equation (15) for control
design should guarantee success in practical implementations.

The time-varying reference g
d
(t) must trace out a desired path on the surface as well

as satisfying a desired speed specification along the path. Such problems are conveni-
ently solved according to the methodology in Skjetne et al. (2004a,b), where the
tracking objective is divided into two tasks. Instead of constructing a desired reference
g
d
(t) that contains both the path and speed objectives in one package, one can keep

these objectives separate by solving the manoeuvering problem.
Using h as a scalar parametrization variable, we want the desired path to be an

ellipsoid with heading along the tangent vector, that is,

g
d
(h)ó�x

d
(h), y

d
(h), arctan�y�

d
(h)

x�
d
(h)��

T

(38)

where x
d
(h)ó5ò4.5 cos((n/180)h) and y

d
(h)óñ0.75ñ2.25 sin((n/180)h). For the

speed specification, we want the surge speed u(t) to track a desired surge speed u
d
(t)

which is adjustable online by an operator. This latter objective can be translated into
a speed assignment for ḣ(t) by noting the relationship

u
d
(t)ó�x�

d
(h(t))2òy�

d
(h(t))2 ḣ(t)

The corresponding speed assignment for ḣ becomes

,
s
(h, t):ó u

d
(t)

�x�
d
(h)2òy�

d
(h)2

(39)

which has the partial derivatives

,�
s
(h, t)ó

ñ[x�
d
(h)x�2

d
(h)òy�

d
(h)y�2

d
(h)]

[x�
d
(h)2òy�

d
(h)2 ]3�2

u
d
(t)

(40)

,t
s
(h, t)ó u̇

d
(t)

�x�
d
(h)2òy�

d
(h)2

where u
d
(t) and u̇

d
(t) are provided online by the operator, for example by filtering a

constant reference u
REF

through a reference filter.
The control objective is then, according to Skjetne et al.(2004a,b), formally stated

as a manoeuvering problem:

1. Geometric Task: Force the ship position and heading g to converge to and follow
the desired path g

d
(h),

lim
t��
D g(t)ñg

d
(h(t)) D ó0 (41)
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2. Dynamic Task: Force the path speed ḣ to converge to the desired speed assignment
,
s
(h, t),

lim
t��
D ḣ(t)ñ,

s
(h(t), t) Dó0 (42)

Note that the dynamic task can be solved identically by letting ḣó,
s
(h, t) be a

dynamic state in the control law, called a tracking update law, which is decoupled
from the rest of the dynamics of the ship. Other update laws are also possible based
on the results in Skjetne et al. (2004a).

The manoeuvering control design is based on adaptive backstepping (Krstić et al.,
1995). A complete adaptive design procedure with stability analysis for solving the
manoeuvering problem is reported in Skjetne et al. (2004a) where CS2 is used in a
case study. This gives the internal control signals

z
1
:óR(t)T(gñg

d
(h))

z
2
:ólña

1
(g, h, t)

a
1
óñK

p
z
1
òR(t)Tg�

d
(h),

s
(h, t)

p
1
óñK

p
(Ṙ(r)TR(t)z

1
òl)òṘ(r)Tg�

d
(h),

s
(h, t)òR(t)Tg�

d
(h),t

s
(h, t)

a�
1
óñK

p
R(t)Tg�

d
(h)òR(t)T [g�2

d
(h),

s
(h, t)òg�

d
(h),�

s
(h, t)]

where the error vector z
1

is rotated to the body-frame for convenience. This means
that the controller gains are not dependent on the ship heading (which is more
intuitive since a control technician will himself be located in the body-frame when
tuning the gains). The control law, the adaptive update law, and the manoeuvering
update law are given in Table 3, where r̂ is the parameter estimate, K

p
óKT

p
[0,

K
d
óKT

d
[0, and !ó!T[0 are controller gain matrices.

Finding the optimal actuator set-points (n, d) for each commanded input q in
equation (20) is termed control allocation. The simplest approach is to solve an
unconstrained least-square optimization problem by using the generalized pseudo-
inverse and the inverse functions (26), (28) and (34), that is,

(n, d)óf �1
c

( l, B†q)

Table 3. Manoeuvering control and guidance system for CyberShip II

Control:
r̂ṙó!'(l)Tz

2
ḣóv

s
(h, t)

qóñz
1
ñK

d
z
2
ñg(l)ñ'(l)r̂òC(l)a

1
òMp

1
òMa�

1
v
s
(h, t)

inputó�
(g, l), (g

d
(h), g�

d
(h), g�2

d
(h)),

(v
s
(h, t), v�

s
(h, t), vt

s
(h, t)) �

outputó{q, h}

Guidance:
inputó{h, u

d
(t), u̇

d
(t)}

outputó�
(g

d
(h), g�

d
(h), g�2

d
(h)),

(v
s
(h, t), v�

s
(h, t), vt

s
(h, t))�



A Nonlinear Ship Manoeuvering Model 23

Figure 12. CyberShip II tracing the desired path.

where B†óW�1BT(BW�1BT)�1 is the generalized pseudo-inverse with a weight
matrix W (Fossen, 2002, Chapter 7.5). Experience has shown, though, that using the
pseudo-inverse does not result in good control allocation. A more advanced method
is to use constrained optimization techniques. For CS2 this has been developed and
reported by Lindegaard & Fossen (2003), Johnsen et al. (2003), where the routine
developed by the former authors has been used in these experiments.

For the experiment, the controller settings were K
p
ódiag(0.5, 2.0, 1.5),

K
d
ódiag(8, 25, 18), and !ódiag(8, 4, 8, 8, 8, 4, 8, 8). The initial condition for the

parameter update was r̂(0)ó0. The ship was first put to rest in dynamic positioning
(zero speed) at g

d
(0), and then the ship was commanded online to move along the

path with u
REF
ó0.15 m/s for 22 rounds before we commanded it to come to a

stop again. The experiment was conducted on calm water without environmental
disturbances (sea state code 0) since we use and wish to estimate zero frequency
hydrodynamic parameters.

Figure 12 shows how CS2 accurately traced the path (in the time interval
t é [808, 950] s). In the experiment we experienced problems with position measure-
ment outages along the upper side of the path. This accounts for the transients at
tB500 s in the surge speed response seen in Figure 13. The way the manoeuvering
problem is posed, accurate path following has priority over accurate speed tracking.
Nevertheless, it is seen in Figure 13 that CS2 tracks the commanded speed quite well.
Figure 14 shows the adaptive parameter estimates of r̂(t). We observe a rapid change
and a subsequent slow convergence to new values. We believe those values are close
to the true values for the nominal surge speed uB0.15 m/s and moving along this
ellipsoidal path. It is likely that the parameter convergence will be different for
different paths and speeds. Nonetheless, we adopt these values as approximate values
for the remaining parameters in the manoeuvering model for CS2; see Table 4.

This robust adaptive manoeuvering design with experiments also illustrates that
100% numerically correct values for the hydrodynamic parameters are not necessary
to achieve accurate tracing of the path. Table 5 shows the standard deviations of the
error signals in z

1
. The most important variable for path keeping is z

12
since this is

an approximate measure of the cross-track error (provided the ship is pointed along
the path, z

13
B0). An accuracy of 2.26 cm is 7.8% of the ship breadth and acceptable.
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Figure 13. The desired and actual surge speed of CyberShip II for the full experiment. Notice
the discrepancies around tB500 s which resulted from position measurement outages.

Figure 14. Adaptive parameter estimates r̂(t) in the free-running CyberShip II manoeuvering
experiment.
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Table 4. Adaptively estimated parameters for CyberShip II

Y
�r�v

ñ0.805 N
�r�v

0.130
Y

r
ñ7.250 N

r
ñ1.900

Y
�v�r

ñ0.845 N
�v�r

0.080
Y

�r�r
ñ3.450 N

�r�r
ñ0.750

Table 5. Standard deviations for CyberShip II in the free-running
manoeuvering experiment

u
d
[m/s] z

11
[m] z

12
[m] z

13
[deg] uñu

d
[m/s]

0.15 0.0350 0.0226 2.623 0.0080

This corresponds to an accuracy of 1.58 m for the full scale ship having a breadth of
20.3 m.

4. Conclusion

We have presented a modeling, identification, and control design for the task of
manoeuvering a ship along desired paths. The identification and adaptive manoeuver-
ing procedure with experiments have provided numerical values for all parameters in
the nonlinear ship model for CyberShip II. It was the intention of the authors to
quantify such a model and share it with the marine control research community for
use in simulations and case studies. Material from a rich variety of references have
been used to describe the model, its difficulties and possible simplifications.

System identification procedures, using a towing carriage in the Marine Cybernet-
ics Laboratory in Trondheim, Norway, were performed where the model ship Cyb-
erShip II was towed at many different velocities and the average towing forces were
recorded. For zero acceleration and zero input forces these measurements are directly
related to the drag of the ship hull. These measurements were accurately fitted to a
nonlinear damping model of the ship for pure surge and sway motions. Knowing
these nominal models, the same towing tests were repeated, with the thrusters and
rudders activated, to find the actuator models. After these tests, eight damping
parameters related to the yaw rate of the ship were still unknown. To find these, an
adaptive manoeuvering control law was implemented and experimentally tested. The
estimates of the unknown parameters in this experiment were assumed to be close to
the true values and therefore adopted as the remaining numerical values.

In summary, this design with experimental testing has provided a complete
manoeuvering model with numerical values for CyberShip II. The accuracy of the
obtained parameters are believed to be close to the true values (as far as this is
possible to quantify for a nonlinear ship model that still is a mere simplification of
the real world). Nonetheless, the free-running manoeuvering experiment using a
robust adaptive control law showed that accurate manoeuvering along desired paths
is very much achievable in presence of modeling uncertainties and exogenous
disturbances.
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