
I.J. Modern Education and Computer Science, 2020, 1, 18-25
Published Online February 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2020.01.03

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

A Classification Framework for Software Defect

Prediction Using Multi-filter Feature Selection

Technique and MLP

Ahmed Iqbal, Shabib Aftab
Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

Email: ahmedeqbal@gmail.com, shabib.aftab@gmail.com

Received: 28 October 2019; Accepted: 17 November 2019; Published: 08 February 2020

Abstract—Production of high quality software at lower

cost can be possible by detecting defect prone software

modules before the testing process. With this approach,

less time and resources are required to produce a high

quality software as only those modules are thoroughly

tested which are predicted as defective. This paper

presents a classification framework which uses Multi-

Filter feature selection technique and Multi-Layer

Perceptron (MLP) to predict defect prone software

modules. The proposed framework works in two

dimensions: 1) with oversampling technique, 2) without

oversampling technique. Oversampling is introduced in

the framework to analyze the effect of class imbalance

issue on the performance of classification techniques.

The framework is implemented by using twelve cleaned

NASA MDP datasets and performance is evaluated by

using: F-measure, Accuracy, MCC and ROC. According

to results the proposed framework with class balancing

technique performed well in all of the used datasets.

Index Terms—Software Defect Prediction, Feature

Selection, Multi-Filter Feature Selection, MLP, Artificial

Neural Network, Machine Learning Techniques

I. INTRODUCTION

Testing is one of the crucial activities in software

development life cycle which aims to provide a high

quality software by checking all of the

developing/developed modules [33,34]. Testing is also

considered as the most expensive activity which

consumes more resources of the development process as

compare to other activities [31,32,33]. Therefore an

effective mechanism is required which can assure the

high quality of end product by using limited amount of

resources in testing process. Predicting the defect prone

modules before the testing process is the solution of this

problem. With this approach only those modules are

tested which are predicted as defective. This approach

can help us to deliver high quality software with limited

amount of resources [5,6,18,19,20]. The process of

predicting the defect prone software modules is a binary

classification problem. Since last two decades, many

researchers have been using the machine learning

techniques to solve the problems of binary classification

such as: Sentiment Analysis [7,8,9,10,11,12], Rainfall

Prediction [13,14], Network Intrusion Detection [15,16],

and Software Defect Prediction [1,2,3,4,5,6]. Machine

learning techniques are broadly categorized in three

classes: 1) Supervised, 2) Unsupervised, and 3) Hybrid

[7,8,9]. Supervised technique classifies the input data

into known classes. These techniques use pre-classified

data (training data) to make the classification rules and

then these rules are used to classify the unseen data (test

data). Unsupervised techniques use specific algorithms to

explore the structure of data as the classes are not known

in advance. The hybrid techniques is the integration of

both: supervised and unsupervised techniques. This

research proposed a classification framework to detect

the defect prone software modules with higher accuracy

by using multi-filter feature selection technique and MLP.

The proposed framework works in two dimensions 1)

with oversampling technique 2) without over sampling

technique. Oversampling is included in one dimension to

analyze the effect of class imbalance issue [35] on

classification accuracy. The framework consists of four

stages: 1) Dataset Selection, 2) Data Preprocessing, 3)

Classification, and 4) Reflection of Results. For

implementation, twelve publically available cleaned

NASA MDP datasets are used and performance is

evaluated by using four accuracy measures including: F-

measure, Accuracy, MCC and ROC. The results of the

proposed framework with both dimensions are compared

with the results of 10 widely used supervised classifiers

from a published research [6]. The classifiers include:

“Naïve Bayes (NB), Multi-Layer Perceptron (MLP),

Radial Basis Function (RBF), Support Vector Machine

(SVM), K Nearest Neighbor (KNN), kStar (K*), One

Rule (OneR), PART, Decision Tree (DT), and Random

Forest (RF)”. The results reflected that the proposed

framework outperformed other techniques in the

prediction of defect prone software modules.

mailto:ahmedeqbal@gmail.com

 A Classification Framework for Software Defect Prediction Using Multi-filter 19

Feature Selection Technique and MLP

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

II. RELATED WORK

Machine learning techniques have been used by many

researchers in order to predict the defect prone software

modules. Some of the related studies are discussed here.

In [1], the researcher’s proposed Hybrid Genetic

algorithm based Deep Neural Network for effective

software defect prediction. The purpose of Hybrid

Genetic algorithm is to select the optimum features and

Deep Neural Network aims to predict the modules as

defective and non-defective. Datasets from PROMISE

repository are used for experiments and the results

reflected the higher performance of proposed technique

as compared to other techniques. In [2], the researchers

elaborated the importance of feature selection activity in

software defect prediction process. They proposed an

ANN based method for software defect prediction. They

used two ANN models in the proposed technique, first

they identified the optimum features by using an ANN

model and then the selected features are used to predict

the software defects by using another ANN model. The

performance of the proposed technique was compared

with Gaussian kernel SVM. For experiment, JM1 dataset

is used from the NASA MDP repository. According to

results, SVM performed better than ANN in binary defect

classification. In [3], the researchers predicted the

software bugs by using SVM. The experiment was

performed by using NASA datasets including PC1, CM1,

KC1 and KC3. The experimental results were compared

with other techniques including Logistic Regression (LR),

K-Nearest Neighbors (KNN), Decision Trees, Multilayer

Perceptron (MLP), Bayesian Belief Networks (BBN),

Radial Basis Function (RBF), Random Forest (RF), and

Naïve Bayes, (NB). The results reflected that the

performance of SVM outperformed some of the other

classification techniques. In [4], the researchers predicted

the software defects by using six classification techniques

including: Discriminant Analysis, Principal Component

Analysis (PCA), Logistic Regression (LR), Logical

Classification, Holographic Networks, and Layered

Neural Networks. To train ANN model, back-

propagation technique was used. Performance was

evaluated by using Verification Cost, Predictive Validity,

Achieved Quality and Misclassification Rate. According

to results, none of the used classification technique

performed with 100 % accuracy. Researchers in [5]

presented a framework by using feature selection and

ensemble learning techniques. The proposed framework

used two dimensions: with feature selection and without

feature selection. Twelve publically available cleaned

NASA MDP datasets are used for the implementation of

the proposed framework. The performance is evaluated

by using various measures including: Precision, Recall,

F-measure, Accuracy, MCC and ROC. The results are

compared with other well-known and widely used

supervised machine learning techniques, such as: “Naïve

Bayes (NB), Multi-Layer Perceptron (MLP), Radial

Basis Function (RBF), Support Vector Machine (SVM),

K Nearest Neighbor (KNN), kStar (K*), One Rule

(OneR), PART, Decision Tree (DT), and Random Forest

(RF)”. The results showed that the proposed framework

outperformed other classification techniques in some of

the datasets. Researchers in [6] compared the

performance of various supervised machine learning

techniques on software defect prediction including:

“Naïve Bayes (NB), Multi-Layer Perceptron (MLP).

Radial Basis Function (RBF), Support Vector Machine

(SVM), K Nearest Neighbor (KNN), kStar (K*), One

Rule (OneR), PART, Decision Tree (DT), and Random

Forest (RF)”. Twelve publically available cleaned NASA

MDP datasets are used for this experiment and

performance is evaluated in terms of Precision, Recall, F-

Measure, Accuracy, MCC, and ROC Area.

III. MATERIALS AND METHODS

This research presents a classification framework for

the prediction of defect prone software modules by using

Multi-Filter Feature Selection Technique and Multi-

Layer Perceptron. The framework consists of four stages:

1) Dataset Selection, 2) Data Pre Processing 3)

Classification and 4) Reflection of Results.

Fig. 1. Proposed Framework

The proposed framework is implemented in WEKA,

which is a widely used data mining tool, developed in

Java language at the University of Waikato, New Zealand.

First stage of the proposed framework is the selection of

relevant dataset. We have implemented the framework on

twelve publically available cleaned NASA MDP datasets.

The datasets include: “CM1, JM1, KC1, KC3, MC1,

MC2, MW1, PC1, PC2, PC3, PC4 and PC5 (Table 1)”.

20 A Classification Framework for Software Defect Prediction Using Multi-filter

Feature Selection Technique and MLP

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

Each of the used dataset represents a particular software

system of NASA and consists of various

attributes/features along with the known output class

(target class). The target/output class is the dependent

attribute and the remaining attributes are known as

independent attributes. The dependent attribute is

predicted on the basis of independent attributes. The

independent attributes are the quality metrics of software

systems. The target class in the used datasets has either

one of the following values: “Y” or “N”. “Y” means that

the particular instance (module) is defective and “N”

means it is non-defective. The researchers in [21]

provided two versions of clean NASA MDP datasets: DS’

(“which included duplicate and inconsistent instances”)

and D’’ (“which do not include duplicate and

inconsistent instances”). We have used D’’ (Table 1)

version in this research which is taken from [22]. These

cleaned datasets are already used and discussed by [5,6],

[23,24,25], [35].

Table 1. Nasa Cleaned Datasets D’’ [21]

Dataset Attributes Modules Defective Non-

Defective

Defective

(%)

CM1 38 327 42 285 12.8

JM1 22 7,720 1,612 6,108 20.8

KC1 22 1,162 294 868 25.3

KC3 40 194 36 158 18.5

MC1 39 1952 36 1916 1.8

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC1 38 679 55 624 8.1

PC2 37 722 16 706 2.2

PC3 38 1,053 130 923 12.3

PC4 38 1,270 176 1094 13.8

PC5 39 1694 458 1236 27.0

Data Preprocessing is the second stage of proposed

framework which consists of feature selection and class

balancing activities. The proposed framework works in

two dimensions, in first dimension, the preprocessing

stage only consists of feature selection activity. However,

in second dimension, along with feature selection activity,

a class balancing technique is also included. The class

balancing technique can help us to analyze the effects of

imbalanced datasets on the performance of proposed

classification framework. Feature selection activity aims

to select the optimum set of features so that the

classification results with higher accuracy can be

achieved. It has been reported by many researchers that

in most of the datasets only few of the independent

features can predict the target class effectively and

remaining features don’t only participate but can reduce

the performance of classification model, if not removed.

In this research, we have incorporated an aggregation

based multi-filter feature selection technique, in which

CFS [28,29,30] is used as attribute evaluator along with

four widely used search methods including: GA, PSO,

BFS, and FS. For each of the used dataset, feature

selection is performed with all of these four search

methods. In this process, if any particular feature is

selected with any search method then 1 score is given to

that feature and same process is repeated with second

search method and so on. After implementing all search

methods, scores of each feature in all the search methods

are aggregated and only those features are selected which

have at least 1 aggregated score (which feature is selected

by at least one search method) as shown in Fig 2. This

process is repeated for all of the used datasets.

Fig. 2. Multi-Filter Feature Selection Aggregation Method

Class Balancing is the optional activity of

preprocessing stage which aims to resolve the issue of

“Imbalance ratio” [26,27], [35] in datasets. We have used

Random Over Sampling (ROS), which reduces the

imbalance ratio in dataset by duplicating the instances in

minority class. This approach increases the volume of

dataset due to duplication. Classification is the third stage

in which we have used Feed-Forward Artificial Neural

Network (Multi-Layer Perceptron). MLP contains at-

least three layers: an input layer, one hidden layer and an

output layer (hidden layers can be increased). It follows a

supervised learning technique known as Back-

Propagation for training. We have tuned the ANN (Table

2) with hit and trail approach.

Table 2. MLP Configuration

Parameter Value

Hidden Layers 2

Number of Neurons 10

Learning Rate 0.1

momentum 0.3

Fig 3. Multi-Layer Perceptron Architecture

Fig. 3 shows the structure of developed ANN model.

First layer (From left) is the input layer which consists of

the independent features of the dataset, followed by the 2

hidden layers and finally the output layer which shows

either the particular module (instance is defective or non-

 A Classification Framework for Software Defect Prediction Using Multi-filter 21

Feature Selection Technique and MLP

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

defective). Fourth stage deals with the reflection of

results. In results we have only focused on the defective

class which means that the scores are only extracted and

compared for the prediction of defective modules.

Results are discussed in detail in the next section.

IV. RESULTS AND DISCUSSION

This section evaluates the performance of proposed

framework. The accuracy measures used for the

evaluation include: F-measure, Accuracy, MCC and

ROC. All these measures are generated from the

parameters of confusion matrix (Fig. 4) [5,6], [35].

Fig 4. Confusion Matrix

The parameters used in the confusion matrix are

discussed below [5,6], [35]:

True Positive (TP): “Instances which are actually

positive and also classified as positive”.

False Positive (FP): “Instances which are actually

negative but classified as positive”.

False Negative (FN): “Instances which are actually

positive but classified as negative”.

True Negative (TN): “Instances which are actually

negative and also classified as negative”.

The calculation formula and brief description of all of

the used performance measures are given below:

To calculate the F-measure, we have to calculate

Precision and Recall first as the F-measure is the average

of both of these metrics.

Precision is the ratio of True Positive (TP) instances

with respect to total number of instances, which are

classified as positive.

Precision
()

TP

TP FP




 (1)

Recall is the ratio of True Positive (TP) instances with

respect to total number of instances, which are actually

positive.

Re
()

TP
call

TP FN




 (2)

F-measure provides the average of Precision & Recall.

Precision * Recall * 2
F-measure

(Precision + Recall)
 (3)

Accuracy is the ratio of correctly classified instances to

all instances

TP TN

Accuracy
TP TN FP FN




  

 (4)

AUC measures that how well a parameter can

distinguish between two classes (defective/non-defective)

1

2

r rTP FP
AUC

 
 (5)

MCC reflect the ratio of the observed classifications to

the predicted classification.

()()()()

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

  


   

 (6)

The results of both the dimensions of proposed

framework are compared with the published results of 10

widely used classifiers from the paper [6]. The published

paper used the same datasets (NASA MDP D’’) and

performance measures for performance evaluation. The

classifiers used in the published paper [6] are “Naïve

Bayes (NB), Multi-Layer Perceptron (MLP). Radial

Basis Function (RBF), Support Vector Machine (SVM),

K Nearest Neighbor (KNN), kStar (K*), One Rule

(OneR), PART, Decision Tree (DT), and Random Forest

(RF)”. The results of the proposed framework along with

the results of other classifiers from [6] in terms of F-

Measure, Accuracy, ROC and MCC for Y class are

reflected in the tables (from Table 3 to Table 14). Highest

scores in each class are highlighted in bold for easy

identification. The symbol ‘?’ in the results indicates that

the score of the performance measure in the particular

technique cannot be calculated due to class imbalance

issue [6].

Table 3. CM1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.190 82.653 0.703 0.097

RBF ? 90.816 0.702 ?

SVM ? 90.816 0.500 ?

kNN 0.083 77.551 0.477 -0.037

kStar 0.083 77.551 0.538 -0.037

OneR 0.000 85.714 0.472 -0.074

PART ? 90.816 0.610 ?

DT 0.154 77.551 0.378 0.041

RF 00.000 89.795 0.761 -0.032

MLP 00.000 86.734 0.634 -0.066

MLP-FS 0.000 89.795 0.777 -0.032

MLP-FS-

ROS
0.800 79.591 0.813 0.592

Results of CM1 dataset are reflected in Table 3. It can

be seen that MLP-FS-ROS performed better in F-

Measure, ROC Area and MCC whereas in Accuracy,

RBF, SVM, and PART outperformed others.

22 A Classification Framework for Software Defect Prediction Using Multi-filter

Feature Selection Technique and MLP

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

Table 4. JM1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.318 79.835 0.663 0.251

RBF 0.181 80.397 0.713 0.215

SVM ? 79.188 0.500 ?

kNN 0.348 73.963 0.591 0.186

kStar 0.355 75.993 0.572 0.212

OneR 0.216 77.158 0.543 0.126

PART 0.037 79.490 0.714 0.104

DT 0.348 79.101 0.671 0.252

RF 0.284 80.181 0.738 0.244

MLP 0.146 80.354 0.702 0.206

MLP-FS 0.175 80.44 0.712 0.216

MLP-FS-

ROS
0.558 62.78 0.682 0.275

Results of JM1 dataset are shown in Table 4. MLP-FS-

ROS performed better in F-Measure and MCC whereas

MLP-FS performed better in Accuracy and RF performed

better in ROC Area.

Table 5. KC1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.400 74.212 0.694 0.250

RBF 0.362 78.796 0.713 0.347

SVM 0.085 75.358 0.521 0.151

kNN 0.395 69.341 0.595 0.190

kStar 0.419 72.206 0.651 0.238

OneR 0.256 73.352 0.551 0.147

PART 0.255 76.504 0.636 0.239

DT 0.430 75.644 0.606 0.291

RF 0.454 77.937 0.751 0.346

MLP 0.358 77.363 0.736 0.296

MLP-FS 0.435 77.6504 0.729 0.331

MLP-FS-

ROS
0.641 62.7507 0.703 0.256

Table 5 reflects the results of KC1 dataset. It can be

seen that MLP-FS-ROS performed better in F-Measure.

RBF performed better in Accuracy and RF performed

better in ROC Area and MCC.

Table 6. KC3 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.421 81.034 0.769 0.309

RBF 0.000 77.586 0.735 -0.107

SVM ? 82.758 0.500 ?

kNN 0.364 75.862 0.617 0.218

kStar 0.300 75.862 0.528 0.154

OneR 0.375 82.758 0.619 0.295

PART 0.143 79.310 0.788 0.056

DT 0.300 75.862 0.570 0.154

RF 0.235 77.586 0.807 0.111

MLP 0.375 82.758 0.733 0.295

MLP-FS 0.286 82.758 0.723 0.236

MLP-FS-

ROS
0.588 63.793 0.730 0.358

Results of KC3 datasets are shown in Table 6. It shows

that MLP-FS-ROS performed better in F-Measure and

MCC whereas SVM, OneR, MLP, and MLP-FS

performed better in Accuracy. In ROC Area, RF

outperformed all other techniques.

Table 7. MC1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.217 93.856 0.826 0.208

RBF ? 97.610 0.781 ?

SVM ? 97.610 0.500 ?

kNN 0.333 97.269 0.638 0.325

kStar 0.182 96.928 0.631 0.174

OneR 0.200 97.269 0.568 0.206

PART 0.333 97.269 0.684 0.325

DT ? 97.610 0.500 ?

RF 0.000 97.440 0.864 -0.006

MLP ? 97.610 0.805 ?

MLP-FS ? 97.610 0.796 ?

MLP-FS-

ROS
0.853 83.105 0.900 0.680

MC1 results are shown in Table 7. It can be seen that

MLP-FS-ROS showed better performance in F-Measure,

ROC Area and MCC whereas RBF, SVM, DT, MLP, and

MLP-FS performed better in Accuracy.

Table 8. MC2 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.526 75.675 0.795 0.444

RBF 0.444 72.973 0.766 0.371

SVM 0.222 62.162 0.514 0.040

kNN 0.545 72.973 0.668 0.374

kStar 0.348 59.459 0.510 0.062

OneR 0.316 64.864 0.553 0.137

PART 0.667 78.378 0.724 0.512

DT 0.435 64.864 0.615 0.189

RF 0.48 64.864 0.646 0.216

MLP 0.519 64.864 0.753 0.243

MLP-FS 0.364 62.162 0.686 0.111

MLP-FS-

ROS
0.667 75.675 0.694 0.538

Results of MC2 datasets are reflected in Table 8. It

shows that MLP-FS-ROS performed better in F measure

and MCC whereas PART performed better in Accuracy

and NB performed better in ROC Area.

Table 9. MW1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.435 82.666 0.791 0.367

RBF ? 89.333 0.808 ?

SVM ? 89.333 0.500 ?

kNN 0.444 86.666 0.705 0.373

kStar 0.133 82.666 0.543 0.038

OneR 0.200 89.333 0.555 0.211

PART 0.167 86.666 0.314 0.110

DT 0.167 86.666 0.314 0.110

RF 0.182 88.000 0.766 0.150

MLP 0.632 90.666 0.843 0.589

MLP-FS 0.400 92.000 0.845 0.479

MLP-FS-

ROS

0.790 77.333 0.865 0.544

Table 9 shows that in MW1 dataset MLP-FS-ROS

performed better in F-Measure, ROC Area, and MCC

whereas MLP-FS performance better in Accuracy.

 A Classification Framework for Software Defect Prediction Using Multi-filter 23

Feature Selection Technique and MLP

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

Table 10. PC1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.400 89.705 0.879 0.400

RBF 0.154 94.607 0.875 0.161

SVM ? 95.098 0.500 ?

kNN 0.286 92.647 0.629 0.247

kStar 0.176 86.274 0.673 0.128

OneR 0.154 94.607 0.545 0.161

PART 0.462 93.137 0.889 0.440

DT 0.500 93.137 0.718 0.490

RF 0.429 96.078 0.858 0.459

MLP 0.462 96.568 0.779 0.538

MLP-FS 0.429 96.078 0.903 0.459

MLP-FS-

ROS
0.900 89.655 0.955 0.793

PC1 results are shown in Table 10. It can be seen that

MLP-FS-ROS performed better in F-Measure, ROC Area,

and MCC whereas MLP performed better in Accuracy.

Table 11. PC2 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.000 94.470 0.751 -0.028

RBF ? 97.695 0.724 ?

SVM ? 97.695 0.500 ?

kNN 0.000 96.774 0.495 -0.015

kStar 0.167 95.391 0.791 0.146

OneR 0.000 97.235 0.498 -0.01

PART 0.000 96.774 0.623 -0.015

DT ? 97.695 0.579 ?

RF ? 97.695 0.731 ?

MLP 0.000 96.774 0.746 -0.015

MLP-FS ? 97.695 0.748 ?

MLP-FS-

ROS
0.918 91.244 0.920 0.838

Table 11 reflects the results of PC2 dataset. It shows

that MLP-FS-ROS performed better in F-Measure, ROC

Area, and MCC whereas RBF, SVM, DT, RF, MLP-FS

performed better in Accuracy.

Table 12. PC3 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.257 28.797 0.773 0.088

RBF ? 86.392 0.795 ?

SVM ? 86.392 0.5 ?

kNN 0.353 86.075 0.616 0.294

kStar 0.267 82.594 0.749 0.173

OneR 0.226 87.025 0.562 0.245

PART ? 86.392 0.79 ?

DT 0.358 86.392 0.664 0.304

RF 0.226 87.025 0.855 0.245

MLP 0.261 83.86 0.796 0.183

MLP-FS 0.145 85.126 0.828 0.114

MLP-FS-

ROS
0.787 75.949 0.836 0.545

Results of PC3 datasets are shown in Table 12. It can

be seen that MLP-FS-ROS performed better in F-

Measure, and MCC whereas OneR and RF performed

better in Accuracy and RF performed better in ROC Area.

Table 13. PC4 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.404 86.089 0.807 0.334

RBF 0.250 87.401 0.862 0.279

SVM 0.286 88.189 0.583 0.342

kNN 0.438 85.826 0.667 0.359

kStar 0.330 81.889 0.734 0.225

OneR 0.361 87.926 0.614 0.352

PART 0.481 85.301 0.776 0.396

DT 0.583 86.876 0.834 0.514

RF 0.532 90.288 0.945 0.516

MLP 0.562 89.763 0.898 0.515

MLP-FS 0.447 88.976 0.891 0.432

MLP-FS-

ROS

0.847 84.776 0.925 0.700

PC4 results are shown in Table 13. It is shown that

MLP-FS-ROS performed better in F-Measure, and MCC

whereas RF performed better in Accuracy and ROC Area.

Table 14. PC5 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.269 75.393 0.725 0.245

RBF 0.235 75.590 0.732 0.251

SVM 0.097 74.212 0.524 0.173

kNN 0.498 73.031 0.657 0.314

kStar 0.431 69.881 0.629 0.227

OneR 0.387 71.259 0.594 0.209

PART 0.335 75.787 0.739 0.274

DT 0.531 75.000 0.703 0.361

RF 0.450 75.984 0.805 0.322

MLP 0.299 74.212 0.751 0.216

MLP-FS 0.247 74.803 0.727 0.218

MLP-FS-

ROS

0.734 70.866 0.779 0.420

Table 14 reflects the results of PC5 dataset. It can be

seen that MLP-FS-ROS performed better in F-Measure,

and MCC whereas RF performed better in Accuracy and

ROC Area.

The results reflect the good performance of the

proposed framework especially with class balancing

(ROS) dimension. It has been observed that the proposed

framework with class balancing technique performed

better in at-least one and maximum in three performance

measures on every dataset. Moreover, it has also been

observed that the dimension with class balancing

technique (MLP-FS-ROS) did not perform well in Accuracy

measure on any of the used dataset. As in most of the

datasets the Accuracy is improved with the dimension

where class balancing technique is not used (MLP-FS),

so, this issues should be further investigated that either

the ROS technique is the reason of the lower

performance in Accuracy or it is something else. The

proposed framework with ROS technique has fully

resolved the class balancing issue [35].

24 A Classification Framework for Software Defect Prediction Using Multi-filter

Feature Selection Technique and MLP

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

V. CONCLUSION

This research presented multi-filter feature selection

based classification framework for software defect

prediction. For defect prediction, the framework uses

Artificial Neural Network (MLP). The oversampling

technique is also used in the framework to analyze the

effect of class imbalance issue on classification

performance. For experiment, 12 publically available

NASA MDPI cleaned datasets are used including: “CM1,

JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3,

PC4 and PC5. The performance of the proposed

framework is compared with 10 well known supervised

classification techniques including: “Naïve Bayes (NB),

Multi-Layer Perceptron (MLP), Radial Basis Function

(RBF), Support Vector Machine (SVM), K Nearest

Neighbor (KNN), kStar (K*), One Rule (OneR), PART,

Decision Tree (DT), and Random Forest (RF)”. From the

analysis of results, it has been observed that the proposed

framework with oversampling technique performed well

than other classifiers in F-measure, ROC and MCC

measures however the Accuracy measure is not

significantly improved. This issue should be further

investigated that why class balancing technique has

degraded the accuracy while other measures were

significantly improved in most of the datasets. It has

already been reported in our previously published

research that Accuracy and ROC both are not sensitive to

class imbalance issue in dataset (these measure don’t

react either data has class imbalance issue or not). It is

also suggested for future work that an ensemble of

classifiers should be included in the proposed framework

to further improve the performance.

REFERENCES

[1] C. Manjula and L. Florence, “Deep neural network based

hybrid approach for software defect prediction using

software metrics,” Cluster Comput., pp. 1–17, 2018.

[2] I. Gondra, “Applying machine learning to software fault-

proneness prediction,” J. Syst. Softw., vol. 81, no. 2, pp.

186–195, 2008.

[3] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,” J. Syst.

Softw., vol. 81, no. 5, pp. 649–660, 2008.

[4] F. Lanubile, A. Lonigro, and G. Visaggio, “Comparing

Models for Identifying Fault-Prone Software Components,”

Proc. Seventh Int’l Conf. Software Eng. and Knowledge

Eng., pp. 312–319, June 1995.

[5] A. Iqbal, S. Aftab, I. Ullah, M. S. Bashir, and M. A. Saeed,

“A Feature Selection based Ensemble Classification

Framework for Software Defect Prediction,” Int. J. Mod.

Educ. Comput. Sci., vol. 11, no. 9, pp. 54-64, 2019.

[6] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad,

and A. Husen “Performance Analysis of Machine Learning

Techniques on Software Defect Prediction using NASA

Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5,

2019.

[7] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid

Tools and Techniques for Sentiment Analysis: A Review,”

Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

[8] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad,

“Machine Learning Techniques for Sentiment Analysis: A

Review,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, p. 27,

2017.

[9] M. Ahmad and S. Aftab, “Analyzing the Performance of

SVM for Polarity Detection with Different Datasets,” Int. J.

Mod. Educ. Comput. Sci., vol. 9, no. 10, pp. 29–36, 2017.

[10] M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of

Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no. 5,

pp. 25–29, 2017.

[11] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed,

“Sentiment Analysis using SVM: A Systematic Literature

Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2,

2018.

[12] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and

Z. Nawaz, “SVM Optimization for Sentiment Analysis,”

Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[13] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction in Lahore City using Data

Mining Techniques,” Int. J. Adv. Comput. Sci. Appl., vol.

9, no. 4, 2018.

[14] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction using Data Mining

Techniques: A Systematic Literature Review,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 5, 2018.

[15] A. Iqbal and S. Aftab, “A Feed-Forward and Pattern

Recognition ANN Model for Network Intrusion Detection,”

Int. J. Comput. Netw. Inf. Secur., vol. 11, no. 4, pp. 19–25,

2019.

[16] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen,

“A Classification Framework to Detect DoS Attacks,” Int.

J. Comput. Netw. Inf. Secur., vol. 11, no. 9, pp. 40-47,

2019.

[17] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data

Mining: Practical machine learning tools and techniques.

Morgan Kaufmann, 2016.

[18] S. Huda et al., “A Framework for Software Defect

Prediction and Metric Selection,” IEEE Access, vol. 6, no.

c, pp. 2844–2858, 2017.

[19] E. Erturk and E. Akcapinar, “A comparison of some soft

computing methods for software fault prediction,” Expert

Syst. Appl., vol. 42, no. 4, pp. 1872–1879, 2015.

[20] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning

for cross-company software defect prediction,” Inf. Softw.

Technol., vol. 54, no. 3, Mar. 2012.

[21] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality:

Some Comments on the NASA Software Defect Datasets,”

IEEE Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.

[22] “NASA Defect Dataset.” [Online]. Available:

https://github.com/klainfo/NASADefectDataset. [Accessed:

27-October-2019].

[23] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the

impact of classification techniques on the performance of

defect prediction models,” Proc. - Int. Conf. Softw. Eng.,

vol. 1, pp. 789–800, 2015.

[24] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect

prediction using relational association rule mining,” Inf.

Sci. (Ny)., vol. 264, pp. 260–278, 2014.

[25] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C.

Riquelme, “Preliminary comparison of techniques for

dealing with imbalance in software defect prediction,” in

Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering.

ACM, p. 43, 2014.

[26] U. R. Salunkhe and S. N. Mali, “A hybrid approach for

class imbalance problem in customer churn prediction: A

novel extension to under-sampling,” Int. J. Intell. Syst.

Appl., vol. 10, no. 5, pp. 71–81, 2018.

 A Classification Framework for Software Defect Prediction Using Multi-filter 25

Feature Selection Technique and MLP

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 18-25

[27] N. F. Hordri, S. S. Yuhaniz, N. F. M. Azmi, and S. M.

Shamsuddin, “Handling class imbalance in credit card

fraud using resampling methods,” Int. J. Adv. Comput. Sci.

Appl., vol. 9, no. 11, pp. 390–396, 2018.

[28] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S.

Hashim, “Performance Analysis of Feature Selection

Methods in Software Defect Prediction: A Search Method

Approach,” Appl. Sci., vol. 9, no. 13, p. 2764, 2019.

[29] N. Sánchez-Maroño, A. Alonso-Betanzos, and M.

Tombilla-Sanromán, “Filter methods for feature selection -

A comparative study,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 4881 LNCS, pp. 178–187, 2007.

[30] M. R. Malik, L. Yining, and S. Shaikh, “Analysis of

Software Deformity Prone Datasets with Use of

AttributeSelectedClassifier,” Int. J. Adv. Comput. Sci.

Appl., vol. 10, no. 7, pp. 14–21, 2019.

[31] R. M. De Castro Andrade, I. De Sousa Santos, V. Lelli,

Ḱathia Marçal De Oliveira, and A. R. Rocha, “Software

testing process in a test factory from ad hoc activities to an

organizational standard,” ICEIS 2017 - Proc. 19th Int.

Conf. Enterp. Inf. Syst., vol. 2, no. Iceis, pp. 132–143,

2017.

[32] D. Kumar and K. K. Mishra, “The Impacts of Test

Automation on Software’s Cost, Quality and Time to

Market,” Procedia Comput. Sci., vol. 79, pp. 8–15, 2016.

[33] A. Dadwal, H. Washizaki, Y. Fukazawa, T. Iida, M.

Mizoguchi, and K. Yoshimura, “Prioritization in

automotive software testing: Systematic literature review,”

CEUR Workshop Proc., vol. 2273, no. QuASoQ, pp. 52–

58, 2018.

[34] A. Bertolino, “Software testing research: Achievements,

challenges, dreams,” FoSE 2007 Futur. Softw. Eng., no.

September, pp. 85–103, 2007.

[35] A. Iqbal, S. Aftab, and F. Matloob, “Performance Analysis

of Resampling Techniques on Class Imbalance Issue in

Software Defect Prediction,” Int. J. Inf. Technol. Comput.

Sci., vol. 11, no. 11, pp. 44-53, 2019.

Authors’ Profiles

Ahmed Iqbal is student of MS Computer

Science with the specialization of Software

Engineering in Virtual University of Pakistan.

He received the degree, Master of

Information Technology (MIT) from Virtual

University of Pakistan in 2016. His research

interest includes Software Engineering and

Data Mining.

Shabib Aftab received MS Degree in

Computer Science from COMSATS Institute

of Information Technology Lahore, Pakistan,

and M.Sc degree in Information Technology

from Punjab University College of

Information Technology (PUCIT) Lahore,

Pakistan. Currently he is serving as Lecturer

Computer Science at Virtual University of Pakistan. His

research areas include Data Mining and Software Process

Improvement.

How to cite this paper: Ahmed Iqbal, Shabib Aftab, " A Classification Framework for Software Defect Prediction

Using Multi-filter Feature Selection Technique and MLP ", International Journal of Modern Education and Computer

Science(IJMECS), Vol.12, No.1, pp. 18-25, 2020.DOI: 10.5815/ijmecs.2020.01.03

