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Abstract—Production of high quality software at lower 

cost can be possible by detecting defect prone software 

modules before the testing process. With this approach, 

less time and resources are required to produce a high 

quality software as only those modules are thoroughly 

tested which are predicted as defective. This paper 

presents a classification framework which uses Multi-

Filter feature selection technique and Multi-Layer 

Perceptron (MLP) to predict defect prone software 

modules. The proposed framework works in two 

dimensions: 1) with oversampling technique, 2) without 

oversampling technique. Oversampling is introduced in 

the framework to analyze the effect of class imbalance 

issue on the performance of classification techniques. 

The framework is implemented by using twelve cleaned 

NASA MDP datasets and performance is evaluated by 

using: F-measure, Accuracy, MCC and ROC. According 

to results the proposed framework with class balancing 

technique performed well in all of the used datasets.     

 

Index Terms—Software Defect Prediction, Feature 

Selection, Multi-Filter Feature Selection, MLP, Artificial 

Neural Network, Machine Learning Techniques 

 

I. INTRODUCTION 

Testing is one of the crucial activities in software 

development life cycle which aims to provide a high 

quality software by checking all of the 

developing/developed modules [33,34]. Testing is also 

considered as the most expensive activity which 

consumes more resources of the development process as 

compare to other activities [31,32,33]. Therefore an 

effective mechanism is required which can assure the 

high quality of end product by using limited amount of 

resources in testing process. Predicting the defect prone 

modules before the testing process is the solution of this 

problem. With this approach only those modules are 

tested which are predicted as defective. This approach 

can help us to deliver high quality software with limited 

amount of resources [5,6,18,19,20]. The process of  

 

predicting the defect prone software modules is a binary 

classification problem. Since last two decades, many 

researchers have been using the machine learning 

techniques to solve the problems of binary classification 

such as: Sentiment Analysis [7,8,9,10,11,12], Rainfall 

Prediction [13,14], Network Intrusion Detection [15,16], 

and Software Defect Prediction [1,2,3,4,5,6]. Machine 

learning techniques are broadly categorized in three 

classes: 1) Supervised, 2) Unsupervised, and 3) Hybrid 

[7,8,9]. Supervised technique classifies the input data 

into known classes. These techniques use pre-classified 

data (training data) to make the classification rules and 

then these rules are used to classify the unseen data (test 

data). Unsupervised techniques use specific algorithms to 

explore the structure of data as the classes are not known 

in advance. The hybrid techniques is the integration of 

both: supervised and unsupervised techniques. This 

research proposed a classification framework to detect 

the defect prone software modules with higher accuracy 

by using multi-filter feature selection technique and MLP. 

The proposed framework works in two dimensions 1) 

with oversampling technique 2) without over sampling 

technique. Oversampling is included in one dimension to 

analyze the effect of class imbalance issue [35] on 

classification accuracy. The framework consists of four 

stages: 1) Dataset Selection, 2) Data Preprocessing, 3) 

Classification, and 4) Reflection of Results. For 

implementation, twelve publically available cleaned 

NASA MDP datasets are used and performance is 

evaluated by using four accuracy measures including: F-

measure, Accuracy, MCC and ROC. The results of the 

proposed framework with both dimensions are compared 

with the results of 10 widely used supervised classifiers 

from a published research [6]. The classifiers include: 

“Naïve Bayes (NB), Multi-Layer Perceptron (MLP), 

Radial Basis Function (RBF), Support Vector Machine 

(SVM), K Nearest Neighbor (KNN), kStar (K*), One 

Rule (OneR), PART, Decision Tree (DT), and Random 

Forest (RF)”. The results reflected that the proposed 

framework outperformed other techniques in the 

prediction of defect prone software modules.  

 

 

mailto:ahmedeqbal@gmail.com


 A Classification Framework for Software Defect Prediction Using Multi-filter  19 

Feature Selection Technique and MLP 

Copyright © 2020 MECS                                                    I.J. Modern Education and Computer Science, 2020, 1, 18-25 

II. RELATED WORK 

Machine learning techniques have been used by many 

researchers in order to predict the defect prone software 

modules. Some of the related studies are discussed here. 

In [1], the researcher’s proposed Hybrid Genetic 

algorithm based Deep Neural Network for effective 

software defect prediction. The purpose of Hybrid 

Genetic algorithm is to select the optimum features and 

Deep Neural Network aims to predict the modules as 

defective and non-defective. Datasets from PROMISE 

repository are used for experiments and the results 

reflected the higher performance of proposed technique 

as compared to other techniques. In [2], the researchers 

elaborated the importance of feature selection activity in 

software defect prediction process. They proposed an 

ANN based method for software defect prediction. They 

used two ANN models in the proposed technique, first 

they identified the optimum features by using an ANN 

model and then the selected features are used to predict 

the software defects by using another ANN model.  The 

performance of the proposed technique was compared 

with Gaussian kernel SVM. For experiment, JM1 dataset 

is used from the NASA MDP repository. According to 

results, SVM performed better than ANN in binary defect 

classification. In [3], the researchers predicted the 

software bugs by using SVM. The experiment was 

performed by using NASA datasets including PC1, CM1, 

KC1 and KC3. The experimental results were compared 

with other techniques including Logistic Regression (LR), 

K-Nearest Neighbors (KNN), Decision Trees, Multilayer 

Perceptron (MLP), Bayesian Belief Networks (BBN), 

Radial Basis Function (RBF), Random Forest (RF), and 

Naïve Bayes, (NB). The results reflected that the 

performance of SVM outperformed some of the other 

classification techniques. In [4], the researchers predicted 

the software defects by using six classification techniques 

including: Discriminant Analysis, Principal Component 

Analysis (PCA), Logistic Regression (LR), Logical 

Classification, Holographic Networks, and Layered 

Neural Networks. To train ANN model, back-

propagation technique was used. Performance was 

evaluated by using Verification Cost, Predictive Validity, 

Achieved Quality and Misclassification Rate. According 

to results, none of the used classification technique 

performed with 100 % accuracy. Researchers in [5] 

presented a framework by using feature selection and 

ensemble learning techniques. The proposed framework 

used two dimensions: with feature selection and without 

feature selection. Twelve publically available cleaned 

NASA MDP datasets are used for the implementation of 

the proposed framework. The performance is evaluated 

by using various measures including: Precision, Recall, 

F-measure, Accuracy, MCC and ROC. The results are 

compared with other well-known and widely used 

supervised machine learning techniques, such as: “Naïve 

Bayes (NB), Multi-Layer Perceptron (MLP),  Radial 

Basis Function (RBF), Support Vector Machine  (SVM), 

K Nearest Neighbor (KNN), kStar (K*), One  Rule 

(OneR), PART, Decision Tree (DT), and Random  Forest 

(RF)”. The results showed that the proposed framework 

outperformed other classification techniques in some of 

the datasets. Researchers in [6] compared the 

performance of various supervised machine learning 

techniques on software defect prediction including: 

“Naïve Bayes (NB), Multi-Layer Perceptron (MLP). 

Radial Basis Function (RBF), Support Vector Machine 

(SVM), K Nearest Neighbor (KNN), kStar (K*), One 

Rule (OneR), PART, Decision Tree (DT), and Random 

Forest (RF)”. Twelve publically available cleaned NASA 

MDP datasets are used for this experiment and 

performance is evaluated in terms of Precision, Recall, F-

Measure, Accuracy, MCC, and ROC Area. 

 

III. MATERIALS AND METHODS 

This research presents a classification framework for 

the prediction of defect prone software modules by using 

Multi-Filter Feature Selection Technique and Multi-

Layer Perceptron. The framework consists of four stages: 

1) Dataset Selection, 2) Data Pre Processing 3) 

Classification and 4) Reflection of Results. 

 

 

Fig. 1. Proposed Framework 

The proposed framework is implemented in WEKA, 

which is a widely used data mining tool, developed in 

Java language at the University of Waikato, New Zealand. 

First stage of the proposed framework is the selection of 

relevant dataset. We have implemented the framework on 

twelve publically available cleaned NASA MDP datasets. 

The datasets include: “CM1, JM1, KC1, KC3, MC1, 

MC2, MW1, PC1, PC2, PC3, PC4 and PC5 (Table 1)”. 
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Each of the used dataset represents a particular software 

system of NASA and consists of various 

attributes/features along with the known output class 

(target class). The target/output class is the dependent 

attribute and the remaining attributes are known as 

independent attributes. The dependent attribute is 

predicted on the basis of independent attributes. The 

independent attributes are the quality metrics of software 

systems. The target class in the used datasets has either 

one of the following values: “Y” or “N”. “Y” means that 

the particular instance (module) is defective and “N” 

means it is non-defective. The researchers in [21] 

provided two versions of clean NASA MDP datasets: DS’ 

(“which included duplicate and inconsistent instances”) 

and D’’ (“which do not include duplicate and 

inconsistent instances”). We have used D’’ (Table 1) 

version in this research which is taken from [22]. These 

cleaned datasets are already used and discussed by [5,6], 

[23,24,25], [35]. 

Table 1.  Nasa Cleaned Datasets D’’ [21] 

Dataset Attributes Modules Defective Non- 

Defective 

Defective 

(%) 

CM1 38 327 42 285 12.8 

JM1 22 7,720 1,612 6,108 20.8 

KC1 22 1,162 294 868 25.3 

KC3 40 194 36 158 18.5 

MC1 39 1952 36 1916 1.8 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC1 38 679 55 624 8.1 

PC2 37 722 16 706 2.2 

PC3 38 1,053 130 923 12.3 

PC4 38 1,270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 

 

Data Preprocessing is the second stage of proposed 

framework which consists of feature selection and class 

balancing activities. The proposed framework works in 

two dimensions, in first dimension, the preprocessing 

stage only consists of feature selection activity. However, 

in second dimension, along with feature selection activity, 

a class balancing technique is also included. The class 

balancing technique can help us to analyze the effects of 

imbalanced datasets on the performance of proposed 

classification framework. Feature selection activity aims 

to select the optimum set of features so that the 

classification results with higher accuracy can be 

achieved. It has been reported by many researchers that 

in most of the datasets only few of the independent 

features can predict the target class effectively and 

remaining features don’t only participate but can reduce 

the performance of classification model, if not removed. 

In this research, we have incorporated an aggregation 

based multi-filter feature selection technique, in which 

CFS [28,29,30] is used as attribute evaluator along with 

four widely used search methods including:  GA, PSO, 

BFS, and FS. For each of the used dataset, feature 

selection is performed with all of these four search 

methods. In this process, if any particular feature is 

selected with any search method then 1 score is given to 

that feature and same process is repeated with second 

search method and so on. After implementing all search 

methods, scores of each feature in all the search methods 

are aggregated and only those features are selected which 

have at least 1 aggregated score (which feature is selected 

by at least one search method) as shown in Fig 2. This 

process is repeated for all of the used datasets. 

 

 

Fig. 2. Multi-Filter Feature Selection Aggregation Method 

Class Balancing is the optional activity of 

preprocessing stage which aims to resolve the issue of 

“Imbalance ratio” [26,27], [35] in datasets. We have used 

Random Over Sampling (ROS), which reduces the 

imbalance ratio in dataset by duplicating the instances in 

minority class. This approach increases the volume of 

dataset due to duplication. Classification is the third stage 

in which we have used Feed-Forward Artificial Neural 

Network (Multi-Layer Perceptron). MLP contains at- 

least three layers: an input layer, one hidden layer and an 

output layer (hidden layers can be increased). It follows a 

supervised learning technique known as Back-

Propagation for training. We have tuned the ANN (Table 

2) with hit and trail approach.   

Table 2.  MLP Configuration 

Parameter Value 

Hidden Layers 2 

Number of Neurons 10 

Learning Rate 0.1 

momentum 0.3 

 

 

Fig 3. Multi-Layer Perceptron Architecture 

Fig. 3 shows the structure of developed ANN model. 

First layer (From left) is the input layer which consists of 

the independent features of the dataset, followed by the 2 

hidden layers and finally the output layer which shows 

either the particular module (instance is defective or non- 
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defective). Fourth stage deals with the reflection of 

results. In results we have only focused on the defective 

class which means that the scores are only extracted and 

compared for the prediction of defective modules. 

Results are discussed in detail in the next section.  

 

IV. RESULTS AND DISCUSSION 

This section evaluates the performance of proposed 

framework. The accuracy measures used for the 

evaluation include: F-measure, Accuracy, MCC and 

ROC. All these measures are generated from the 

parameters of confusion matrix (Fig. 4) [5,6], [35]. 

 

 

Fig 4. Confusion Matrix 

The parameters used in the confusion matrix are 

discussed below [5,6], [35]: 

 

True Positive (TP): “Instances which are actually 

positive and also classified as positive”.  

False Positive (FP): “Instances which are actually 

negative but classified as positive”.  

False Negative (FN): “Instances which are actually 

positive but classified as negative”.  

True Negative (TN): “Instances which are actually 

negative and also classified as negative”. 

 

The calculation formula and brief description of all of 

the used performance measures are given below:  

 

To calculate the F-measure, we have to calculate 

Precision and Recall first as the F-measure is the average 

of both of these metrics.  

Precision is the ratio of True Positive (TP) instances 

with respect to total number of instances, which are 

classified as positive.   

 

Precision
( )

TP

TP FP




                         (1) 

 

Recall is the ratio of True Positive (TP) instances with 

respect to total number of instances, which are actually 

positive. 

 

Re
( )

TP
call

TP FN




                           (2) 

 

F-measure provides the average of Precision & Recall. 

 

 

Precision * Recall * 2
F-measure

(Precision + Recall)
                  (3) 

 

Accuracy is the ratio of correctly classified instances to 

all instances 

 
TP TN

Accuracy
TP TN FP FN




  

                    (4) 

 

AUC measures that how well a parameter can 

distinguish between two classes (defective/non-defective) 

 
1

2

r rTP FP
AUC

 
                             (5) 

 

MCC reflect the ratio of the observed classifications to 

the predicted classification. 

 

( )( )( )( )

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

  


   

         (6) 

 

The results of both the dimensions of proposed 

framework are compared with the published results of 10 

widely used classifiers from the paper [6]. The published 

paper used the same datasets (NASA MDP D’’) and 

performance measures for performance evaluation. The 

classifiers used in the published paper [6] are “Naïve 

Bayes (NB), Multi-Layer Perceptron (MLP). Radial 

Basis Function (RBF), Support Vector Machine (SVM), 

K Nearest Neighbor (KNN), kStar (K*), One Rule 

(OneR), PART, Decision Tree (DT), and Random Forest 

(RF)”. The results of the proposed framework along with 

the results of other classifiers from [6] in terms of F-

Measure, Accuracy, ROC and MCC for Y class are 

reflected in the tables (from Table 3 to Table 14). Highest 

scores in each class are highlighted in bold for easy 

identification. The symbol ‘?’ in the results indicates that 

the score of the performance measure in the particular 

technique cannot be calculated due to class imbalance 

issue [6]. 

Table 3.   CM1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.190 82.653 0.703 0.097 

RBF ? 90.816 0.702 ? 

SVM ? 90.816 0.500 ? 

kNN 0.083 77.551 0.477 -0.037 

kStar 0.083 77.551 0.538 -0.037 

OneR 0.000 85.714 0.472 -0.074 

PART ? 90.816 0.610 ? 

DT 0.154 77.551 0.378 0.041 

RF 00.000 89.795 0.761 -0.032 

MLP 00.000 86.734 0.634 -0.066 

MLP-FS 0.000 89.795 0.777 -0.032 

MLP-FS-

ROS 
0.800 79.591 0.813 0.592 

 

Results of CM1 dataset are reflected in Table 3. It can 

be seen that MLP-FS-ROS performed better in F-

Measure, ROC Area and MCC whereas in Accuracy, 

RBF, SVM, and PART outperformed others.  
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Table 4.  JM1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.318 79.835 0.663 0.251 

RBF 0.181 80.397 0.713 0.215 

SVM ? 79.188 0.500 ? 

kNN 0.348 73.963 0.591 0.186 

kStar 0.355 75.993 0.572 0.212 

OneR 0.216 77.158 0.543 0.126 

PART 0.037 79.490 0.714 0.104 

DT 0.348 79.101 0.671 0.252 

RF 0.284 80.181 0.738 0.244 

MLP 0.146 80.354 0.702 0.206 

MLP-FS 0.175 80.44 0.712 0.216 

MLP-FS-

ROS 
0.558 62.78 0.682 0.275 

 

Results of JM1 dataset are shown in Table 4. MLP-FS-

ROS performed better in F-Measure and MCC whereas 

MLP-FS performed better in Accuracy and RF performed 

better in ROC Area. 

Table 5.  KC1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.400 74.212 0.694 0.250 

RBF 0.362 78.796 0.713 0.347 

SVM 0.085 75.358 0.521 0.151 

kNN 0.395 69.341 0.595 0.190 

kStar 0.419 72.206 0.651 0.238 

OneR 0.256 73.352 0.551 0.147 

PART 0.255 76.504 0.636 0.239 

DT 0.430 75.644 0.606 0.291 

RF 0.454 77.937 0.751 0.346 

MLP 0.358 77.363 0.736 0.296 

MLP-FS 0.435 77.6504 0.729 0.331 

MLP-FS-

ROS 
0.641 62.7507 0.703 0.256 

 

Table 5 reflects the results of KC1 dataset. It can be 

seen that MLP-FS-ROS performed better in F-Measure. 

RBF performed better in Accuracy and RF performed 

better in ROC Area and MCC.  

Table 6.  KC3 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.421 81.034 0.769 0.309 

RBF 0.000 77.586 0.735 -0.107 

SVM ? 82.758 0.500 ? 

kNN 0.364 75.862 0.617 0.218 

kStar 0.300 75.862 0.528 0.154 

OneR 0.375 82.758 0.619 0.295 

PART 0.143 79.310 0.788 0.056 

DT 0.300 75.862 0.570 0.154 

RF 0.235 77.586 0.807 0.111 

MLP 0.375 82.758 0.733 0.295 

MLP-FS 0.286 82.758 0.723 0.236 

MLP-FS-

ROS 
0.588 63.793 0.730 0.358 

 

Results of KC3 datasets are shown in Table 6. It shows 

that MLP-FS-ROS performed better in F-Measure and 

MCC whereas SVM, OneR, MLP, and MLP-FS 

performed better in Accuracy. In ROC Area, RF 

outperformed all other techniques. 

 

 

Table 7.  MC1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.217 93.856 0.826 0.208 

RBF ? 97.610 0.781 ? 

SVM ? 97.610 0.500 ? 

kNN 0.333 97.269 0.638 0.325 

kStar 0.182 96.928 0.631 0.174 

OneR 0.200 97.269 0.568 0.206 

PART 0.333 97.269 0.684 0.325 

DT ? 97.610 0.500 ? 

RF 0.000 97.440 0.864 -0.006 

MLP ? 97.610 0.805 ? 

MLP-FS ? 97.610 0.796 ? 

MLP-FS-

ROS 
0.853 83.105 0.900 0.680 

 

MC1 results are shown in Table 7. It can be seen that 

MLP-FS-ROS showed better performance in F-Measure, 

ROC Area and MCC whereas RBF, SVM, DT, MLP, and 

MLP-FS performed better in Accuracy.  

Table 8.  MC2 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.526 75.675 0.795 0.444 

RBF 0.444 72.973 0.766 0.371 

SVM 0.222 62.162 0.514 0.040 

kNN 0.545 72.973 0.668 0.374 

kStar 0.348 59.459 0.510 0.062 

OneR 0.316 64.864 0.553 0.137 

PART 0.667 78.378 0.724 0.512 

DT 0.435 64.864 0.615 0.189 

RF 0.48 64.864 0.646 0.216 

MLP 0.519 64.864 0.753 0.243 

MLP-FS 0.364 62.162 0.686 0.111 

MLP-FS-

ROS 
0.667 75.675 0.694 0.538 

 

Results of MC2 datasets are reflected in Table 8. It 

shows that MLP-FS-ROS performed better in F measure 

and MCC whereas PART performed better in Accuracy 

and NB performed better in ROC Area.  

Table 9.  MW1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.435 82.666 0.791 0.367 

RBF ? 89.333 0.808 ? 

SVM ? 89.333 0.500 ? 

kNN 0.444 86.666 0.705 0.373 

kStar 0.133 82.666 0.543 0.038 

OneR 0.200 89.333 0.555 0.211 

PART 0.167 86.666 0.314 0.110 

DT 0.167 86.666 0.314 0.110 

RF 0.182 88.000 0.766 0.150 

MLP 0.632 90.666 0.843 0.589 

MLP-FS 0.400 92.000 0.845 0.479 

MLP-FS-

ROS 

0.790 77.333 0.865 0.544 

 

Table 9 shows that in MW1 dataset MLP-FS-ROS 

performed better in F-Measure, ROC Area, and MCC 

whereas MLP-FS performance better in Accuracy.  

 

 

 



 A Classification Framework for Software Defect Prediction Using Multi-filter  23 

Feature Selection Technique and MLP 

Copyright © 2020 MECS                                                    I.J. Modern Education and Computer Science, 2020, 1, 18-25 

Table 10.  PC1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.400 89.705 0.879 0.400 

RBF 0.154 94.607 0.875 0.161 

SVM ? 95.098 0.500 ? 

kNN 0.286 92.647 0.629 0.247 

kStar 0.176 86.274 0.673 0.128 

OneR 0.154 94.607 0.545 0.161 

PART 0.462 93.137 0.889 0.440 

DT 0.500 93.137 0.718 0.490 

RF 0.429 96.078 0.858 0.459 

MLP 0.462 96.568 0.779 0.538 

MLP-FS 0.429 96.078 0.903 0.459 

MLP-FS-

ROS 
0.900 89.655 0.955 0.793 

 

PC1 results are shown in Table 10. It can be seen that 

MLP-FS-ROS performed better in F-Measure, ROC Area, 

and MCC whereas MLP performed better in Accuracy.  

Table 11.  PC2 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.000  94.470 0.751 -0.028 

RBF ? 97.695 0.724 ? 

SVM ? 97.695 0.500 ? 

kNN 0.000  96.774 0.495 -0.015 

kStar 0.167 95.391 0.791 0.146 

OneR 0.000  97.235 0.498 -0.01 

PART 0.000  96.774 0.623 -0.015 

DT ? 97.695 0.579 ? 

RF ? 97.695 0.731 ? 

MLP 0.000  96.774 0.746 -0.015 

MLP-FS ? 97.695 0.748 ? 

MLP-FS-

ROS 
0.918 91.244 0.920 0.838 

 

Table 11 reflects the results of PC2 dataset. It shows 

that MLP-FS-ROS performed better in F-Measure, ROC 

Area, and MCC whereas RBF, SVM, DT, RF, MLP-FS 

performed better in Accuracy.  

Table 12.  PC3 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.257 28.797 0.773 0.088 

RBF ? 86.392 0.795 ? 

SVM ? 86.392 0.5 ? 

kNN 0.353 86.075 0.616 0.294 

kStar 0.267 82.594 0.749 0.173 

OneR 0.226 87.025 0.562 0.245 

PART ? 86.392 0.79 ? 

DT 0.358 86.392 0.664 0.304 

RF 0.226 87.025 0.855 0.245 

MLP 0.261 83.86 0.796 0.183 

MLP-FS 0.145 85.126 0.828 0.114 

MLP-FS-

ROS 
0.787 75.949 0.836 0.545 

 

Results of PC3 datasets are shown in Table 12. It can 

be seen that MLP-FS-ROS performed better in F-

Measure, and MCC whereas OneR and RF performed 

better in Accuracy and RF performed better in ROC Area. 

 

 

Table 13.  PC4 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.404 86.089 0.807 0.334 

RBF 0.250 87.401 0.862 0.279 

SVM 0.286 88.189 0.583 0.342 

kNN 0.438 85.826 0.667 0.359 

kStar 0.330 81.889 0.734 0.225 

OneR 0.361 87.926 0.614 0.352 

PART 0.481 85.301 0.776 0.396 

DT 0.583 86.876 0.834 0.514 

RF 0.532 90.288 0.945 0.516 

MLP 0.562 89.763 0.898 0.515 

MLP-FS 0.447 88.976 0.891 0.432 

MLP-FS-

ROS 

0.847 84.776 0.925 0.700 

 

PC4 results are shown in Table 13. It is shown that 

MLP-FS-ROS performed better in F-Measure, and MCC 

whereas RF performed better in Accuracy and ROC Area. 

Table 14.  PC5 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.269 75.393 0.725 0.245 

RBF 0.235 75.590 0.732 0.251 

SVM 0.097 74.212 0.524 0.173 

kNN 0.498 73.031 0.657 0.314 

kStar 0.431 69.881 0.629 0.227 

OneR 0.387 71.259 0.594 0.209 

PART 0.335 75.787 0.739 0.274 

DT 0.531  75.000 0.703 0.361 

RF 0.450 75.984 0.805 0.322 

MLP 0.299 74.212 0.751 0.216 

MLP-FS 0.247 74.803 0.727 0.218 

MLP-FS-

ROS 

0.734 70.866 0.779 0.420 

 

Table 14 reflects the results of PC5 dataset. It can be 

seen that MLP-FS-ROS performed better in F-Measure, 

and MCC whereas RF performed better in Accuracy and 

ROC Area. 

The results reflect the good performance of the 

proposed framework especially with class balancing 

(ROS) dimension. It has been observed that the proposed 

framework with class balancing technique performed 

better in at-least one and maximum in three performance 

measures on every dataset. Moreover, it has also been 

observed that the dimension with class balancing 

technique (MLP-FS-ROS) did not perform well in Accuracy 

measure on any of the used dataset. As in most of the 

datasets the Accuracy is improved with the dimension 

where class balancing technique is not used (MLP-FS), 

so, this issues should be further investigated that either 

the ROS technique is the reason of the lower 

performance in Accuracy or it is something else. The 

proposed framework with ROS technique has fully 

resolved the class balancing issue [35].  
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V. CONCLUSION 

This research presented multi-filter feature selection 

based classification framework for software defect 

prediction. For defect prediction, the framework uses 

Artificial Neural Network (MLP). The oversampling 

technique is also used in the framework to analyze the 

effect of class imbalance issue on classification 

performance. For experiment, 12 publically available 

NASA MDPI cleaned datasets are used including: “CM1, 

JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, 

PC4 and PC5. The performance of the proposed 

framework is compared with 10 well known supervised 

classification techniques including: “Naïve Bayes (NB), 

Multi-Layer Perceptron (MLP), Radial Basis Function 

(RBF), Support Vector Machine (SVM), K Nearest 

Neighbor (KNN), kStar (K*), One Rule (OneR), PART, 

Decision Tree (DT), and Random Forest (RF)”. From the 

analysis of results, it has been observed that the proposed 

framework with oversampling technique performed well 

than other classifiers in F-measure, ROC and MCC 

measures however the Accuracy measure is not 

significantly improved. This issue should be further 

investigated that why class balancing technique has 

degraded the accuracy while other measures were 

significantly improved in most of the datasets. It has 

already been reported in our previously published 

research that Accuracy and ROC both are not sensitive to 

class imbalance issue in dataset (these measure don’t 

react either data has class imbalance issue or not). It is 

also suggested for future work that an ensemble of 

classifiers should be included in the proposed framework 

to further improve the performance.    
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