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Abstract. We give a number of theoretical and practical meth-
ods related to the computation of L-functions, both in the local
case (counting points on varieties over finite fields, involving in
particular a detailed study of Gauss and Jacobi sums), and in the
global case (for instance Dirichlet L-functions, involving in par-
ticular the study of inverse Mellin transforms); we also giving a
number of little-known but very useful numerical methods, usually
but not always related to the computation of L-functions.

1. L-Functions

This course is divided into four chapters. In the present first chapter,
we introduce the notion of L-function, give a number of results and
conjectures concerning them, and explain some of the computational
problems in this theory. In the second chapter, we give a number of
computational methods for obtaining the Dirichlet series coefficients of
the L-function, so is arithmetic in nature. In the third chapter, we give
a number of analytic tools necessary for working with L-functions. In
the fourth and final chapter, we give a number of very useful numerical
methods which are not sufficiently well-known, most of which being
also related to the computation of L-functions.

1.1. Introduction. The theory of L-functions is one of the most excit-
ing subjects in number theory. It includes for instance two of the crown-
ing achievements of twentieth century mathematics, first the proof of
the Weil conjectures and of the Ramanujan conjecture by Deligne in
the early 1970’s, using the extensive development of modern algebraic
geometry initiated by Weil himself and pursued by Grothendieck and
followers in the famous EGA and SGA treatises, and second the proof
of the Shimura–Taniyama–Weil conjecture by Wiles et al., implying
among other things the proof of Fermat’s last theorem. It also includes
two of the seven 1 million dollar Clay problems for the twenty-first cen-
tury, first the Riemann hypothesis, and second the Birch–Swinnerton-
Dyer conjecture which in my opinion is the most beautiful, if not the
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most important, conjecture in number theory, or even in the whole of
mathematics.

Before giving a relatively general definition of L-functions, we look
in some detail at a large number of special cases.

1.2. The Prototype: the Riemann Zeta Function ζ(s). The sim-
plest of all (global) L-function is the Riemann zeta function ζ(s) defined
by

ζ(s) =
∑
n≥1

1

ns
.

This is an example of a Dirichlet series (more generally
∑

n≥1 a(n)/ns,
or even more generally

∑
n≥1 1/λsn, but we will not consider the latter).

As such, it has a half-plane of absolute convergence, here <(s) > 1.
The properties of this function, essentially studied initially by Bernoulli

and Euler, are as follows, given historically:

(1) (Bernoulli, Euler): it has special values. When s = 2, 4,... is a
strictly positive even integer, ζ(s) is equal to πs times a rational
number. π is here a period, and is of course the usual π used for
measuring circles. The rational numbers have generating func-
tions, and are equal up to easy terms to the so-called Bernoulli
numbers. For example ζ(2) = π2/6, ζ(4) = π4/90, etc... This
was conjectured by Bernoulli and proved by Euler. Note that
the proof in 1735 of the so-called Basel problem:

ζ(2) = 1 +
1

22
+

1

32
+

1

42
+ · · · = π2

6

is one of the crowning achievements of mathematics of that
time.

(2) (Euler): it has an Euler product : for <(s) > 1 one has the
identity

ζ(s) =
∏
p∈P

1

1− 1/ps
,

where P is the set of prime numbers. This is exactly equiva-
lent to the so-called fundamental theorem of arithmetic. Note
in passing (this does not seem interesting here but will be im-
portant later) that if we consider 1 − 1/ps as a polynomial in
1/ps = T , its reciprocal roots all have the same modulus, here
1, this is of course trivial.

(3) (Riemann, but already “guessed” by Euler in special cases):
it has an analytic continuation to a meromorphic function in
the whole complex plane, with a single pole, at s = 1, with
residue 1, and a functional equation Λ(1 − s) = Λ(s), where
Λ(s) = ΓR(s)ζ(s), with ΓR(s) = π−s/2Γ(s/2), and Γ is the
gamma function.
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(4) As a consequence of the functional equation, we have ζ(s) = 0
when s = −2, −4,..., ζ(0) = −1/2, but we also have special
values at s = −1, s = −3,... which are symmetrical to those
at s = 2, 4,... (for instance ζ(−1) = −1/12, ζ(−3) = 1/120,
etc...). This is the part which was guessed by Euler.

Roughly speaking, one can say that a global L-function is a func-
tion having properties similar to all the above. We will of course be
completely precise below. Two things should be added immediately:
first, the existence of special values will not be part of the definition
but, at least conjecturally, a consequence. Second, all the global L-
functions that we will consider should conjecturally satisfy a Riemann
hypothesis: when suitably normalized, and excluding “trivial” zeros,
all the zeros of the function should be on the line <(s) = 1/2, axis of
symmetry of the functional equation. Note that even for the simplest
L-function, ζ(s), this is not proved.

1.3. Dedekind Zeta Functions. The Riemann zeta function is per-
haps too simple an example to get the correct feeling about global
L-functions, so we generalize:

Let K be a number field (a finite extension of Q) of degree d. We
can define its Dedekind zeta function ζK(s) for <(s) > 1 by

ζK(s) =
∑
a

1

N (a)s
=
∑
n≥1

i(n)

ns
,

where a ranges over all (nonzero) integral ideals of the ring of integers
ZK of K, N (a) = [ZK : a] is the norm of a, and i(n) denotes the
number of integral ideals of norm n.

This function has very similar properties to those of ζ(s) (which is
the special case K = Q). We give them in a more logical order:

(1) It can be analytically continued to the whole complex plane into
a meromorphic function having a single pole, at s = 1, with
known residue, and it has a functional equation ΛK(1 − s) =
ΛK(s), where

ΛK(s) = |DK |s/2ΓR(s)r1+r2ΓR(s+ 1)r2 ,

where (r1, 2r2) are the number of real and complex embeddings
of K and DK its discriminant.

(2) It has an Euler product ζK(s) =
∏

p 1/(1 − 1/N (p)s), where
the product is over all prime ideals of ZK . Note that this can
also be written

ζK(s) =
∏
p∈P

∏
p|p

1

1− 1/pf(p/p)s
,
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where f(p/p) = [ZK/p : Z/pZ] is the so-called residual index of
p above p. Once again, note that if we set as usual 1/ps = T ,
the reciprocal roots of 1− T f(p/p) all have modulus 1.

(3) It has special values, but only when K is a totally real number
field (r2 = 0, r1 = d): in that case ζK(s) is a rational number
if s is a negative odd integer, or equivalently by the functional
equation, it is a rational multiple of πds if s is a positive even
integer.

An important new phenomenon occurs: recall that
∑

p|p e(p/p)f(p/p) =

d, where e(p/p) is the so-called ramification index, which is equivalent
to the defining equality pZK =

∏
p|p p

e(p/p). In particular
∑

p|p f(p/p) =

d if and only if e(p/p) = 1 for all p, which means that p is unramified
in K/Q; one can prove that this is equivalent to p - DK . Thus, the
local L-function LK,p(T ) =

∏
p|p(1 − T f(p/p)) has degree in T exactly

equal to d for all but a finite number of primes p, which are exactly
those which divide the discriminant DK , and for those “bad” primes
the degree is strictly less than d. In addition, note that the number of
ΓR factors in the completed function ΛK(s) is equal to r1 + 2r2, hence
once again equal to d.

Examples:

(1) The field K = Q(
√
D) is a quadratic field of discriminant D.

In that case, ζK(s) factors as ζK(s) = ζ(s)L(χD, s), where

χD =

(
D

.

)
is the Legendre–Kronecker symbol, and L(χD, s) =∑

n≥1 χD(n)/ns. Thus, the local L-function at a prime p is given
by

LK,p(T ) = (1− T )(1− χD(p)T ) = 1− apT + χD(p)T 2 ,

with ap = 1 + χD(p). Note that ap is equal to the number of
solutions in Fp of the equation x2 = D.

(2) Let us consider two special cases of (1): first K = Q(
√

5). Since
it is a real quadratic field, it has special values, for instance

ζK(−1) =
1

30
, ζK(−3) =

1

60
, ζK(2) =

2
√

5π4

375
, ζK(4) =

4
√

5π8

84375
.

In addition, note that its gamma factor is 5s/2ΓR(s)2.
Second, consider K = Q(

√
−23). Since it is not a totally real

field, ζK(s) does not have special values. However, because of
the factorization ζK(s) = ζ(s)L(χD, s), we can look separately
at the special values of ζ(s), which we have already seen (neg-
ative odd integers and positive even integers), and of L(χD, s).
It is easy to prove that the special values of this latter func-
tion occurs at negative even integers and positive odd integers,
which have empty intersection which those of ζ(s) and explains
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why ζK(s) itself has none. For instance,

L(χD,−2) = −48 , L(χD,−4) = 6816 , L(χD, 3) =
96
√

23π3

12167
.

In addition, note that its gamma factor is

23s/2ΓR(s)ΓR(s+ 1) = 23s/2ΓC(s) ,

where we set by definition

ΓC(s) = ΓR(s)ΓR(s+ 1) = 2 · (2π)−sΓ(s)

by the duplication formula for the gamma function.
(3) Let K be the unique cubic field up to isomorphism of dis-

criminant −23, defined for instance by a root of the equation
x3−x−1 = 0. We have (r1, 2r2) = (1, 2) and DK = −23. Here,
one can prove (it is less trivial) that ζK(s) = ζ(s)L(ρ, s), where
L(ρ, s) is a holomorphic function. Using both properties of ζK
and ζ, this L-function has the following properties:
• It extends to an entire function on C with a functional

equation Λ(ρ, 1− s) = Λ(ρ, s), with

Λ(ρ, s) = 23s/2ΓR(s)ΓR(s+ 1)L(ρ, s) = 23s/2ΓC(s)L(ρ, s) .

Note that this is the same gamma factor as for Q(
√
−23).

However the functions are fundamentally different, since
ζQ(
√
−23)(s) has a pole at s = 1, while L(ρ, s) is an entire

function.
• It is immediate to show that if we let Lρ,p(T ) = LK,p(T )/(1−
T ) be the local L function for L(ρ, s), we have Lρ,p(T ) =
1 − apT + χ−23(p)T

2, with ap = 1 if p = 23, ap = 0 if(
−23

p

)
= −1, and ap = 1 or 2 if

(
−23

p

)
= 1.

Remark: In all of the above examples, the function ζK(s) is divisible
by the Riemann zeta function ζ(s), i.e., the function ζK(s)/ζ(s) is an
entire function. This is known for some number fields K, but is not
known in general, even in degree d = 5 for instance: it is a consequence
of the more precise Artin conjecture on the holomorphy of Artin L-
functions.

1.4. Further Examples in Weight 0. It is now time to give examples
not coming from number fields. Define a1(n) by the formal equality

q
∏
n≥1

(1− qn)(1− q23n) =
∑
n≥1

a1(n)qn ,

and set L1(s) =
∑

n≥1 a1(n)/ns. The theory of modular forms (here of
the Dedekind eta function) tells us that L1(s) will satisfy exactly the
same properties as L(ρ, s) with ρ as above.
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Define a2(n) by the formal equality

1

2

 ∑
(m,n)∈Z×Z

qm
2+mn+6n2 − q2m2+mn+3n2

 =
∑
n≥1

a2(n)qn ,

and set L2(s) =
∑

n≥1 a2(n)/ns. The theory of modular forms (here
of theta functions) tells us that L2(s) will satisfy exactly the same
properties as L(ρ, s).

And indeed, it is an interesting theorem that

L1(s) = L2(s) = L(ρ, s) :

The “moral” of this story is the following, which can be made math-
ematically precise: if two L-functions are holomorphic, have the same
gamma factor (including in this case the 23s/2), then they belong to a
finite-dimensional vector space. Thus in particular if this vector space
is 1-dimensional and the L-functions are suitably normalized (usually
with a(1) = 1), this implies as here that they are equal.

1.5. Examples in Weight 1. Although we have not yet defined the
notion of weight, let me give two further examples.

Define a3(n) by the formal equality

q
∏
n≥1

(1− qn)2(1− q11n)2 =
∑
n≥1

a3(n)qn ,

and set L3(s) =
∑

n≥1 a3(n)/ns. The theory of modular forms (again of
the Dedekind eta function) tells us that L3(s) will satisfy the following
properties, analogous but more general than those satisfied by L1(s) =
L2(s) = L(ρ, s):

• It has an analytic continuation to the whole complex plane, and
if we set

Λ3(s) = 11s/2ΓR(s)ΓR(s+ 1)L3(s) = 11s/2ΓC(s)L3(s) ,

we have the functional equation Λ3(2 − s) = Λ3(s). Note the
crucial difference that here 1− s is replaced by 2− s.
• There exists an Euler product L3(s) =

∏
p∈P 1/L3,p(1/p

s) sim-

ilar to the prededing ones in that L3,p(T ) is for all but a finite
number of p a second degree polynomial in T , and more pre-
cisely if p = 11 we have L3,p(T ) = 1 − T , while for p 6= 11 we
have L3,p(T ) = 1−apT +pT 2, for some ap such that |ap| < 2

√
p.

This is expressed more vividly by saying that for p 6= 11 we have
L3,p(T ) = (1−αpT )(1−βpT ), where the reciprocal roots αp and
βp have modulus exactly equal to p1/2. Note again the crucial
difference with “weight 0” in that the coefficient of T 2 is equal
to p instead of ±1, hence that |αp| = |βp| = p1/2 instead of 1.
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As a second example, consider the equation y2+y = x3−x2−10x−20
(an elliptic curve E), and denote by Nq(E) the number of projective
points of this curve over the finite field Fq (it is clear that there is a
unique point at infinity, so if you want Nq(E) is one plus the number
of affine points). There is a universal recipe to construct an L-function
out of a variety which we will recall below, but here let us simplify: for
p prime, set ap = p+ 1−Np(E) and

L4(s) =
∏
p∈P

1/(1− app−s + χ(p)p1−2s) ,

where χ(p) = 1 for p 6= 11 and χ(11) = 0. It is not difficult to show that
L4(s) satisfies exactly the same properties as L3(s) (using for instance
the elementary theory of modular curves), so by the moral explained
above, it should not come as a surprise that in fact L3(s) = L4(s).

1.6. Definition of a Global L-Function. With all these examples
at hand, it is quite natural to give the following definition of an L-
function, which is not the most general but will be sufficient for us.

Definition 1.1. Let d be a nonnegative integer. We say that a Dirichlet
series L(s) =

∑
n≥1 a(n)n−s with a(1) = 1 is an L-function of degree

d and weight 0 if the following conditions are satisfied:

(1) (Ramanujan bound): we have a(n) = O(nε) for all ε > 0, so
that in particular the Dirichlet series converges absolutely and
uniformly in any half plane <(s) ≥ σ > 1.

(2) (Meromorphy and Functional equation): The function L(s) can
be extended to C to a meromorphic function of order 1 having
a finite number of poles; furthermore there exist complex num-
bers λi with nonnegative real part and an integer N called the
conductor such that if we set

γ(s) = N s/2
∏

1≤i≤d

ΓR(s+ λi) and Λ(s) = γ(s)L(s) ,

we have the functional equation

Λ(s) = ωΛ(1− s)
for some complex number ω, called the root number, which will
necessarily be of modulus 1.

(3) (Euler Product): For <(s) > 1 we have an Euler product

L(s) =
∏
p∈P

1/Lp(1/p
s) with Lp(T ) =

∏
1≤j≤d

(1− αp,jT ) ,

and the reciprocal roots αp,j are called the Satake parameters.
(4) (Local Riemann hypothesis): for p - N we have |αp,j| = 1, and

for p | N we have either αp,j = 0 or |αp,j| = p−m/2 for some m
such that 1 ≤ m ≤ d.
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Remarks

(1) More generally Selberg has defined a more general class of L-
functions which first allows Γ(µis+ λi) with µi positive real in
the gamma factors and second allows weaker assumptions on N
and the Satake parameters.

(2) Note that d is both the number of ΓR factors, and the degree
in T of the Euler factors Lp(T ), at least for p - N , while the
degree decreases for the “bad” primes p which divide N .

(3) The Ramanujan bound (1) is easily seen to be a consequence of
the conditions that we have imposed on the Satake parameters:
in Selberg’s more general definition this is not the case.

It is important to generalize this definition in the following trivial
way:

Definition 1.2. Let w be a nonnegative integer. A function L(s) is
said to be an L-function of degree d and motivic weight w if L(s+w/2)
is an L-function of degree d and weight 0 as above (with the slight
additional technical condition that the nonzero Satake parameters αp,j
for p | N satisfy |αp,j| = p−m/2 with 1 ≤ m ≤ w).

For an L-function of weight w, it is clear that the functional equation
is Λ(s) = ωΛ(k − s) with k = w + 1, and that the Satake parameters
will satisfy |αp,j| = pw/2 for p - N , and for p | N we have either αp,j = 0
or |αp,j| = p(w−m)/2 for some integer m such that 1 ≤ m ≤ w.

Thus, the first examples that we have given are all of weight 0, and
the last two (which are in fact equal) are of weight 1. For those who
know the theory of modular forms, note that the motivic weight (that
we denote by w) is one less than the weight k of the modular form.

2. Origins of L-Functions

As can already be seen in the above examples, it is possible to con-
struct L-functions in many different ways. In the present section, we
look at three different ways for constructing L-functions: the first is by
the theory of modular forms or more generally of automorphic forms
(of which we have seen a few examples above), the second is by using
Weil’s construction of local L-functions attached to varieties and more
generally to motives, and third, as a special but much simpler case of
this, by the theory of hypergeometric motives.

2.1. L-Functions coming from Modular Forms. The basic notion
that we need here is that of Mellin transform: if f(t) is a nice function
tending to zero exponentially fast at infinity, we can define its Mellin
transform Λ(f ; s) =

∫∞
0
tsf(t) dt/t, the integral being written in this

way because dt/t is the invariant Haar measure on the locally compact
group R>0. If we set g(t) = t−kf(1/t) and assume that g also tends to
zero exponentially fast at infinity, it is immediate to see by a change
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of variable that Λ(g; s) = Λ(f ; k − s). This is exactly the type of
functional equation needed for an L-function.

The other fundamental property of L-functions that we need is the
existence of an Euler product of a specific type. This will come from
the theory of Hecke operators.

A crash course in modular forms: we use the notation q = e2πiτ ,
for τ ∈ C such that =(τ) > 0, so that |q| < 1. A function f(τ) =∑

n≥1 a(n)qn is said to be a modular cusp form of (positive, even)

weight k if f(−1/τ) = τ kf(τ) for all =(τ) > 0. Note that because of
the notation q we also have f(τ + 1) = f(τ), hence it is easy to deduce
that f((aτ + b)/(cτ + d)) = (cτ + d)kf(τ) if ( a bc d ) is an integer matrix
of determinant 1. We define the L-function attached to f as L(f ; s) =∑

n≥1 a(n)/ns, and the Mellin transform Λ(f ; s) of the function f(it)

is on the one hand equal to (2π)−sΓ(s)L(f ; s) = (1/2)ΓC(s)L(f ; s),
and on the other hand as we have seen above satisfies the functional
equation Λ(k − s) = (−1)k/2Λ(s).

One can easily show the fundamental fact that the vector space of
modular forms of given weight k is finite dimensional, and compute its
dimension explicitly.

If f(τ) =
∑

n≥1 a(n)qn is a modular form and p is a prime number,
one defines T (p)(f) by T (p)(f) =

∑
n≥1 b(n)qn with b(n) = a(pn) +

pk−1a(n/p), where a(n/p) is by convention 0 when p - n, or equivalently

T (p)(f)(τ) = pk−1f(pτ) +
1

p

∑
0≤j<p

f

(
τ + j

p

)
.

Then T (p)f is also a modular cusp form, so T (p) is an operator on the
space of modular forms, and it is easy to show that the T (p) commute
and are diagonalizable, so they are simultaneously diagonalizable hence
there exists a basis of common eigenforms for all the T (p). Since one
can show that for such an eigenform one has a(1) 6= 0, we can normalize
them by asking that a(1) = 1, and we then obtain a canonical basis.

If f(τ) =
∑

n≥1 a(n)qn is such a normalized eigenform, it follows
that the corresponding L function

∑
n≥1 a(n)/ns will indeed have an

Euler product, and using the elementary properties of the operators
T (p) that it will in fact be of the form:

L(f ; s) =
∏
p∈P

1

1− a(p)p−s + pk−1−2s
.

As a final remark, note that the analytic continuation and functional
equation of this L-function is an elementary consequence of the defini-
tion of a modular form. This is totally different from the motivic cases
that we will see below, where this analytic continuation is in general
completely conjectural.
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The above describes briefly the theory of modular forms on the mod-
ular group PSL2(Z). One can generalize (nontrivially) this theory to
subgroups of the modular group, the most important being Γ0(N) (ma-
trices as above with N | c), to other Fuchsian groups, to forms in several
variables, and even more generally to reductive groups.

2.2. Local L-Functions of Algebraic Varieties. Let V be some al-
gebraic object. In modern terms, V may be a motive, whatever that
may mean for the moment, but assume for instance that V is an alge-
braic variety, i.e., for each suitable field K, V (K) is the set of common
zeros of a family of polynomials in several variables. If K is a finite
field Fq then V (Fq) will also be finite. For a number of easily explained
reasons, one defines a local zeta function attached to V and a prime p
(called the Hasse–Weil zeta function) as the formal power series in T

Zp(V ;T ) = exp

(∑
n≥1

|V (Fpn)|
n

T n

)
.

There should be no difficulty in understanding this: setting for sim-
plicity vn = |V (Fpn)|, we have

Zp(V ;T ) = exp(v1T + v2T
2/2 + v3T

3/3 + · · · )
= 1 + v1T + (v21 + v2)T

2/2 + (v31 + 3v1v2 + 2v3)T
3/6 + · · ·

For instance, if V is projective d-space P d, we have |V (Fq)| = qd +
qd−1 + · · · + 1, and since

∑
n≥1 p

njT n/n = − log(1 − pjT ), we deduce

that Zp(P
d;T ) = 1/((1− T )(1− pT ) · · · (1− pdT )).

After studying a number of special cases, such as elliptic curves (due
to Hasse), and quasi-diagonal hypersurfaces in P d, in 1949 Weil was
led to make a number of conjectures on these zeta functions, assuming
that V is a smooth projective variety, and proved these conjectures in
the special case of curves (the proof is already quite deep).

The first conjecture says that Zp(V ;T ) is a rational function of T .
This was proved by Dwork in 1960. Equivalently, this means that the
sequence vn = |V (Fpn)| satisfies a (non-homogeneous) linear recurrence
with constant coefficients. For instance, if V is an elliptic curve defined
over Q (such as y2 = x3 +x+1) and if we set a(pn) = pn+1−|V (Fpn)|,
then

a(pn+1) = a(p)a(pn)− χ(p)pa(pn−1) ,

where χ(p) = 1 unless p divides the so-called conductor of the elliptic
curve, in which case χ(p) = 0 (this is not quite true because we must
choose a suitable model for V , but it suffices for us).

The second conjecture of Weil states that this rational function is of
the form

Zp(V ;T ) =
∏

0≤i≤2d

Pi,p(V ;T )(−1)
i+1

=
P1,p(V ;T ) · · ·P2d−1,p(V ;T )

P0,p(V ;T )P2,p(V ;T ) · · ·P2d,p(V ;T )
,
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where d = dim(V ), and the Pi,p are polynomials in T . Furthermore,
Poincaré duality implies that Zp(V ; 1/(pdT )) = ±pde/2T eZp(V ;T ) where
e is the degree of the rational function (called the Euler character-
istic of V ), which means that there is a relation between Pi,p and
P2d−i,p. In addition the Pi,p have integer coefficients, and P0,p(T ) =
1 − T , P2d,p(T ) = 1 − pdT . For instance, for curves, this means that
Zp(V ;T ) = P1(V ;T )/((1 − T )(1 − pT )), the polynomial P1 is of even
degree 2g (g is the genus of the curve) and satisfies pdgP1(V ; 1/(pdT )) =
±P1(V ;T ).

For knowledgeable readers, in highbrow language, the polynomial
Pi,p is the reverse characteristic polynomial of the Frobenius endomor-
phism acting on the ith `-adic cohomology group H i(V ;Q`) for any
` 6= p.

The third an most important of the Weil conjecture is the local
Riemann hypothesis, which says that the reciprocal roots of Pi,p have
modulus exactly equal to pi/2, i.e.,

Pi,p(V ;T ) =
∏
j

(1− αi,jT ) with |αi,j| = pi/2 .

This last is the most important in applications.
The Weil conjectures were completely proved by Deligne in the early

1970’s following a strategy already put forward by Weil, and is consid-
ered as one of the two or three major accomplishments of mathematics
of the second half of the twentieth century.

Exercise: (You need to know some algebraic number theory for
this). Let P ∈ Z[X] be a monic irreducible polynomial and K = Q(θ),
where θ is a root of P be the corresponding number field. Assume
that p2 - disc(P ). Show that the Hasse–Weil zeta function at p of the
0-dimensional variety defined by P = 0 is the Euler factor at p of the
Dedekind zeta function ζK(s) attached to K, where p−s is replaced by
T .

2.3. Global L-Function Attached to a Variety. We are now ready
to “globalize” the above construction, and build global L-functions at-
tached to a variety.

Let V be an algebraic variety defined over Q, say. We assume that
V is “nice”, meaning for instance that we choose V to be projective,
smooth, and absolutely irreducible. For all but a finite number of
primes p we can consider V as a smooth variety over Fp, so for each i
we can set Li(V ; s) =

∏
p 1/Pi,p(V ; p−s), where the product is over all

the “good” primes, and the Pi,p are as above. The factor 1/Pi,p(V ; p−s)
is as usual called the Euler factor at p. These functions Li can be called
the global L-functions attached to V .

This näıve definition is insufficient to construct interesting objects.
First and most importantly, we have omitted a finite number of Euler
factors at the so-called “bad primes”, which include in particular those
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for which V is not smooth over Fp, and although there do exist cohomo-
logical recipes to define them, as far as the author is aware these recipes
do not really give practical algorithms. Another much less important
reason is the fact that most of the Li are uninteresting or related. For
instance in the case of elliptic curves seen above, we have (up to a fi-
nite number of Euler factors) L0(V ; s) = ζ(s) and L2(V ; s) = ζ(s− 1),
so the only interesting L-function, called the L-function of the elliptic
curve, is the function L1(V ; s) =

∏
p(1− a(p)p−s +χ(p)p1−2s)−1 (if the

model of the curve is chosen to be minimal, this happens to be the cor-
rect definition, including for the “bad” primes). For varieties of higher
dimension d, as we have mentioned as part of the Weil conjecture the
functions Li and L2d−i are related by Poincaré duality, and L0 and L2d

are translates of the Riemann zeta function (as above), so only the Li
for 1 ≤ i ≤ d need to be studied.

2.4. Results and Conjectures on L(V ; s). Global L-functions at-
tached to varieties as above form a large source of L-functions: the
problem with those functions is that most of their properties are only
conjectural :

(1) The function Li is only defined through its Euler product, and
thanks to the last of Weil’s conjectures, the local Riemann hy-
pothesis, proved by Deligne, it converges absolutely for <(s) >
1 + i/2. Note that, with the definitions introduced above, Li
is an L-function of degree di, the common degree of Pi,p for all
but a finite number of p, and of weight exactly w = i since
the Satake parameters satisfy |αi,p| = pi/2, again by the local
Riemann hypothesis.

(2) A first conjecture is that Li should have an analytic continuation
to the whole complex plane with a finite number of known poles
with known polar part.

(3) A second conjecture, which can in fact be considered as part
of the first, is that this extended L-function should satisfy a
functional equation when s is changed into i + 1 − s. More
precisely, when completed with the Euler factors at the “bad”
primes as mentioned (but not explained) above, then if we set

Λi(V ; s) = N s/2
∏

1≤j≤di

ΓR(s+ µi)Li(V ; s)

then Λi(V ; i+ 1− s) = ωΛi(V ∗; s) for some variety V ∗ in some
sense “dual” to V and a complex number ω of modulus 1. In
the above, N is some integer divisible exactly by all the “bad”
primes, i.e., essentially (but not exactly) the primes for which V
reduced modulo p is not smooth, and the µi are in this case (va-
rieties) integers which can be computed in terms of the Hodge
numbers hp,q of the variety thanks to a recipe due to Serre.

12



In many cases the L-function is self-dual, in which case the
functional equation is simply of the form Λi(V ; i + 1 − s) =
±Λi(V ; s).

(4) The function Λi should satisfy the generalized Riemann hypoth-
esis (GRH): all its zeros in C are on the vertical line <(s) =
(i + 1)/2. Equivalently, the zeros of Li are on the one hand
real zeros at some integers coming from the poles of the gamma
factors, and all the others satisfy <(s) = (i+ 1)/2.

(5) The function Λi should have special values : for the integer val-
ues of s (called special points) which are those for which neither
the gamma factor at s nor at i+ 1− s has a pole, it should be
computable “explicitly”: it should be equal to a period (inte-
gral of an algebraic function on an algebraic cycle) times an
algebraic number. This has been stated (conjecturally) in great
detail by Deligne in the 1970’s.

It is conjectured that all L-functions of degree di and weight i as
defined at the beginning should satisfy all the above properties, not
only the L-functions coming from varieties.

I now list a number of cases where the above conjectures are proved.

(1) The first conjecture (analytic continuation) is known only for a
very restricted class of L-functions: first L-functions of degree
1, which can be shown to be Dirichlet L-functions, L-functions
attached to modular forms as shown above, and more generally
to automorphic forms. For L-functions attached to varieties,
one knows this only when one can prove that the corresponding
L-function comes from an automorphic form: this is how Wiles
proves the analytic continuation of the L-function attached to
an elliptic curve, a very deep and difficult result, with Deligne’s
proof of the Weil conjectures one of the most important result of
the end of the 20th century. More results of this type are known
for certain higher-dimensional varieties such as certain Calabi–
Yau manifolds, thanks to the work of Harris and others. Note
however that for such simple objects as most Artin L-functions
(degree 0) or Abelian surfaces, this is not known, although the
work of Brumer–Kramer–Poor–Yuen on the paramodular con-
jecture may some day lead to a proof in this last case.

(2) The second conjecture on the existence of a functional equation
is of course intimately linked to the first, and the work of Wiles
et al. and Harris et al. also prove the existence of this functional
equation. But in addition, in the case of Artin L-functions for
which only meromorphy (possibly with infinitely many poles)
is known thanks to a theorem of Brauer, this same theorem
implies the functional equation which is thus known in this case.
Also, as mentioned, the Euler factors which we must include for
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the “bad” primes in order to have a clean functional equation
are often quite difficult to compute.

(3) The Riemann hypothesis is not known for any global L-function
of the type mentioned above, not even for the simplest one, the
Riemann zeta function ζ(s). Note that it is known for other
kinds of L-functions such as Selberg zeta functions, but these
are functions of order 2 (growth at infinity like e|s|

2+ε
instead of

e|s|
1+ε

, so are not in the class considered above.
(4) Concerning special values : many cases are known, and many

conjectured. This is probably one of the most fun conjectures
since everything can be computed explicitly to hundreds of dec-
imals if desired. For instance, for modular forms it is a theo-
rem of Manin, for symmetric squares of modular forms it is a
theorem of Rankin, and for higher symmetric powers one has
very precise conjectures of Deligne, which check perfectly on a
computer, but none of them are proved. For the Riemann zeta
function or Dirichlet L-functions, of course all these results such
as ζ(2) = π2/6 date back essentially to Euler.

In the case of an elliptic curve E over Q, the only special
point is s = 1, and in this case the whole subject evolves around
the Birch and Swinnerton-Dyer conjecture which predicts the
behavior of L1(E; s) around s = 1. The only known results,
already quite deep, due to Kolyvagin and Gross–Zagier, deal
with the case where the rank of the elliptic curve is 0 or 1.

There exist a number of other very important conjectures linked to
the behavior of L-functions at integer points which are not necessarily
special, such as the Bloch–Kato, Beilinson, Lichtenbaum, or Zagier
conjecture, but it would carry us too far afield to describe them.

2.5. Hypergeometric Motives. Still another way to construct L-
functions is through the use of hypergeometric motives, due to Katz
and Rodriguez-Villegas. Although this construction is a special case
of the construction of L-functions of varieties studied above, the cor-
responding variety is hidden (although it can be recovered if desired),
and the computations are in some sense much simpler.

Let me give a short and unmotivated introduction to the subject: let
γ(T ) =

∑
n≥1 γnT

n ∈ Z[T ] be a polynomial satisfying the conditions
γ(0) = 0 and γ′(1) = 0 (in other words γ0 = 0 and

∑
n nγn = 0). For

any finite field Fq with q = pf and any character χ of F∗q, recall that
the Gauss sum g(χ) is defined by

g(χ) =
∑
x∈F∗q

χ(x) exp(2πiTrFq/Fp(x)/p) .
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We set

Qq(γ;χ) =
∏
n≥1

g(χn)γn

and for any t ∈ Fq \ {0, 1}

aq(γ; t) =
qd

1− q

(
1 +

∑
χ 6=χ0

χ(Mt)Qq(γ;χ)

)
,

where χ0 is the trivial character, d is an integer, and M a nonzero
rational number, both of which can easily be given explicitly (M is
simply a normalization parameter, since one could change Mt into t).
Then the “theorem” of Katz is that for t 6= 0, 1 the quantity aq(γ; t) is
the trace of Frobenius on some motive defined over Q (I put theorem in
quotes because it is not completely clear what the status of the proof
is, although there is no doubt that it is true). In the language of L-
functions this means the following: define as usual the local L-function
at p by the formal power series

Lp(γ; t;T ) = exp

(∑
f≥1

apf (γ; t)
T f

f

)
.

Then Lp is a rational function of T , satisfies the local Riemann hypoth-
esis, and if we set

L(γ; t; s) =
∏
p

Lp(γ; t; p−s)−1 ,

then L once completed at the “bad” primes should be a global L-
function of the standard type described above.

2.6. Computational Goals. Now that we have a handle on what L-
functions are, we come to the computational and algorithmic problems,
which are the main focus of these notes. This involves many different
aspects, all interesting in their own right.

In a first type of situation, we assume that we are “given” the L-
function, in other words that we are given a reasonably “efficient”
algorithm to compute the coefficients a(n) of the Dirichlet series (or
the Euler factors), and that we know the gamma factor γ(s). The
main computational goals are then the following:

(1) Compute L(s) for “reasonable” values of s: for example, com-
pute ζ(3). More sophisticated, but much more interesting: com-
pute special values of symmetric powers L-functions of modular
forms, and check numerically the conjectures of Deligne on the
subject.

(2) Check the numerical validity of the functional equation, and in
passing, if unknown, compute the numerical value of the root
number ω occurring in the functional equation.
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(3) Compute L(s) for s = 1/2 + it for rather large real values of t
(in the case of weight 0, more generally for s = (w+ 1)/2 + it),
and/or make a plot of the corresponding Z function (see below).

(4) Compute all the zeros of L(s) on the critical line up to a given
height, and check the corresponding Riemann hypothesis.

(5) Compute the residue of L(s) at s = 1 (typically): for instance
if L is the Dedekind zeta function of a number field, this gives
the product hR.

(6) Compute the order of the zeros of L(s) at integer points (if it
has one), and the leading term in the Taylor expansion: for
instance for the L-function of an elliptic curve and s = 1, this
gives the analytic rank of an elliptic curve, together with the
Birch and Swinnerton-Dyer data.

Unfortunately, we are not always given an L-function completely
explicitly. We can lack more or less partial information on the L-
function:

(1) One of the most frequent situations is that one knows the Euler
factors for the “good” primes, as well as the corresponding part
of the conductor, and that one is lacking both the Euler factors
for the bad primes and the bad part of the conductor. The
goal is then to find numerically the missing factors and missing
parts.

(2) A more difficult but much more interesting problem is when
essentially nothing is known on the L-function except γ(s), in
other words the ΓR factors and the constant N , essentially equal
to the conductor. It is quite amazing that nonetheless one can
quite often tell whether an L-function with the given data can
exist, and give some of the initial Dirichlet coefficients (even
when several L-functions may be possible).

(3) Even more difficult is when essentially nothing is known except
the degree d and the constant N , and one looks for possible
ΓR factors: this is the case in the search for Maass forms over
SLn(Z), which has been conducted very successfully for n = 2,
3, and 4.

For lack of time, we will not say much about these problems.

2.7. Available Software for L-Functions. Many people working on
the subject have their own software. I mention the available public
data.
• M. Rubinstein’s C++ program lcalc, which can compute values of

L-functions, make large tables of zeros, and so on. The program uses
C++ language double, so is limited to 15 decimal digits, but is highly
optimized, hence very fast, and used in most situations. Also optimized
for large values of the imaginary part using Riemann–Siegel. Available
in Sage.
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• T. Dokshitser’s program computel, initally written in GP/Pari,
rewritten for magma, and also available in Sage. Similar to Rubinstein’s,
but allows arbitrary precision, hence slower, and has no built-in zero
finder, although this is not too difficult to write. Not optimized for
large imaginary parts.

• Last but not least, not a program but a huge database of L-
functions, modular forms, number fields, etc..., which is the result
of a collaborative effort of approximately 30 to 40 people headed by
D. Farmer. This database can of course be queried in many different
ways, it is possible and useful to navigate between related pages, and
it also contains knowls, bits of knowledge which give the main defi-
nitions. In addition to the stored data, the site can compute on the
fly (using the software mentioned above, essentially Pari, Sage, and
lcalc) additional required information. Available at:

http://www.lmfdb.org

3. Arithmetic Methods: Computing a(n)

We now come to the second chapter of these notes: the computation
of the Dirichlet series coefficients a(n) and/or of the Euler factors,
which is usually the same problem. Of course this depends entirely
on how the L-function is given: in view of what we have seen, it can
be given for instance (but not only) as the L-function attached to a
modular form, to a variety, or to a hypergeometric motive. Since there
are so many relations between these L-functions (we have seen several
identities above), we will not separate the way in which they are given,
but treat everything at once.

In view of the preceding section, an important computational prob-
lem is the computation of |V (Fq)| for a variety V . This may of course
be done by a näıve point count: if V is defined by polynomials in n
variables, we can range through the qn possibilities for the n variables
and count the number of common zeros. In other words, there al-
ways exists a trivial algorithm requiring qn steps. We of course want
something better.

3.1. General Elliptic Curves. Let us first look at the special case
of elliptic curves, i.e., a projective curve V with affine equation y2 =
x3 + ax + b such that p - 6(4a3 + 27b2), which is almost the general
equation for an elliptic curve. For simplicity assume that q = p, but it
is immediate to generalize. If you know the definition of the Legendre
symbol, you know that the number of solutions to y2 = n is equal to

1 +
(
n
p

)
. Otherwise, since Fp is a field, it is clear that this number is

equal to 0, 1, or 2, and so one can define
(
n
p

)
as one less, so −1, 0, or

1. Thus, since it is immediate to see that there is a single projective
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point at infinity, we have

|V (Fp)| = 1 +
∑
x∈Fp

(
1 +

(
x3 + ax+ b

p

))
= p+ 1− a(p) , with

a(p) = −
∑

0≤x≤p−1

(
x3 + ax+ b

p

)
.

Now a Legendre symbol can be computed very efficiently using the
quadratic reciprocity law. Thus, considering that it can be computed
in constant time (which is not quite true but almost), this gives a
O(p) algorithm for computing a(p), already much faster than the trivial
O(p2) algorithm consisting in looking at all pairs (x, y).

To do better, we have to use an additional and crucial property of
an elliptic curve: it is an abelian group. Using this combined with
the so-called Hasse bounds |a(p)| < 2

√
p (a special case of the Weil

conjectures), and the so-called baby-step giant-step algorithm due to
Shanks, one can obtain a O(p1/4) algorithm, which is very fast for all
practical purposes.

However a remarkable discovery due to Schoof in the early 1980’s
is that there exists a practical algorithm for computing a(p) which is
polynomial in log(p), for instance O(log6(p)). Several important im-
provements have been made on this basic algorithm, in particular by
Atkin and Elkies, and the resulting SEA algorithm (which is imple-
mented in many computer packages) is able to compute a(p) for p with
several thousand decimal digits. Note however that in practical ranges
(say p < 1012), the O(p1/4) algorithm mentioned above is sufficient.

3.2. Elliptic Curves with Complex Multiplication. In certain
special cases it is possible to compute |V (Fq)| for an elliptic curve
V much faster than with any of the above methods: when the elliptic
curve V has complex multiplication. Let us consider the special cases
y2 = x3 − nx (the general case is more complicated but not really
slower). By the general formula for a(p), we have for p ≥ 3:

a(p) = −
∑

−(p−1)/2≤x≤(p−1)/2

(
x(x2 − n)

p

)

= −
∑

1≤x≤(p−1)/2

((
x(x2 − n)

p

)
+

(
−x(x2 − n)

p

))

= −
(

1 +

(
−1

p

)) ∑
1≤x≤(p−1)/2

(
x(x2 − n)

p

)
by the multiplicative property of the Legendre symbol. This already

shows that if
(
−1
p

)
= −1, in other words p ≡ 3 (mod 4), we have a(p) =

0. But we can also find a formula when p ≡ 1 (mod 4): recall that in
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that case by a famous theorem due to Fermat, there exist integers u
and v such that p = u2 + v2. If necessary by exchanging u and v,
and/or changing the sign of u, we may assume that u ≡ −1 (mod 4),
in which case the decomposition is unique, up to the sign of v. It is
then not difficult to prove the following theorem (see Section 8.5.2 of
[4] for the proof):

Theorem 3.1. Assume that p ≡ 1 (mod 4) and p = u2 + v2 with
u ≡ −1 (mod 4). The number of projective points on the elliptic curve
y2 = x3 − nx (where p - n) is equal to p+ 1− a(p), where

a(p) = 2

(
2

p

)
−u if n(p−1)/4 ≡ 1 (mod p)

u if n(p−1)/4 ≡ −1 (mod p)

−v if n(p−1)/4 ≡ −u/v (mod p)

v if n(p−1)/4 ≡ u/v (mod p)

(note that one of these four cases must occur).

To apply this theorem from a computational standpoint we note the
following two facts :

(1) The quantity a(p−1)/4 mod p can be computed efficiently by the
binary powering algorithm (in O(log3(p)) operations). It is however
possible to compute it more efficiently in O(log2(p)) operations using
the quartic reciprocity law.

(2) The numbers u and v such that u2+v2 = p can be computed effi-
ciently (in O(log2(p)) operations) using Cornacchia’s algorithm which
is very easy to describe but not so easy to prove. It is a variant of
Euclid’s algorithm. It proceeds as follows:

• As a first step, we compute a square root of −1 modulo p, i.e.,
an x such that x2 ≡ −1 (mod p). This is done by choosing randomly

a z ∈ [1, p − 1] and computing the Legendre symbol
(
z
p

)
until it is

equal to −1 (we can also simply try z = 2, 3, ...). Note that this
is a fast computation. When this is the case, we have by definition
z(p−1)/2 ≡ −1 (mod p), hence x2 ≡ −1 (mod p) for x = z(p−1)/4 mod p.
Reducing x modulo p and possibly changing x into p−x, we normalize
x so that p/2 < x < p.

• As a second step, we perform the Euclidean algorithm on the pair
(p, x), writing a0 = p, a1 = x, and an−1 = qnan + an+1 with 0 ≤ an+1 <
an, and we stop at the exact n for which a2n < p. It can be proved (this
is the difficult part) that for this specific n we have a2n + a2n+1 = p, so
up to exchange of u and v and/or change of signs, we can take u = an
and v = an+1.

Note that Cornacchia’s algorithm can easily be generalized to solving
efficiently u2 + dv2 = p or u2 + dv2 = 4p for any d ≥ 1, see [2] and
Cremona’s course (incidentally one can also solve this for d < 0, but it
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poses completely different problems since there may be infinitely many
solutions).

The above theorem is given for the special elliptic curves y2 = x3 −
nx which have complex multiplication by the (ring of integers of the)
field Q(i), but a similar theorem is valid for all curves with complex
multiplication, see Section 8.5.2 of [4].

3.3. Using Modular Forms of Weight 2. By Wiles’ celebrated the-
orem, the L-function of an elliptic curve is equal to the L-function of a
modular form of weight 2 for Γ0(N), where N is the conductor of the
curve. We do not need to give the precise definitions of these objects,
but only a specific example.

Let V be the elliptic curve with affine equation y2+y = x3−x2. It has
conductor 11. It can be shown using classical modular form methods
(i.e., without Wiles’ theorem) that the global L-function L(V ; s) =∑

n≥1 a(n)/ns is the same as that of the modular form of weight 2 over
Γ0(11) given by

f(τ) = q
∏
m≥1

(1− qm)2(1− q11m)2 ,

with q = exp(2πiτ). Even with no knowledge of modular forms, this
simply means that if we formally expand the product on the right hand
side as

q
∏
m≥1

(1− qm)2(1− q11m)2 =
∑
n≥1

b(n)qn ,

we have b(n) = a(n) for all n, and in particular for n = p prime. We
have already seen this example above with a slightly different equa-
tion for the elliptic curve (which makes no difference for its L-function
outside of the primes 2 and 3).

We see that this gives an alternate method for computing a(p) by
expanding the infinite product. Indeed, the function

η(τ) = q1/24
∏
m≥1

(1− qm)

is a modular form of weight 1/2 with known expansion:

η(τ) =
∑
n≥1

(
12

n

)
qn

2/24 ,

and so using Fast Fourier Transform techniques for formal power series
multiplication we can compute all the coefficients a(n) simultaneously
(as opposed to one by one) for n ≤ B in time O(B log2(B)). This
amounts to computing each individual a(n) in time O(log2(n)), so it
seems to be competitive with the fast methods for elliptic curves with
complex multiplication, but this is an illusion since we must store all
B coefficients, so it can be used only for B ≤ 1012, say, far smaller

20



than what can be reached using Schoof’s algorithm, which is truly
polynomial in log(p) for each fixed prime p.

3.4. Higher Weight Modular Forms. It is interesting to note that
the dichotomy between elliptic curves with or without complex multi-
plication is also valid for modular forms of higher weight (again, what-
ever that means, you do not need to know the definitions). For instance,
consider

∆(τ) = ∆24(τ) = η24(τ) = q
∏
m≥1

(1− qm)24 :=
∑
n≥1

τ(n)qn .

The function τ(n) is a famous function called the Ramanujan τ func-
tion, and has many important properties, analogous to those of the
a(p) attached to an elliptic curve (i.e., to a modular form of weight 2).

There are several methods to compute τ(p) for p prime, say. One is
to do as above, using FFT techniques. The running time is similar, but
again we are limited to B ≤ 1012, say. A second more sophisticated
method is to use the Eichler–Selberg trace formula, which enables the
computation of an individual τ(p) in time O(p1/2+ε) for all ε > 0. A
third very deep method, developed by Edixhoven, Couveignes, et al., is
a generalization of Schoof’s algorithm. While in principle polynomial
time in log(p), it is not yet practical compared to the preceding method.

For those who want to see the formula explicitly, we let H(N) be
the Hurwitz class number (a small modification of the class number of
imaginary quadratic fields), and H2(N) = H(N)+2H(N/4), where we
note that H(N) can be computed in terms of H(N/4) if the latter is
nonzero. Then for p prime

τ(p) = 28p6−28p5−90p4−35p3−1−128
∑

1≤t<p1/2
t6(4t4−9pt2+7p2)H2(4(p−t2)) ,

which is the fastest practical formula that I know for computing τ(p).

On the contrary, consider

∆26(τ) = η26(τ) = q13/12
∏
m≥1

(1− qm)26 := q13/12
∑
n≥1

τ26(n)qn .

This is what is called a modular form with complex multiplication.
Whatever the definition, this means that the coefficients τ26(p) can
be computed in time polynomial in log(p) using a generalization of
Cornacchia’s algorithm, hence very fast.

Exercise: (You need some extra knowledge for this.) In the lit-
erature find an exact formula for τ26(p) in terms of values of Hecke
Grössencharakters, and program this formula. Use it to compute some
values of τ26(p) for p prime as large as you can go.
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3.5. Computing |V (Fq)| for Quasi-diagonal Hypersurfaces. We
now consider a completely different situation where |V (Fq)| can be
computed without too much difficulty.

As we have seen, in the case of elliptic curves V defined over Q,
the corresponding L-function is of degree 2, in other words is of the
form

∏
p 1/(1− a(p)p−s + b(p)p−2s), where b(p) 6= 0 for all but a finite

number of p. L-functions of degree 1 such as the Riemann zeta func-
tion are essentially L-functions of Dirichlet characters, in other words
simple “twists” of the Riemann zeta function. L-functions of degree 2
are believed to be always L-functions attached to modular forms, and
b(p) = χ(p)pk−1 for a suitable integer k (k = 2 for elliptic curves),
the weight. Even though many unsolved questions remain, this case
is also quite well understood. Much more mysterious are L-functions
of higher degree, such as 3 or 4, and it is interesting to study natu-
ral mathematical objects leading to such functions. A case where this
can be done reasonably easily is the case of diagonal or quasi-diagonal
hypersurfaces. We study a special case:

Definition 3.2. Let m ≥ 2, for 1 ≤ i ≤ m let ai ∈ F∗q be nonzero, and
let b ∈ Fq. The quasi-diagonal hypersurface defined by this data is the
hypersurface in Pm−1 defined by the projective equation∑

1≤i≤m

aix
m
i − b

∏
1≤i≤m

xi = 0 .

When b = 0, it is a diagonal hypersurface.

Of course, we could study more general equations, for instance where
the degree is not equal to the number of variables, but we stick to this
special case.

To compute the number of (projective) points on this hypersurface,
we need an additional definition:

Definition 3.3. We let ω be a generator of the group of characters of
F∗q, either with values in C, or in the p-adic field Cp (do not worry if
you are not familiar with this).

Indeed, by a well-known theorem of elementary algebra, the multi-
plicative group F∗q of a finite field is cyclic, so its group of characters,
which is non-canonically isomorphic to F∗q, is also cyclic, so ω indeed
exists.

It is not difficult to prove the following theorem:

Theorem 3.4. Assume that gcd(m, q − 1) = 1 and b 6= 0, and set
B =

∏
1≤i≤m(ai/b). If V is the above quasi-diagonal hypersurface, the

number |V (Fq)| of affine points on V is given by

|V (Fq)| = qm−1 + (−1)m−1 +
∑

1≤n≤q−2

ω−n(B)Jm(ωn, . . . , ωn) ,

where Jm is the m-variable Jacobi sum.
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We will study in great detail below the definition and properties of
Jm.

Note that the number of projective points is simply (|V (Fq)|−1)/(q−
1).

There also exists a more general theorem with no restriction on
gcd(m, q − 1), which we do not give.

4. Gauss and Jacobi Sums

In this long section, we study in great detail Gauss and Jacobi sums.
The emphasis will be on results which are not completely standard,
the standard ones being stated without proof but with a reference. I
would like to emphasize that almost all of these standard results can
be proved with little difficulty by easy algebraic manipulations.

4.1. Gauss Sums over Fq. We can define and study Gauss and Jacobi
sums in two different contexts: first, and most importantly, over finite
fields Fq, with q = pf a prime power (note that from now on we write
q = pf and not q = pn). Second, over the ring Z/NZ. The two notions
coincide when N = q = p is prime, but the methods and applications
are quite different.

To give the definitions over Fq we need to recall some fundamental
(and easy) results concerning finite fields.

Proposition 4.1. Let p be a prime, f ≥ 1, and Fq be the finite field
with q = pf elements, which exists and is unique up to isomorphism.

(1) The map φ such that φ(x) = xp is a field isomorphism from Fq
to itself leaving Fp fixed. It is called the Frobenius map.

(2) The extension Fq/Fp is a normal (i.e., separable and Galois)
field extension, with Galois group which is cyclic of order f
generated by φ.

In particular, we can define the trace TrFq/Fp and the norm N Fq/Fp ,
and we have the formulas (where from now on we omit Fq/Fp for sim-
plicity):

Tr(x) =
∑

0≤j≤f−1

xp
j

and N (x) =
∏

0≤j≤f−1

xp
j

= x(p
f−1)/(p−1) = x(q−1)/(p−1) .

Definition 4.2. Let χ be a character from F∗q to an algebraically closed
field C of characteristic 0. For a ∈ Fq we define the Gauss sum g(χ, a)
by

g(χ, a) =
∑
x∈F∗q

χ(x)ζTr(ax)p ,

where ζp is a fixed primitive p-th root of unity in C. We also set
g(χ) = g(χ, 1).

23



Note that strictly speaking this definition depends on the choice of
ζp. However, if ζ ′p is some other primitive p-th root of unity we have

ζ ′p = ζkp for some k ∈ F∗p, so∑
x∈F∗q

χ(x)ζ ′p
Tr(ax)

= g(χ, ka) .

In fact it is trivial to see (this follows from the next proposition) that
g(χ, ka) = χ−1(k)g(χ, a).

Definition 4.3. We define ε to be the trivial character, i.e., such that
ε(x) = 1 for all x ∈ F∗q. We extend characters χ to the whole of Fq by
setting χ(0) = 0 if χ 6= ε and ε(0) = 1.

Note that this apparently innocuous definition of ε(0) is crucial be-
cause it simplifies many formulas. Note also that the definition of
g(χ, a) is a sum over x ∈ F∗q and not x ∈ Fq, while for Jacobi sums we
will use all of Fq.

Exercise:

(1) Show that g(ε, a) = −1 if a ∈ F∗q and g(ε, 0) = q − 1.
(2) If χ 6= ε, show that g(χ, 0) = 0, in other words that∑

x∈Fq

χ(x) = 0

(here it does not matter if we sum over Fq or F∗q).
(3) Deduce that if χ1 6= χ2 then∑

x∈F∗q

χ1(x)χ−12 (x) = 0 .

This relation is called for evident reasons orthogonality of char-
acters.

Because of this exercise, if necessary we may assume that χ 6= ε
and/or that a 6= 0.

Exercise: Let χ be a character of F∗q of exact order n.

(1) Show that n | (q − 1) and that χ(−1) = (−1)(q−1)/n. In partic-
ular, if n is odd and p > 2 we have χ(−1) = 1.

(2) Show that g(χ, a) ∈ Z[ζn, ζp], where as usual ζm denotes a prim-
itive mth root of unity.

Proposition 4.4. (1) If a 6= 0 we have

g(χ, a) = χ−1(a)g(χ) .

(2) We have

g(χ−1) = χ(−1)g(χ) .

(3) We have
g(χp, a) = χ1−p(a)g(χ, a) .
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(4) If χ 6= ε we have

|g(χ)| = q1/2 .

4.2. Jacobi Sums over Fq. Recall that we have extended characters
of F∗q by setting χ(0) = 0 if χ 6= ε and ε(0) = 1.

Definition 4.5. For 1 ≤ j ≤ k let χj be characters of F∗q. We define
the Jacobi sum

Jk(χ1, . . . , χk; a) =
∑

x1+···+xk=a

χ1(x1) · · ·χk(xk)

and Jk(χ1, . . . , χk) = Jk(χ1, . . . , χk; 1).

Note that, as mentioned above, we do not exclude the cases where
some xi = 0, using the convention of Definition 4.3 for χ(0).

The following easy lemma shows that it is only necessary to study
Jk(χ1, . . . , χk):

Lemma 4.6. Set χ = χ1 · · ·χk.
(1) If a 6= 0 we have

Jk(χ1, . . . , χk; a) = χ(a)Jk(χ1, . . . , χk) .

(2) If a = 0, abbreviating Jk(χ1, . . . , χk; 0) to Jk(0) we have

Jk(0) =


qk−1 if χj = ε for all j ,

0 if χ 6= ε ,

χk(−1)(q − 1)Jk−1(χ1, . . . , χk−1) if χ = ε and χk 6= ε .

As we have seen, a Gauss sum g(χ) belongs to the rather large ring
Z[ζq−1, ζp] (and in general not to a smaller ring). The advantage of Ja-
cobi sums is that they belong to the smaller ring Z[ζq−1], and as we are
going to see, that they are closely related to Gauss sums. Thus, when
working algebraically, it is almost always better to use Jacobi sums
instead of Gauss sums. On the other hand, when working analytically
(for instance in C or Cp), it may be better to work with Gauss sums:
we will see below the use of root numbers (suggested by Louboutin),
and of the Gross–Koblitz formula.

Note that J1(χ1) = 1. Outside of this trivial case, the close link
between Gauss and Jacobi sums is given by the following easy propo-
sition, whose apparently technical statement is only due to the trivial
character ε: if none of the χj nor their product is trivial, we have the
simple formula given by (3).

Proposition 4.7. Denote by t the number of χj equal to the trivial
character ε, and as above set χ = χ1 . . . χk.

(1) If t = k then Jk(χ1, . . . , χk) = qk−1.
(2) If 1 ≤ t ≤ k − 1 then Jk(χ1, . . . , χk) = 0.
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(3) If t = 0 and χ 6= ε then

Jk(χ1, . . . , χk) =
g(χ1) · · · g(χk)

g(χ1 · · ·χk)
=

g(χ1) · · · g(χk)

g(χ)
.

(4) If t = 0 and χ = ε then

Jk(χ1, . . . , χk) = −g(χ1) · · · g(χk)

q

= −χk(−1)
g(χ1) · · · g(χk−1)

g(χ1 · · ·χk−1)
= −χk(−1)Jk−1(χ1, . . . , χk−1) .

In particular, in this case we have

g(χ1) · · · g(χk) = χk(−1)qJk−1(χ1, . . . , χk−1) .

Corollary 4.8. With the same notation, assume that k ≥ 2 and all
the χj are nontrivial. Setting ψ = χ1 · · ·χk−1, we have the following
recursive formula:

Jk(χ1, . . . , χk) =

{
Jk−1(χ1, . . . , χk−1)J2(ψ, χk) if ψ 6= ε ,

χk−1(−1)qJk−2(χ1, . . . , χk−2) if ψ = ε .

The point of this recursion is that the definition of a k-fold Jacobi
sum Jk involves a sum over qk−1 values for x1, . . . , xk−1, the last variable
xk being determined by xk = 1 − x1 − · · · − xk−1, so neglecting the
time to compute the χj(xj) and their product (which is a reasonable
assumption), using the definition takes time O(qk−1). On the other
hand, using the above recursion boils down at worst to computing
k − 1 Jacobi sums J2, for a total time of O((k − 1)q). Nonetheless, we
will see that in some cases it is still better to use directly Gauss sums
and formula (3) of the proposition.

Since Jacobi sums J2 are the simplest and the above recursion in
fact shows that one can reduce to J2, we will drop the subscript 2 and
simply write J(χ1, χ2). Note that

J(χ1, χ2) =
∑
x∈Fq

χ1(x)χ2(1− x) ,

where the sum is over the whole of Fq and not Fq \{0, 1} (which makes
a difference only if one of the χi is trivial). More precisely it is clear
that J(ε, ε) = q2, and that if χ 6= ε we have J(χ, ε) =

∑
x∈Fq

χ(x) = 0,
which are special cases of Proposition 4.7.

Exercise: Let n | (q−1) be the order of χ. Prove that g(χ)n ∈ Z[ζn].

Exercise: Assume that none of the χj is equal to ε, but that their
product χ is equal to ε. Prove that (using the same notation as in
Lemma 4.6):

Jk(0) =

(
1− 1

q

)
g(χ1) · · · g(χk) .

26



Exercise: Prove the following reciprocity formula for Jacobi sums:
if the χj are all nontrivial and χ = χ1 · · ·χk, we have

Jk(χ
−1
1 , . . . , χ−1k ) =

qk−1−δ

Jk(χ1, . . . , χk)
,

where δ = 1 if χ = ε, and otherwise δ = 0.

4.3. Applications of J(χ, χ). In this short subsection we give without
proof a couple of applications of the special Jacobi sums J(χ, χ). Once
again the proofs are not difficult. We begin by the following result,
which is a special case of the Hasse–Davenport relations that we will
give below.

Lemma 4.9. Assume that q is odd, and let ρ be the unique character
of order 2 on F∗q. For any nontrivial character χ we have

χ(4)J(χ, χ) = J(χ, ρ) .

Equivalently, if χ 6= ρ we have

g(χ)g(χρ) = χ−1(4)g(ρ)g(χ2) .

Exercise:

(1) Prove this lemma.
(2) Show that g(ρ)2 = (−1)(q−1)/2q.

Proposition 4.10. (1) Assume that q ≡ 1 (mod 4), let χ be one of
the two characters of order 4 on F∗q, and write J(χ, χ) = a+ bi.

Then q = a2 + b2, 2 | b, and a ≡ −1 (mod 4).
(2) Assume that q ≡ 1 (mod 3), let χ be one of the two characters

of order 3 on F∗q, and write J(χ, χ) = a + bρ, where ρ = ζ3 is

a primitive cube root of unity. Then q = a2 − ab + b2, 3 | b,
a ≡ −1 (mod 3), and a+ b ≡ q − 2 (mod 9).

(3) Let p ≡ 2 (mod 3), q = p2m ≡ 1 (mod 3), and let χ be one of
the two characters of order 3 on F∗q. We have

J(χ, χ) = (−1)m−1pm = (−1)m−1q1/2 .

Corollary 4.11. (1) (Fermat.) Any prime p ≡ 1 (mod 4) is a sum
of two squares.

(2) Any prime p ≡ 1 (mod 3) is of the form a2− ab+ b2 with 3 | b,
or equivalently 4p = (2a−b)2+27(b/3)2 is of the form c2+27d2.

(3) (Gauss.) p ≡ 1 (mod 3) is itself of the form p = u2 + 27v2 if
and only if 2 is a cube in F∗p.

Exercise: Assuming the proposition, prove the corollary.
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4.4. The Hasse–Davenport Relations. All the results that we have
given up to now on Gauss and Jacobi sums have rather simple proofs,
which is one of the reasons we have not given them. Perhaps surpris-
ingly, there exist other important relations which are considerably more
difficult to prove. Before giving them, it is instructive to explain how
one can “guess” their existence, if one knows the classical theory of the
gamma function Γ(s) (of course skip this part if you do not know it,
since it would only confuse you).

Recall that Γ(s) is defined (at least for <(s) > 0) by

Γ(s) =

∫ ∞
0

e−ttsdt/t ,

and the beta function B(a, b) by B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt. The

function e−t transforms sums into products, so is an additive character,
analogous to ζtp. The function ts transforms products into products, so
is a multiplicative character, analogous to χ(t) (dt/t is simply the Haar
invariant measure on R>0). Thus Γ(s) is a continuous analogue of the
Gauss sum g(χ).

Similarly, since J(χ1, χ2) =
∑

t χ1(t)χ2(1 − t), we see the similarity
with the function B. Thus, it does not come too much as a surprise
that analogous formulas are valid on both sides. To begin with, it is not
difficult to show that B(a, b) = Γ(a)Γ(b)/Γ(a + b), exactly analogous
to J(χ1, χ2) = g(χ1)g(χ2)/g(χ1χ2). The analogue of Γ(s)Γ(−s) =
−π/(s sin(sπ)) is

g(χ)g(χ−1) = χ(−1)q .

But it is well-known that the gamma function has a duplication formula
Γ(s)Γ(s + 1/2) = 21−2sΓ(1/2)Γ(2s), and more generally a multiplica-
tion (or distribution) formula. This duplication formula is clearly the
analogue of the formula

g(χ)g(χρ) = χ−1(4)g(ρ)g(χ2)

given above. The Hasse–Davenport product relation is the analogue of
the distribution formula for the gamma function.

Theorem 4.12. Let ρ be a character of exact order m dividing q − 1.
For any character χ of F∗q we have∏

0≤a<m

g(χρa) = χ−m(m)k(p, f,m)q(m−1)/2g(χm) ,

where k(p, f,m) is the fourth root of unity given by

k(p, f,m) =


( p
m

)f
if m is odd,

(−1)f+1

(
(−1)m/2+1m/2

p

)f(−1

p

)f/2
if m is even,

where (−1)f/2 is to be understood as if when f is odd.
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Remark: For some reason, in the literature this formula is usually
stated in the weaker form where the constant k(p, f,m) is not given
explicitly.

Contrary to the proof of the distribution formula for the gamma
function, the proof of this theorem is quite long. There are essentially
two completely different proofs: one using classical algebraic number
theory, and one using p-adic analysis. The latter is simpler and gives
directly the value of k(p, f,m). See [4] and [5] for both detailed proofs.

Gauss sums satisfy another type of nontrivial relation, also due to
Hasse–Davenport, the so-called lifting relation, as follows:

Theorem 4.13. Let Fqn/Fq be an extension of finite fields, let χ be a
character of F∗q, and define the lift of χ to Fqn by the formula χ(n) =
χ ◦ N Fqn/Fq . We have

g(χ(n)) = (−1)n−1g(χ)n .

This relation is essential in the initial proof of the Weil conjectures for
diagonal hypersurfaces done by Weil himself. This is not surprising,
since we have seen in Theorem 3.4 that |V (Fq)| is closely related to
Jacobi sums, hence also to Gauss sums.

5. Practical Computations of Gauss and Jacobi Sums

As above, let ω be a character of order exactly q − 1, so that ω is
a generator of the group of characters of F∗q. For notational simplicity,
we will write J(r1, . . . , rk) instead of J(ωr1 , . . . , ωrk). Let us consider
the specific example of efficient computation of the quantity

S(q; z) =
∑

0≤n≤q−2

ω−n(z)J5(n, n, n, n, n) ,

which occurs in the computation of the Hasse–Weil zeta function of a
quasi-diagonal threefold, see Theorem 3.4.

5.1. Elementary Methods. By the recursion of Corollary 4.8, we
have generically (i.e., except for special values of n which will be con-
sidered separately):

J5(n, n, n, n, n) = J(n, n)J(2n, n)J(3n, n)J(4n, n) .

Since J(n, an) =
∑

x ω
n(x)ωan(1 − x), the cost of computing J5 as

written is Õ(q), where here and after we write Õ(qα) to mean O(qα+ε)
for all ε > 0 (soft-O notation). Thus computing S(q; z) by this direct

method requires time Õ(q2).
We can however do much better. Since the values of the characters

are all in Z[ζq−1], we work in this ring. In fact, even better, we work
in the ring with zero divisors R = Z[X]/(Xq−1 − 1), together with the
natural surjective map sending the class of X in R to ζq−1. Indeed,
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let g be the generator of F∗q such that ω(g) = ζq−1. We have, again
generically :

J(n, an) =
∑

1≤u≤q−2

ωn(gu)ωan(1− gu) =
∑

1≤u≤q−2

ζ
nu+an logg(1−gu)
q−1 ,

where logg is the discrete logarithm to base g defined modulo q−1, i.e.,

such that glogg(x) = x. If (q− 1) - n but (q− 1) | an we have ωan = ε so
we must add the contribution of u = 0, which is 1, and if (q− 1) | n we
must add the contribution of u = 0 and of x = 0, which is 2 (recall the
essential convention that χ(0) = 0 if χ 6= ε and ε(0) = 1, see Definition
4.3).

In other words, if we set

Pa(X) =
∑

1≤u≤q−2

X(u+a logg(1−gu)) mod (q−1) ∈ R ,

we have

J(n, an) = Pa(ζ
n
q−1) +


0 if (q − 1) - an ,

1 if (q − 1) | an but (q − 1) - n , and

2 if (q − 1) | n .

Thus, if we set finally

P (X) = P1(X)P2(X)P3(X)P4(X) mod Xq−1 ∈ R ,

we have (still generically) J5(n, n, n, n, n) = P (ζnq−1). Assume for the
moment that this is true for all n (we will correct this below), let
` = logg(z), so that ω(z) = ω(g`) = ζ`q−1, and write

P (X) =
∑

0≤j≤q−2

ajX
j .

We thus have

ω−n(z)J5(n, n, n, n, n) = ζ−n`q−1

∑
0≤j≤q−2

ajζ
nj
q−1 =

∑
0≤j≤q−2

ajζ
n(j−`)
q−1 ,

hence

S(q; z) =
∑

0≤n≤q−2

ω−n(z)J5(n, n, n, n, n) =
∑

0≤j≤q−2

aj
∑

0≤n≤q−2

ζ
n(j−`)
q−1

= (q − 1)
∑

0≤j≤q−2, j≡` (mod q−1)

aj = (q − 1)a` .

The result is thus immediate as soon as we know the coefficients of the
polynomial P . Since there exist fast methods for computing discrete

logarithms, this leads to a Õ(q) method for computing S(q; z).

To obtain the correct formula, we need to adjust for the special n for
which J5(n, n, n, n, n) is not equal to J(n, n)J(n, 2n)J(n, 3n)J(n, 4n),
which are the same for which (q−1) | an for some a such that 2 ≤ a ≤ 4,
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together with a = 5. This is easy but boring, and should be skipped
on first reading.

(1) For n = 0 we have J5(n, n, n, n, n) = q4, and on the other hand
P (1) = (J(0, 0) − 2)4 = (q − 2)4, so the correction term is
q4 − (q − 2)4 = 8(q − 1)(q2 − 2q + 2).

(2) For n = (q − 1)/2 (if q is odd) we have

J5(n, n, n, n, n) = g(ωn)5/g(ω5n) = g(ωn)4 = g(ρ)4

since 5n ≡ n (mod q − 1), where ρ is the character of order 2,
and we have g(ρ)2 = (−1)(q−1)/2q, so J5(n, n, n, n, n) = q2. On
the other hand

P (ζnq−1) = J(ρ, ρ)(J(ρ, 2ρ)− 1)J(ρ, ρ)(J(ρ, 2ρ)− 1)

= J(ρ, ρ)2 = g(ρ)4/q2 = 1 ,

so the correction term is ρ(z)(q2 − 1).
(3) For n = ±(q − 1)/3 (if q ≡ 1 (mod 3)), writing χ3 = ω(q−1)/3,

which is one of the two cubic characters, we have

J5(n, n, n, n, n) = g(ωn)5/g(ω5n) = g(ωn)5/g(ω−n)

= g(ωn)6/(g(ω−n)g(ωn)) = g(ωn)6/q

= qJ(n, n)2

(check all this). On the other hand

P (ζnq−1) = J(n, n)J(n, 2n)(J(n, 3n)− 1)J(n, 4n)

=
g(ωn)2

g(ω2n)

g(ωn)g(ω2n)

q

g(ωn)2

g(ω2n)

=
g(ωn)5

qg(ω−n)
=

g(ωn)6

q2
= J(n, n)2 ,

so the correction term is 2(q − 1)<(χ−13 (z)J(χ3, χ3)
2).

(4) For n = ±(q − 1)/4 (if q ≡ 1 (mod 4)), writing χ4 = ω(q−1)/4,
which is one of the two quartic characters, we have

J5(n, n, n, n, n) = g(ωn)5/g(ω5n) = g(ωn)4 = ωn(−1)qJ3(n, n, n) .

In addition, we have

J3(n, n, n) = J(n, n)J(n, 2n) = ωn(4)J(n, n)2 = ρ(2)J(n, n)2 ,

so

J5(n, n, n, n, n) = g(ωn)4 = ωn(−1)qρ(2)J(n, n)2 .

Note that

χ4(−1) = χ−14 (−1) = ρ(2) = (−1)(q−1)/4 ,

(Exercise: prove it!), so that ωn(−1)ρ(2) = 1 and the above
simplifies to J5(n, n, n, n, n) = qJ(n, n)2.
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On the other hand,

P (ζnq−1) = J(n, n)J(n, 2n)J(n, 3n)(J(n, 4n)− 1)

=
g(ωn)2

g(ω2n)

g(ωn)g(ω2n)

g(ω3n)

g(ωn)g(ω3n)

q

=
g(ωn)4

q
= ωn(−1)ρ(2)J(n, n)2 = J(n, n)2

as above, so the correction term is 2(q−1)<(χ−14 (z)J(χ4, χ4)
2).

(5) For n = a(q − 1)/5 with 1 ≤ a ≤ 4 (if q ≡ 1 (mod 5)), writ-
ing χ5 = ω(q−1)/5 we have J5(n, n, n, n, n) = −g(χa5)

5/q, while
abbreviating g(χam5 ) to g(m) we have

P (ζnq−1) = J(n, n)J(n, 2n)J(n, 3n)J(n, 4n)

= − g(n)2

g(2n)

g(n)g(2n)

g(3n)

g(n)g(3n)

g(4n)

g(n)g(4n)

q

= −g(n)5

q
,

so there is no correction term.

Summarizing, we have shown the following:

Proposition 5.1. Let S(q; z) =
∑

0≤n≤q−2 ω
−n(z)J5(n, n, n, n, n). Let

` = logg(z) and let P (X) =
∑

0≤j≤q−2 ajX
j be the polynomial defined

above. We have

S(q; z) = (q − 1)(T1 + T2 + T3 + T4 + a`) ,

where Tm = 0 if m - (q − 1) and otherwise

T1 = 8(q2 − 2q + 2) , T2 = ρ(z)(q + 1) ,

T3 = 2<(χ−13 (z)J(χ3, χ3)
2) , and T4 = 2<(χ−14 (z)J(χ4, χ4)

2) ,

with the above notation.

Note that thanks to Proposition 4.10, these supplementary Jacobi
sums J(χ3, χ3) and J(χ4, χ4) can be computed in logarithmic time
using Cornacchia’s algorithm (this is not quite true, one needs an ad-
ditional slight computation, do you see why?).

Note also for future reference that the above proposition proves that
(q − 1) | S(q, z), which is not clear from the definition.

5.2. Sample Implementations. For simplicity, assume that q = p is
prime. I have written simple implementations of the computation of
S(q; z). In the first implementation, I use the näıve formula expressing
J5 in terms of J(n, an) and sum on n, except that I use the reciprocity
formula which gives J5(−n,−n,−n,−n,−n) in terms of J5(n, n, n, n, n)
to sum only over (p− 1)/2 terms instead of p− 1. Of course to avoid
recomputation, I precompute a discrete logarithm table.
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The timings for p ≈ 10k for k = 2, 3, and 4 are 0.03, 1.56, and 149

seconds respectively, compatible with Õ(q2) time.

On the other hand, implementing in a straightforward manner the
algorithm given by the above proposition gives timings for p ≈ 10k for
k = 2, 3, 4, 5, 6, and 7 of 0, 0.02, 0.08, 0.85, 9.90, and 123 seconds

respectively, of course much faster and compatible with Õ(q) time.
The main drawback of this method is that it requires O(q) storage:

it is thus applicable only for q ≤ 108, say, which is more than sufficient
for many applications, but of course not for all. For instance, the case
p ≈ 107 mentioned above already required a few gigabytes of storage.

5.3. Using Theta Functions. A completely different way of com-
puting Gauss and Jacobi sums has been suggested by Louboutin. It
is related to the theory of L-functions of Dirichlet characters that we
study below, and in our context is valid only for q = p prime, not for
prime powers, but in the context of Dirichlet characters it is valid in
general (simply replace p by N and Fp by Z/NZ in the following for-
mulas when χ is a primitive character of conductor N , see below for
definitions):

Definition 5.2. Let χ be a character on Fp, and let e = 0 or 1 be such
that χ(−1) = (−1)e. The theta function associated to χ is the function
defined on the upper half-plane by

Θ(χ, τ) = 2
∑
m≥1

meχ(m)eiπm
2τ/p .

The main property of this function, which is a direct consequence
of the Poisson summation formula, and is equivalent to the functional
equation of Dirichlet L-functions, is as follows:

Proposition 5.3. We have the functional equation

Θ(χ,−1/τ) = W (χ)(τ/i)(2e+1)/2Θ(χ−1, τ) ,

with the principal determination of the square root, and where W (χ) =
g(χ)/(iep1/2) is the so-called root number.

Corollary 5.4. If χ(−1) = 1 we have

g(χ) = p1/2
∑

m≥1 χ(m) exp(−πm2/pt)

t1/2
∑

m≥1 χ
−1(m) exp(−πm2t/p)

and if χ(−1) = −1 we have

g(χ) = p1/2i

∑
m≥1 χ(m)m exp(−πm2/pt)

t3/2
∑

m≥1 χ
−1(m)m exp(−πn2t/p)

for any t such that the denominator does not vanish.
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Note that the optimal choice of t is t = 1, and (at least for p prime) it
seems that the denominator never vanishes (there are counterexamples
when p is not prime, but apparently only four, see [7]).

It follows from this corollary that g(χ) can be computed numerically

as a complex number in Õ(p1/2) operations. Thus, if χ1 and χ2 are
nontrivial characters such that χ1χ2 6= ε (otherwise J(χ1, χ2) is triv-
ial to compute), the formula J(χ1, χ2) = g(χ1)g(χ2)/g(χ1χ2) allows

the computation of J2 numerically as a complex number in Õ(p1/2)
operations.

To recover J itself as an algebraic number we could either compute
all its conjugates, but this would require more time than the direct
computation of J , or possibly use the LLL algorithm, which although
fast, would also require some time. In practice, if we proceed as above,
we only need J to sufficient accuracy: we perform all the elementary
operations in C, and since we know that at the end the result will be
an integer for which we know an upper bound, we thus obtain a proven
exact result.

More generally, we have generically J5(n, n, n, n, n) = g(ωn)5/g(ω5n),

which can thus be computed in Õ(p1/2) operations. It follows that

S(p; z) can be computed in Õ(p3/2) operations, which is slower than
the elementary method seen above. The main advantage is that we do
not need much storage: more precisely, we want to compute S(p; z) to
sufficiently small accuracy that we can recognize it as an integer, so
a priori up to an absolute error of 0.5. However, we have seen that
(p− 1) | S(p; z): it is thus sufficient to have an absolute error less than
(p−1)/2 thus at worse each of the p−1 terms in the sum to an absolute
error less than 1/2. Since generically |J5(n, n, n, n, n)| = p2, we need
a relative error less than 1/(2p2), so less than 1/(10p2) on each Gauss
sum. In practice of course this is overly pessimistic, but it does not
matter. For p ≤ 109, this means that 19 decimal digits suffice.

The main term in the theta function computation (with t = 1) is
exp(−πm2/p), so we need exp(−πm2/p) ≤ 1/(100p2), say, in other
words πm2/p ≥ 4.7 + 2 log(p), so m2 ≥ p(1.5 + 0.7 log(p)).

This means that we will need the values of ω(m) only up to this limit,
of the order of O((p log(p))1/2), considerably smaller than p. Thus,
instead of computing a full discrete logarithm table, which takes some
time but more importantly a lot of space, we compute only discrete
logarithms up to that limit, using specific algorithms for doing so which
exist in the literature, some of which being quite easy.

A straightforward implementation of this method gives timings for
k = 2, 3, 4, and 5 of 0.02, 0.40, 16.2, and 663 seconds respectively,

compatible with Õ(p3/2) time. This is faster than the completely näıve
method, but slower than the method explained above. Its advantage is
that it requires much less space. For p around 107, however, it is much
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too slow so this method is not much use. We will see that its usefulness
is mainly in the context where it was invented, i.e., for L-functions of
Dirichlet characters.

5.4. Using the Gross–Koblitz Formula. This section is of a consid-
erably higher mathematical level than the preceding ones, but is very
important since it gives the best method for computing Gauss (and
Jacobi) sums. We refer to [5] for complete details, and urge the reader
to try to understand what follows.

In the preceding sections, we have considered Gauss sums as belong-
ing to a number of different rings: the ring Z[ζq−1, ζp] or the field C of
complex numbers, and for Jacobi sums the ring Z[ζq−1], but also the
ring Z[X]/(Xq−1 − 1), and again the field C.

In number theory there exist other algebraically closed fields which
are useful in many contexts, the fields C` of `-adic numbers, one for
each prime number `. These fields come with a topology and analysis
which are rather special: one of the main things to remember is that a
sequence of elements tends to 0 if and only the `-adic valuation of the
elements (the largest exponent of ` dividing them) tends to infinity.
For instance 2m tends to 0 in C2, but in no other C`, and 15m tends to
0 in C3 and in C5.

The most important subrings of C` are the ring Z` of `-adic integers,
the elements of which can be written as x = a0 + a1`+ · · ·+ ak`

k + · · ·
with aj ∈ [0, `− 1], and its field of fractions Q`, which contains Q.

In dealing with Gauss and Jacobi sums over Fq with q = pf , the only
C` which is of use for us is the one with ` = p (in highbrow language, we
are going to use implicitly crystalline p-adic methods, while for ` 6= p
it would be étale `-adic methods).

Apart from this relatively strange topology, many definitions and
results valid on C have analogues in Cp. The main object that we will
need in our context is the analogue of the gamma function, naturally
called the p-adic gamma function, in the present case due to Morita
(there is another one, see [5]), and denoted Γp. Its definition is in fact
quite simple:

Definition 5.5. For s ∈ Zp we define

Γp(s) = lim
m→s

(−1)m
∏

0≤k<m
p-k

k ,

where the limit is taken over any sequence of positive integers m tending
to s for the p-adic topology.

It is of course necessary to show that this definition makes sense,
but this is not difficult, and most of the important properties of Γp(s),
analogous to those of Γ(s), can be deduced from it.
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However we need a much deeper property of Γp(s) known as the
Gross–Koblitz formula: it is in fact an analogue of a formula for Γ(s)
known as the Chowla–Selberg formula, and it is also closely related to
the Davenport–Hasse relations that we have seen above.

The proof of the GK formula was initially given using tools of crys-
talline cohomology, but an elementary proof due to Robert now exists,
see for instance [5] once again.

The GK formula tells us that certain products of p-adic gamma
functions at rational arguments are in fact algebraic numbers, more
precisely Gauss sums (explaining their importance for us). This is
quite surprising since usually transcendental functions such as Γp take
transcendental values.

To give a specific example, we have Γ5(1/4)2 = −2 +
√
−1, where√

−1 is the square root in Z5 congruent to 3 modulo 5.
Before stating the formula we need to collect a number of facts, both

on classical algebraic number theory and on p-adic analysis. None are
difficult to prove, see [4] and [5]. Recall that q = pf .

• We let K = Q(ζp) and L = K(ζq−1) = Q(ζq−1, ζp) = Q(ζp(q−1)), so
that L/K is an extension of degree φ(q−1). There exists a unique prime
ideal p of K above p, and we have p = (1−ζp)ZK and pp−1 = pZK , and
ZK/p ' Fp. The prime ideal p splits into a product of g = φ(q − 1)/f
prime ideals Pj of degree f in the extension L/K, i.e., pZL = P1 · · ·Pg,
and for any prime ideal P = Pj we have ZL/P ' Fq.

Exercise: Prove directly that for any f we have f | φ(pf − 1).

• Fix one of the prime ideals P as above. There exists a unique group
isomorphism ω = ωP from (ZL/P)∗ to the group of (q − 1)st roots of
unity in L, such that for all x ∈ (ZL/P)∗ we have ω(x) ≡ x (mod P).
It is called the Teichmüller character, and it can be considered as a
character of order q− 1 on F∗q ' (ZL/P)∗. We can thus instantiate the

definition of a Gauss sum over Fq by defining it as g(ω−rP ) ∈ L.

• Let ζp be a primitive pth root of unity in Cp, fixed once and for
all. There exists a unique π ∈ Z[ζp] satisfying πp−1 = −p, π ≡ 1 − ζp
(mod π2), and we set Kp = Qp(π) = Qp(ζp), and LP the completion
of L at P. The field extension LP/Kp is Galois, with Galois group
isomorphic to Z/fZ (which is the same as the Galois group of Fq/Fp,
where Fp (resp., Fq) is the so-called residue field of K (resp., L)).

• We set the following:

Definition 5.6. We define the p-adic Gauss sum by

gq(r) =
∑

x∈LP, xq−1=1

x−rζ
TrLP/Kp (x)

p ∈ LP .

Note that this depends on the choice of ζp, or equivalently of π.
Since gq(r) and g(ω−rP ) are algebraic numbers, it is clear that they
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are equal, although viewed in fields having different topologies. Thus,
results about gq(r) translate immediately into results about g(ω−rP ),
hence about general Gauss sums over finite fields.

The Gross–Koblitz formula is as follows:

Theorem 5.7 (Gross–Koblitz). Denote by s(r) the sum of digits to
base p of the integer r mod (q − 1), i.e., of the unique integer r′ such
that r′ ≡ r (mod q − 1) and 0 ≤ r′ < q − 1. We have

gq(r) = −πs(r)
∏

0≤i<f

Γp

({
pf−ir

q − 1

})
,

where {x} denotes the fractional part of x.

Let us show how this can be used to compute Gauss or Jacobi sums,
and in particular our sum S(q; z). Assume for simplicity that f =
1, in other words that q = p: the right hand side is thus equal to
−πs(r)Γp({pr/(p−1)}). Since we can always choose r such that 0 ≤ r <
p−1, we have s(r) = r and {pr/(p−1)} = {r+ r/(p−1)} = r/(p−1),
so the RHS is −πrΓp(r/(p − 1)). Now an easy property of Γp is that
it is differentiable: recall that p is “small” in the p-adic topology, so
r/(p − 1) is close to −r, more precisely r/(p − 1) = −r + pr/(p − 1)
(this is how we obtained it in the first place!). Thus in particular, if
p > 2 we have the Taylor expansion

Γp(r/(p− 1)) = Γp(−r) + (pr/(p− 1))Γ′p(−r) +O(p2)

= Γp(−r)− prΓ′p(−r) +O(p2) .

Since gq(r) depends only on r modulo p − 1, we will assume that
0 ≤ r < p− 1. In that case it is easy to show from the definition that

Γp(−r) = 1/r! and Γ′p(−r) = (−γp +Hr)/r! ,

where Hr =
∑

1≤n≤r 1/n is the harmonic sum, and γp = −Γ′p(0) is the
p-adic analogue of Euler’s constant.

Exercise: Prove these formulas, as well as the congruence for γp
given below.

There exist infinite (p-adic) series enabling accurate computation
of γp, but since we only need it modulo p, we use the easily proved
congruence γp ≡ ((p − 1)! + 1)/p = Wp (mod p), the so-called Wilson
quotient.

Thus the GK formula tells us that for 0 ≤ r < p− 1 we have

gq(r) = −π
r

r!
(1− pr(Hr −Wp) +O(p2)) .

It follows that for (p− 1) - 5r we have

J(−r,−r,−r,−r,−r) =
g(ωP)5

g(ω5
P)

=
gq(r)

5

gq(5r)
= πf(r)(a+ bp+O(p2)) ,
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where a and b will be computed below and

f(r) = 5r − (5r mod p− 1) = 5r − (5r − (p− 1)b5r/(p− 1)c)
= (p− 1)b5r/(p− 1)c ,

so that πf(r) = (−p)b5r/(p−1)c since πp−1 = −p. Since we want the result
modulo p2, we consider three intervals together with special cases:

(1) If r > 2(p− 1)/5 but (p− 1) - 5r, we have

J(−r,−r,−r,−r,−r) ≡ 0 (mod p2) .

(2) If (p− 1)/5 < r < 2(p− 1)/5 we have

J(−r,−r,−r,−r,−r) ≡ (−p)(5r − (p− 1))!

r!5
(mod p2) .

(3) If 0 < r < (p − 1)/5 we have f(r) = 0 and 0 ≤ 5r < (p − 1)
hence

J(−r,−r,−r,−r,−r) =
(5r)!

r!5
(1− 5pr(Hr −Wp) +O(p2))·

· (1 + 5pr(H5r −Wp) +O(p2))

≡ (5r)!

r!5
(1 + 5pr(H5r −Hr)) (mod p2) .

(4) Finally, if r = a(p− 1)/5 we have J(−r,−r,−r,−r,−r) = p4 ≡
0 (mod p2) if a = 0, and otherwise J(−r,−r,−r,−r,−r) =
−gq(r)5/p, and since the p-adic valuation of gq(r) is equal to
r/(p− 1) = a/5, that of J(−r,−r,−r,−r,−r) is equal to a− 1,
which is greater or equal to 2 as soon as a ≥ 3. For a = 2, i.e.,
r = 2(p− 1)/5, we thus have

J(−r,−r,−r,−r,−r) ≡ p
1

r!5
≡ (−p)(5r − (p− 1))!

r!5
(mod p2) ,

which is the same formula as for (p − 1)/5 < r ≤ 2(p − 1)/5.
For a = 1, i.e., r = (p− 1)/5, we thus have

J(−r,−r,−r,−r,−r) ≡ − 1

r!5
(1− 5pr(Hr −Wp)) (mod p2) ,

while on the other hand

(5r)! = (p− 1)! = −1 + pWp ≡ −1− p(p− 1)Wp ≡ −1− 5prWp ,

and H5r = Hp−1 ≡ 0 (mod p) (Wolstenholme’s congruence,
easy), so

(5r)!

r!5
(1 + 5pr(H5r −Hr)) ≡ −

1

r!5
(1− 5prHr)(1 + 5prWp)

≡ − 1

r!5
(1− 5pr(Hr −Wp)) (mod p2) ,

which is the same formula as for 0 < r < (p− 1)/5.
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An important point to note is that we are working p-adically, but
the final result S(p; z) being an integer, it does not matter at the end.
There is one small additional detail to take care of: we have

S(p; z) =
∑

0≤r≤p−2

ω−r(z)J(r, r, r, r, r)

=
∑

0≤r≤p−2

ωr(z)J(−r,−r,−r,−r,−r) ,

so we must express ωr(z) in the p-adic setting. Since ω = ωP is the
Teichmüller character, in the p-adic setting it is easy to show that ω(z)

is the p-adic limit of zp
k

as k → ∞. in particular ω(z) ≡ z (mod p),
but more precisely ω(z) ≡ zp (mod p2).

Exercise: Let p ≥ 3. Assume that z ∈ Zp \ pZp (for instance that

z ∈ Z \ pZ). Prove that zp
k

has a p-adic limit ω(z) when k →∞, that
ωp−1(z) = 1, that ω(z) ≡ z (mod p), and ω(z) ≡ zp (mod p2).

We have thus proved the following

Proposition 5.8. We have

S(p; z) ≡
∑

0<r≤(p−1)/5

(5r)!

r!5
(1 + 5pr(H5r −Hr))z

pr

− p
∑

(p−1)/5<r≤2(p−1)/5

(5r − (p− 1))!

r!5
zr (mod p2) .

In particular

S(p; z) ≡
∑

0<r≤(p−1)/5

(5r)!

r!5
zr (mod p) .

Remarks.

(1) Note that, as must be the case, all mention of p-adic numbers
has disappeared from this formula. We used the p-adic setting
only in the proof. It can be proved “directly”, but with some
difficulty.

(2) We used the Taylor expansion only to order 2. It is of course
possible to use it to any order, thus giving a generalization of
the above proposition to any power of p.

The point of giving all these details is as follows: it is easy to show
that (p − 1) | S(p; z) (in fact we have seen this in the elementary
method above). We can thus easily compute S(p; z) modulo p2(p− 1).
On the other hand, it is possible to prove (but not easy, it is part of
the Weil conjectures proved by Deligne), that |S(p; z) − p4| < 4p5/2.
It follows that as soon as 8p5/2 < p2(p − 1), in other words p ≥ 67,
the computation that we perform modulo p2 is sufficient to determine
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S(p; z) exactly. It is clear that the time to perform this computation

is Õ(p), and in fact much faster than any that we have seen.

In fact, implementing in a reasonable way the algorithm given by
the above proposition gives timings for p ≈ 10k for k = 2, 3, 4, 5, 6, 7,
and 8 of 0, 0.01, 0.03, 0.21, 2.13, 21.92, and 229.6 seconds respectively,

of course much faster and compatible with Õ(p) time. The great ad-
ditional advantage is that we use very small memory. This is therefore
the best known method.

Numerical example: Choose p = 106 + 3 and z = 2. In 2.13
seconds we find that S(p; z) ≡ a (mod p2) with a = 356022712041.
Using the Chinese remainder formula

S(p; z) = p4 + ((a− (1 + a)p2) mod ((p− 1)p2)) ,

we immediately deduce that

S(p; z) = 1000012000056356142712140 .

Here is a summary of the timings (in seconds) that we have men-
tioned:

k 2 3 4 5 6 7 8

Näıve 0.03 1.56 149 ∗ ∗ ∗ ∗
Theta 0.02 0.40 16.2 663 ∗ ∗ ∗

Mod Xq−1 − 1 0 0.02 0.08 0.85 9.90 123 ∗
Gross–Koblitz 0 0.01 0.03 0.21 2.13 21.92 229.6

Time for computing S(p; z) for p ≈ 10k

6. Gauss and Jacobi Sums over Z/NZ

Another context in which one encounters Gauss sums is over finite
rings such as Z/NZ. The theory coincides with that over Fq when
q = p = N is prime, but is rather different otherwise. These other
Gauss sums enter in the important theory of Dirichlet characters.

6.1. Definitions. We recall the following definition:

Definition 6.1. Let χ be a (multiplicative) character from the multi-
plicative group (Z/NZ)∗ of invertible elements of Z/NZ to the complex
numbers C. We denote by abuse of notation again by χ the map from
Z to C defined by χ(x) = χ(x mod N) when x is coprime to N , and
χ(x) = 0 if x is not coprime to N , and call it the Dirichlet character
modulo N associated to χ.

It is clear that a Dirichlet character satisfies χ(xy) = χ(x)χ(y) for
all x and y, that χ(x + N) = χ(x), and that χ(x) = 0 if and only if x
is not coprime with N . Conversely, it immediate that these properties
characterize Dirichlet characters.
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A crucial notion (which has no equivalent in the context of characters
of F∗q) is that of primitivity :

Assume that M | N . If χ is a Dirichlet character modulo M , we can
transform it into a character χN modulo N by setting χN(x) = χ(x) if x
is coprime to N , and χN(x) = 0 otherwise. We say that the characters
χ and χN are equivalent. Conversely, if ψ is a character modulo N , it
is not always true that one can find χ modulo M such that ψ = χN . If
it is possible, we say that ψ can be defined modulo M .

Definition 6.2. Let χ be a character modulo N . We say that χ is a
primitive character if χ cannot be defined modulo M for any proper
divisor M of N , i.e., for any M | N such that M 6= N .

Exercise: Assume that N ≡ 2 (mod 4). Show that there do not
exist any primitive characters modulo N .

Exercise: Assume that pa | N . Show that if χ is a primitive char-
acter modulo N , the order of χ (the smallest k such that χk is a trivial
character) is divisible by pa−1.

As we will see, questions about general Dirichlet characters can al-
ways be reduced to questions about primitive characters, and the latter
have much nicer properties.

Proposition 6.3. Let χ be a character modulo N . There exists a
divisor f of N called the conductor of χ (this f has nothing to do with
the f used above such that q = pf), having the following properties:

(1) The character χ can be defined modulo f , in other words there
exists a character ψ modulo f such that χ = ψN using the
notation above.

(2) f is the smallest divisor of N having this property.
(3) The character ψ is a primitive character modulo f .

There is also the notion of trivial character modulo N : however we
must be careful here, and we set the following:

Definition 6.4. The trivial character modulo N is the Dirichlet char-
acter associated with the trivial character of (Z/NZ)∗. It is usually
denoted by χ0 (but be careful, the index N is implicit, so χ0 may rep-
resent different characters), and its values are as follows: χ0(x) = 1 if
x is coprime to N , and χ0(x) = 0 if x is not coprime to N .

In particular, χ0(0) = 0 if N 6= 1. The character χ0 can also be
characterized as the only character modulo N of conductor 1.

Definition 6.5. Let χ be a character modulo N . The Gauss sum
associated to χ and a ∈ Z is

g(χ, a) =
∑

x mod N

χ(x)ζaxN ,

and we write simply g(χ) instead of g(χ, 1).
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The most important results concerning these Gauss sums is the fol-
lowing:

Proposition 6.6. Let χ be a character modulo N .

(1) If a is coprime to N we have

g(χ, a) = χ−1(a)g(χ) = χ(a)g(χ) ,

and more generally g(χ, ab) = χ−1(a)g(χ, b) = χ(a)g(χ, b).
(2) If χ is a primitive character, we have

g(χ, a) = χ(a)g(χ)

for all a, in other words, in addition to (1), we have g(χ, a) = 0
if a is not coprime to N .

(3) If χ is a primitive character, we have |g(χ)|2 = N .

Note that (1) is trivial, and that since χ(a) has modulus 1 when a is

coprime to N , we can write indifferently χ−1(a) or χ(a). On the other
hand, (2) is not completely trivial.

We leave to the reader the easy task of defining Jacobi sums and of
proving the easy relations between Gauss and Jacobi sums.

6.2. Reduction to Prime Gauss Sums. A fundamental and little-
known fact is that in the context of Gauss sums over Z/NZ (as opposed
to Fq), one can in fact always reduce to prime N . First note (with
proof) the following easy result:

Proposition 6.7. Let N = N1N2 with N1 and N2 coprime, and let χ
be a character modulo N .

(1) There exist unique characters χi modulo Ni such that χ = χ1χ2

in an evident sense, and if χ is primitive, the χi will also be
primitive.

(2) We have the identity (valid even if χ is not primitive):

g(χ) = χ1(N2)χ2(N1)g(χ1)g(χ2) .

Proof. (1). Since N1 and N2 are coprime there exist u1 and u2
such that u1N1 + u2N2 = 1. We define χ1(x) = χ(xu2N2 + u1N1) and
χ2(x) = χ(xu1N1 + u2N2). We leave to the reader to check (1) using
these definitions.

(2). When xi ranges modulo Ni, x = x1u2N2+x2u1N1 ranges modulo
N (check it, in particular that the values are distinct!), and χ(x) =
χ1(x)χ2(x) = χ1(x1)χ2(x2). Furthermore,

ζN = exp(2πi/N) = exp(2πi(u1/N2 + u2/N1)) = ζu2N1
ζu1N2

,
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hence

g(χ) =
∑

x mod N

χ(x)ζxN

=
∑

x1 mod N1, x2 mod N2

χ1(x1)χ2(x2)ζ
u2x1
N1

ζu1x2N2

= g(χ1;u2)g(χ2;u1) = χ−11 (u2)χ
−1
2 (u1)g(χ1)g(χ2) ,

so the result follows since N2u2 ≡ 1 (mod N1) and N1u1 ≡ 1 (mod N2).
ut

Thanks to the above result, the computation of Gauss sums modulo
N can be reduced to the computation of Gauss sums modulo prime
powers.

Here a remarkable simplification occurs, due to Odoni: Gauss sums
modulo pa for a ≥ 2 can be “explicitly computed”, in the sense that
there is a direct formula not involving a sum over pa terms for comput-
ing them. Although the proof is not difficult, we do not give it, and
refer instead to [6] which can be obtained from the author. We use the
classical notation e(x) to mean e2πix.

Theorem 6.8 (Odoni et al.). Let χ be a primitive character modulo
pn.

(1) Assume that p ≥ 3 is prime and n ≥ 2. Write χ(1 + p) =
e(−b/pn−1) with p - b. Define

A(p) =
p

logp(1 + p)
and B(p) = A(p)(1− logp(A(p))) ,

except when pn = 33, in which case we define B(p) = 10. Then

g(χ) = pn/2e

(
bB(p)

pn

)
χ(b) ·

1 if n ≥ 2 is even,(
b

p

)
ip(p−1)/2 if n ≥ 3 is odd.

(2) Let p = 2 and assume that n ≥ 4. Write χ(1 + p2) = e(b/pn−2)
with p - b. Define

A(p) = − p2

logp(1 + p2)
and B(p) = A(p)(1− logp(A(p))) ,

except when pn = 24, in which case we define B(p) = 13. Then

g(χ) = pn/2e

(
bB(p)

pn

)
χ(b)·


e

(
b

8

)
if n ≥ 4 is even,

e

(
(b2 − 1)/2 + b

8

)
if n ≥ 5 is odd.

(3) If pn = 22, or pn = 23 and χ(−1) = 1, we have g(χ) = pn/2,
and if pn = 23 and χ(−1) = −1 we have g(χ) = pn/2i.
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Thanks to this theorem, we see that the computation of Gauss sums
in the context of Dirichlet characters can be reduced to the computation
of Gauss sums modulo p for prime p. This is of course the same as the
computation of a Gauss sum for a character of F∗p.

We recall the available methods for computing a single Gauss sum
of this type:

(1) The näıve method, time Õ(p) (applicable in general, time Õ(N)).

(2) Using the Gross–Koblitz formula, also time Õ(p), but the im-
plicit constant is much smaller, and also computations can be
done modulo p or p2 for instance, if desired (applicable only to
N = p, or in the context of finite fields).

(3) Using theta functions, time Õ(p1/2) (applicable in general, time

Õ(N1/2)).

7. Dirichlet L-Series

7.1. Definition and Main Properties. Let χ be a Dirichlet charac-
ter modulo N . We define the L-function attached to χ as the complex
function

L(χ, s) =
∑
n≥1

χ(n)

ns
.

Since |χ(n)| ≤ 1, it is clear that L(χ, s) converges absolutely for <(s) >
1. Furthermore, since χ is multiplicative, as for the Riemann zeta
function we have an Euler product

L(χ, s) =
∏
p

1

1− χ(p)/ps
.

The denominator of this product being generically of degree 1, this is
also called an L-function of degree 1, and conversely, with a suitable
definition of the notion of L-function, one can show that these are the
only L-functions of degree 1.

If f is the conductor of χ and χf is the character modulo f equivalent
to χ, it is clear that

L(χ, s) =
∏

p|N,p-f

(1− χf (p)p−s)L(χf , s) ,

so if desired we can always reduce to primitive characters, and this is
what we will do in general.

Dirichlet L-series have important analytic and arithmetic properties,
some of them conjectural (such as the Riemann Hypothesis), which
should (again conjecturally) be shared by all global L-functions, see
the discussion in the introduction. We first give the following:

Theorem 7.1. Let χ be a primitive character modulo N , and let e = 0
or 1 be such that χ(−1) = (−1)e.
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(1) (Analytic continuation.) The function L(χ, s) can be analyti-
cally continued to the whole complex plane into a meromorphic
function, which is in fact holomorphic except in the special case
N = 1, L(χ, s) = ζ(s), where it has a unique pole, at s = 1,
which is simple with residue 1.

(2) (Functional equation.) There exists a functional equation of
the following form: letting γR(s) = π−s/2Γ(s/2), we set

Λ(χ, s) = N (s+e)/2γR(s+ e)L(χ, s) ,

where e is as above. Then

Λ(χ, 1− s) = W (χ)Λ(χ, s) ,

where W (χ), the so-called root number, is a complex number
of modulus 1 given by the formula W (χ) = g(χ)/(ieN1/2).

(3) (Special values.) For each integer k ≥ 1 we have the special
values

L(χ, 1− k) = −Bk(χ)

k
− δN,1δk,1 ,

where δ is the Kronecker symbol, and Bk(χ) are easily com-
putable algebraic numbers. In particular, when k 6≡ e (mod 2)
we have L(χ, 1− k) = 0 (except when k = N = 1).

By the functional equation this is equivalent to the formula
for k ≡ e (mod 2), k ≥ 1:

L(χ, k) = (−1)k−1+(k+e)/2W (χ)
2k−1πkBk(χ)

mk−1/2k!
.

7.2. Computational Issues. There are several problems that we want
to solve, which are best understood in the context of more general L-
functions. The first, but not necessarily the most important, is the
numerical computation of L(χ, s) for given χ and s. This problem is
of very varying difficulty depending on the size of N , the conductor
of χ, and the imaginary part of s (note that if the real part of s is
quite large, the defining series for L(χ, s) converges quite well, if not
exponentially fast, so there is no problem in that range, and by the
functional equation the same is true if the real part of 1 − s is quite
large).

The problems for =(s) large are quite specific, and are already cru-
cial in the case of the Riemann zeta function ζ(s). It is by an effi-
cient management of this problem (for instance by using the so-called
Riemann–Siegel formula) that one is able to compute billions of non-
trivial zeros of ζ(s). We will not consider them here, but concentrate
on reasonable ranges of s.

The second problem is more specific to general L-functions: in the
general situation, we are given an L-function by an Euler product
known outside of a finite and small number of “bad primes”. Using
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recipes dating to the late 1960’s and well explained in a beautiful pa-
per of Serre [11], one can give the “gamma factor” γ(s), and some (but
not all) the information about the “conductor”, which is the exponen-
tial factor.

Let us ignore these problems and assume that we know all the bad
primes, gamma factor, conductor, and root number. Note that if we
know the gamma factor and the bad primes, using the formulas that
we will give below for different values of the argument it is easy to
recover the conductor and the root number. What is most difficult to
obtain are the Euler factors at the bad primes, and this is the object
of current work.

To state the next theorem, which for the moment we state for Dirich-
let L-functions, we need still another important special function:

Definition 7.2. For x > 0 we define the incomplete gamma function
Γ(s, x) by

Γ(s, x) =

∫ ∞
x

tse−t
dt

t
.

Note that this integral converges for all s ∈ C, and that it tends to
0 exponentially fast when x → ∞, more precisely Γ(s, x) ∼ xs−1e−x.
In addition (but this would carry us too far here) there are many effi-
cient methods to compute it; see however the section on inverse Mellin
transforms below.

Theorem 7.3. Let χ be a primitive character modulo N . For all A > 0
we have:

Γ

(
s+ e

2

)
L(χ, s) = δN,1π

s/2

(
A(s−1)/2

s− 1
− As/2

s

)
+
∑
n≥1

χ(n)

ns
Γ

(
s+ e

2
,
πn2A

N

)
+W (χ)

( π
N

)s−1/2∑
n≥1

χ(n)

n1−s Γ

(
1− s+ e

2
,
πn2

AN

)
.

Remarks.

(1) Thanks to this theorem, we can compute numerical values of

L(χ, s) (for s in a reasonable range) in time Õ(N1/2).
(2) The optimal value of A is A = 1, but the theorem is stated in

this form for several reasons, one of them being that by varying
A (for instance taking A = 1.1 and A = 0.9) one can check the
correctness of the implementation, or even compute the root
number W (χ) if it is not known.

(3) To compute values of L(χ, s) when =(s) is large, one does not
use the theorem as stated, but variants, see [10].
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(4) The above theorem, called the approximate functional equation,
evidently implies the functional equation itself, so it seems to be
more precise; however this is an illusion since one can show that
under very mild assumptions functional equations in a large
class imply corresponding approximate functional equations.

In fact, let us make this last statement completely precise. For the
sake of simplicity we will assume that the L-functions have no poles
(this corresponds for Dirichlet L-functions to the requirement that χ
not be the trivial character). We begin by the following (where we
restrict to certain kinds of gamma products, but it is easy to general-
ize; incidentally recall the duplication formula for the gamma function
Γ(s/2)Γ((s+1)/2) = 21−sπ1/2Γ(s), which allows the reduction of factors
of the type Γ(s+ a) to several of the type Γ(s/2 + a′) and conversely).

Definition 7.4. Recall that we have defined ΓR(s) = π−s/2Γ(s/2),
which is the gamma factor attached to L-functions of even characters,
for instance to ζ(s). A gamma product is a function of the type

γ(s) = f s/2
∏

1≤i≤d

ΓR(s+ bi) ,

where f > 0 is a real number. The number d of gamma factors is called
the degree of γ(s).

Note that the bi may not be real numbers, but in the case of L-
functions attached to motives, they will always be, and in fact be in-
tegers.

Proposition 7.5. Let γ be a gamma product.

(1) There exists a function W (t) called the inverse Mellin transform
of γ such that

γ(s) =

∫ ∞
0

tsW (t) dt/t

for <(s) sufficiently large (greater than the real part of the right-
most pole of γ(s) suffices).

(2) W (t) is given by the following Mellin inversion formula for t >
0:

W (t) =M−1(γ)(t) =
1

2πi

∫ σ+i∞

σ−i∞
t−sγ(s) ds ,

for any σ larger than the real part of the poles of γ(s).
(3) W (t) tends to 0 exponentially fast when t → +∞. More pre-

cisely, there exist constants A and B (which can easily be made
explicit) such that

W (t) ∼ AtB exp(−πd(t/f 1/2)2/d)

as t→∞.
47



Definition 7.6. Let γ(s) be a gamma product and W (t) its inverse
Mellin transform. The incomplete gamma product γ(s, x) is defined
for x > 0 by

γ(s, x) =

∫ ∞
x

tsW (t)
dt

t
.

Note that this integral always converges since W (t) tends to 0 expo-
nentially fast when t → ∞. In addition, thanks to the above proposi-
tion it is immediate to show that as x→∞ we have

γ(s, x) ∼ A′xB
′
exp(−πd(x/f 1/2)2/d)

for some other constants A′ and B′, i.e., with the same exponential
decay as W (t).

The main theorem, essentially due to Lavrik, which is an exercise in
complex integration is as follows (recall that a function f is of finite
order α ≥ 0 if for all ε > 0 and sufficiently large |z| we have |f(z)| ≤
exp(|z|α+ε)):
Theorem 7.7. For i = 1 and i = 2, let Li(s) =

∑
n≥1 ai(n)n−s be

Dirichlet series converging in some right half-plane <(s) ≥ σ0. For
i = 1 and i = 2, let γi(s) be gamma products having the same degree
d. Assume that the functions Λi(s) = γi(s)Li(s) extend analytically
to C into holomorphic functions of finite order, and that we have the
functional equation

Λ1(k − s) = w · Λ2(s)

for some constant w ∈ C∗ and some real number k.
Then for all A > 0, we have

Λ1(s) =
∑
n≥1

a1(n)

ns
γ1(s, nA) + w

∑
n≥1

a2(n)

nk−s
γ2

(
k − s, n

A

)
and symmetrically

Λ2(s) =
∑
n≥1

a2(n)

ns
γ2

(
s,
n

A

)
+ w−1

∑
n≥1

a1(n)

nk−s
γ1(k − s, nA) ,

where γi(s, x) are the corresponding incomplete gamma products.

Note that, as already mentioned, it is immediate to modify this the-
orem to take into account possible poles of Li(s).

Since the incomplete gamma products γi(s, x) tend to 0 exponen-
tially fast when x → ∞, the above formulas are rapidly convergent
series. We can make this more precise: if we write as above γi(s, x) ∼
A′ix

B′i exp(−πd(x/f
1/2
i )2/d), since the convergence of the series is domi-

nated by the exponential term, choosing A = 1, to have the nth term of
the series less than e−D, say, we need (approximately) πd(n/f 1/2)2/d >
D, in other words n > (D/(πd))d/2f 1/2, with f = max(f1, f2). Thus, if
the “conductor” f is large, we may have some trouble. But this stays
reasonable for f < 108, say.
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The above argument leads to the belief that, apart from special val-
ues which can be computed by other methods, the computation of val-
ues of L-functions of conductor f requires at least C · f 1/2 operations.
It has however been shown by Hiary (see [8]), that if the “rational
part” of f is far from squarefree (for instance if f = πm3 for Dirich-

let L-functions), the computation can be done faster (in Õ(m) in the
case f = πm3), at least in the case of Dirichlet L-functions. This is
perhaps related to Odoni’s Theorem 6.8 on the computation of Gauss
sums modulo prime powers.

7.3. Inverse Mellin Transforms. We thus see that it is necessary
to compute inverse Mellin transforms of some common gamma fac-
tors. Note that the exponential factors (either involving the conduc-
tor and/or π) are easily taken into account: if γ(s) = M(W )(s) =∫∞
0
W (t)ts dt/t is the Mellin transform of W (t), we have for a > 0,

setting u = at:∫ ∞
0

W (at)ts dt/t =

∫ ∞
0

W (u)usa−s du/u = a−sγ(s) ,

so the inverse Mellin transform of a−sγ(s) is simply W (at).
As we have seen, there exists an explicit formula for the inverse Mellin

transform, which is immediate from the Fourier inversion formula. We
will see that although this looks quite technical, it is in practice very
useful for computing inverse Mellin transforms.

Let us look at the simplest examples (omitting the exponential fac-
tors thanks to the above remark):

(1) γ(s) = Γ(s/2) (occurs for L-functions of even characters, and
in particular for ζ(s)). We have

∫∞
0
e−tts/2 dt/t = Γ(s/2), so

setting t = u2 we obtain
∫∞
0
e−u

2
us 2du/u = Γ(s/2), hence

M−1(Γ(s/2)) = 2e−x
2

.

(2) γ(s) = Γ((s+ 1)/2) (occurs for L-functions of odd characters).

The above formula gives
∫∞
0
e−u

2
us+1 2du/u = Γ((s + 1)/2),

hence

M−1(Γ((s+ 1)/2)) = 2xe−x
2

.

(3) γ(s) = Γ(s) (occurs for L-functions attached to modular forms
and to elliptic curves). Here we know directly by definition of
the gamma function that

M−1(Γ(s)) = e−x .

(4) When there are more Γ-factors, we must not forget to use
the duplication formula for the gamma function Γ(s/2)Γ((s +
1)/2) = 21−sΓ(1/2)Γ(s). For instance, it is clear that

M−1(Γ(s/2)Γ((s+ 1)/2)) = 2π1/2e−2x .
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(5) γ(s) = Γ(s/2)2. Here we introduce a well-known special func-
tion, the K-Bessel function. Of course it is just a name, but
it can be computed quite efficiently and can be found in many
computer algebra packages. We have

M−1(Γ(s/2))2 = 4K0(2x)

(this can be taken as a definition of the function K0).
(6) γ(s) = Γ(s)2. From the preceding formula we deduce that

M−1(Γ(s)2) = 2K0(2x
1/2) .

(7) γ(s) = Γ(s)Γ(s − 1). Defining K1(x) = −K ′0(x), from the
preceding formula we deduce that

M−1(Γ(s)Γ(s− 1)) = 2K1(2x
1/2)/x1/2 .

Exercise: Prove this last formula.

It is clear however that when the gamma factor is more complicated,
we cannot write such “explicit” formulas, for instance what must be
done for γ(s) = Γ(s)Γ(s/2) or γ(s) = Γ(s/2)3?. In fact all the above
formulas involving K-Bessel functions are “cheats” in the sense that we
have simply given a name to these inverse Mellin transform, without
explaining how to compute them.

However the Mellin inversion formula does provide such a method.
The main point to remember (apart of course from the crucial use of the
Cauchy residue formula and contour integration), is that the gamma
function tends to zero exponentially fast on vertical lines, uniformly in
the real part (this may seem surprising if you have never seen it since
the gamma function grows so fast on the real axis). More precisely, if
σ ∈ R is fixed, then as |t| → ∞ we have precisely

|Γ(σ + it)| ∼ |t|σ−1/2e−π|t|/2(2π)1/2 .

This exponential decrease implies that in the Mellin inversion formula
we can shift the line of integration without changing the value of the
integral, as long as we take into account the residues of the poles which
are encountered along the way.

The line <(s) = σ has been chosen so that σ is larger than the real
part of any pole of γ(s), so shifting to the right does not bring anything.
On the other hand, shifting towards the left shows that for any r < 0
not a pole of γ(s) we have

W (t) =
∑

s0 pole of γ(s)
<(s0)>r

Ress=s0(t
−sγ(s)) +

1

2πi

∫ r+i∞

r−i∞
t−sγ(s) ds .

Using the reflection formula for the gamma function Γ(s)Γ(1 − s) =
π/ sin(sπ), it is easy to show that if r stays say half-way between the
real part of two consecutive poles of γ(s) then γ(s) will tend to 0

50



exponentially fast on <(s) = r as r → −∞, in other words that the
integral tends to 0 (exponentially fast). We thus have the exact formula

W (t) =
∑

s0 pole of γ(s)

Ress=s0(t
−sγ(s)) .

Let us see the simples examples of this, taken from those given above.

(1) For γ(s) = Γ(s) the poles of Γ(s) are for s0 = −n, n a positive
or zero integer, and since Γ(s) = Γ(s+ n+ 1)/((s+ n)(s+ n−
1) · · · s), the residue at s0 = −n is equal to

tnΓ(1)/((−1)(−2) · · · (−n)) = (−1)ntn/n! ,

so we obtain W (t) =
∑

n≥0(−1)ntn/n! = e−t. Of course we
knew that!

(2) For γ(s) = Γ(s)2, the inverse Mellin transform is 2K0(2x
1/2)

whose expansion we do not yet know. The poles of γ(s) are
again for s0 = −n, but here all the poles are double poles, so
the computation is more complicated. More precisely we have
Γ(s)2 = Γ(s + n + 1)2/((s + n)2(s + n − 1)2 · · · s2), so setting
s = −n+ ε with ε small this gives

Γ(−n+ ε)2 =
Γ(1 + ε)2

ε2
1

(1− ε)2 · · · (n− ε)2

=
1 + 2Γ′(1)ε+O(ε2)

n!2ε2
(1 + 2ε/1)(1 + 2ε/2) · · · (1 + 2ε/n)

=
1 + 2Γ′(1)ε+O(ε2)

n!2ε2
(1 + 2Hnε) ,

where we recall that Hn =
∑

1≤j≤n 1/j is the harmonic sum.

Since t−(−n+ε) = tn−ε = tn(1− ε log(t) +O(ε2)), it follows that

t−(−n+ε)Γ(−n+ ε)2 =
tn

n!2ε2
(1 + ε(2Hn + 2Γ′(1)− log(t))) ,

so that the residue at −n is equal to (tn/n!2)(2Hn + 2Γ′(1) −
log(t)). We thus have 2K0(2t

1/2) =
∑

n≥0(t
n/n!2)(2Hn+2Γ′(1)−

log(t)), hence using the easily proven fact that Γ′(1) = −γ,
where

γ = lim
n→∞

(Hn − log(n)) = 0.57721566490 . . .

is Euler’s constant, this gives finally the expansion

K0(t) =
∑
n≥0

(t/2)2n

n!2
(Hn − γ − log(t/2)) .

Exercise: In a similar manner, or directly from this formula, find
the expansion of K1(t).

Exercise: Like all inverse Mellin transforms of gamma factors, the
function K0(x) tends to 0 exponentially fast as x→∞ (more precisely
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K0(x)
∑

(2x/π)−1/2e−x). Note that this is absolutely not “visible” on
the expansion given above. Use this remark and the above expansion to
write an algorithm which computes Euler’s constant γ very efficiently
to a given accuracy.

It must be remarked that even though the series defining the inverse
Mellin transform converge for all x > 0, one need a large number of
terms before the terms become very small when x is large. For instance,
we have seen that for γ(s) = Γ(s) we have W (t) = M−1(γ)(t) =∑

n≥0(−1)ntn/n! = e−t, but this series is not very good for computing

e−t.

Exercise: Show that to compute e−t to any reasonable accuracy
(even to 1 decimal) we must take at least n > 3.6 · t (e = 2.718...), and
work to accuracy at most e−2t in an evident sense.

The reason that this is not a good way is that there is catastrophic
cancellation in the series. One way to circumvent this problem is to
compute e−t as

e−t = 1/et = 1/
∑
n≥0

tn/n! ,

and the cancellation problem disappears. However this is very special
to the exponential function, and is not applicable for instance to the
K-Bessel function.

Nonetheless, an important result is that for any inverse Mellin trans-
form as above, or more importantly for the corresponding incomplete
gamma product, there exist asymptotic expansions as x→∞, in other
words nonconvergent series which however give a good approximation
if limited to a few terms.

Let us take the simplest example of the incomplete gamma function
Γ(s, x) =

∫∞
x
tse−t dt/t. The power series expansion is easily seen to

be (at least for s not a negative or zero integer, otherwise the formula
must be slightly modified):

Γ(s, x) = Γ(s)−
∑
n≥0

(−1)n
xn+s

n!(s+ n)
,

which has the same type of (bad when x is large) convergence behavior
as e−x. On the other hand, it is immediate to prove by integration by
parts that

Γ(s, x) = e−xxs−1
(

1 +
s− 1

x
+

(s− 1)(s− 2)

x2
+ · · ·

+
(s− 1)(s− 2) · · · (s− n)

xn
+Rn(s, x)

)
,

and one can show that in reasonable ranges of s and x the modulus of
Rn(s, x) is smaller than the first “neglected term” in an evident sense.
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This is therefore quite a practical method for computing these functions
when x is rather large.

Exercise: Explain why the asymptotic series above terminates when
s is a strictly positive integer.

7.4. Hadamard Products and Explicit Formulas. This could be
the subject of a course in itself, so we will be quite brief. I refer to
Mestre’s paper [9] for a precise and general statement (note that there
are quite a number of evident misprints in the paper).

In Theorem 7.7 we assume that the L-series that we consider sat-
isfy a functional equation, together with some mild growth conditions,
in particular that they are of finite order. According to a well-known
theorem of complex analysis, this implies that they have a so-called
Hadamard product. For instance, in the case of the Riemann zeta func-
tion, which is of order 1, we have

ζ(s) =
ebs

s(s− 1)Γ(s/2)

∏
ρ

(
1− s

ρ

)
es/ρ ,

where the product is over all nontrivial zeros of ζ(s) (i.e., such that
0 ≤ <(ρ) ≤ 1), and b = log(2π) − 1 − γ. In fact, this can be written
in a much nicer way as follows: recall that Λ(s) = π−s/2Γ(s/2)ζ(s)
satisfies Λ(1− s) = Λ(s). Then

s(s− 1)Λ(s) =
∏
ρ

(
1− s

ρ

)
,

where it is now understood that the product is taken as the limit as
T →∞ of

∏
|=(ρ)|≤T (1− s/ρ).

However, almost all L-functions that are used in number theory not
only have the above properties, but have also Euler products. Taking
again the example of ζ(s), we have for <(s) > 1 the Euler product
ζ(s) =

∏
p(1 − 1/ps)−1. It follows that (in a suitable range of s) we

have equality between two products, hence taking logarithms, equality
between two sums. In our case the Hadamard product gives

log(Λ(s)) = − log(s(s− 1)) +
∑
ρ

log(1− s/ρ) ,

while the Euler product gives

log(Λ(s)) = −(s/2) log(π) + log(Γ(s/2))−
∑
p

log(1− 1/ps)

= −(s/2) log(π) + log(Γ(s/2)) +
∑
p,k≥1

1/(kpks) ,

Equating the two sides gives a relation between on the one hand a sum
over the nontrivial zeros of ζ(s), and on the other hand a sum over
prime powers.
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In itself, this is not very useful. The crucial idea is to introduce a
test function F which we will choose to the best of our interests, and
obtain a formula depending on F and some transforms of it.

This is in fact quite easy to do, and even though not very useful in
this case, let us perform the computation for Dirichlet L-function of
even primitive characters.

Theorem 7.8. Let χ be an even primitive Dirichlet character of con-
ductor N , and let F be a real function satisfying a number of easy
technical conditions. We have the explicit formula:∑

ρ

Φ(ρ)− 2δN,1

∫ ∞
−∞

F (x) cosh(x/2) dx

= −
∑
p,k≥1

log(p)

pk/2
(χk(p)F (k log(p)) + χk(p)F (−k log(p))

+ F (0) log(N/π)

+

∫ ∞
0

(
e−x

x
F (0)− e−x/4

1− e−x
F (x/2) + F (−x/2)

2

)
dx ,

where we set

Φ(s) =

∫ ∞
−∞

F (x)e(s−1/2)x dx ,

and as above the sum on ρ is a sum over all the nontrivial zeros of
L(χ, s) taken symmetrically (

∑
ρ = limT→∞

∑
|=(ρ)|≤T ).

Remarks.

(1) Write ρ = 1/2 + iγ (if the GRH is true all γ are real, but even
without GRH we can always write this). Then

Φ(ρ) =

∫ ∞
−∞

F (x)eiγx dx = F̂ (γ)

is simply the value at γ of the Fourier transform F̂ of F .
(2) It is immediate to generalize to odd χ or more general L-

functions:

Exercise: After studying the proof, generalize to an arbi-
trary pair of L-functions as in Theorem 7.7.

Proof. The proof is not difficult, but involves a number of inte-
gral transform computations. We will omit some detailed justifications
which are in fact easy but boring.

As in the theorem, we set

Φ(s) =

∫ ∞
−∞

F (x)e(s−1/2)x dx ,

and we first prove some lemmas.
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Lemma 7.9. We have the inversion formulas valid for any c > 1:

F (x) = ex/2
∫ c+i∞

c−i∞
Φ(s)e−sx ds .

F (−x) = ex/2
∫ c+i∞

c−i∞
Φ(1− s)e−sx ds .

Proof. This is in fact a hidden version of the Mellin inversion for-
mula: setting t = ex in the definition of Φ(s), we deduce that Φ(s) =∫∞
0
F (log(t))ts−1/2 dt/t, so that Φ(s + 1/2) is the Mellin transform of

F (log(t)). By Mellin inversion we thus have for sufficiently large σ:

F (log(t)) =
1

2πi

∫ σ+i∞

σ−i∞
Φ(s+ 1/2)t−s ds ,

so changing s into s − 1/2 and t into ex gives the first formula for
c = σ + 1/2 sufficiently large, and the assumptions on F (which we
have not given) imply that we can shift the line of integration to any
c > 1 without changing the integral.

For the second formula, we simply note that

Φ(1− s) =

∫ ∞
−∞

F (x)e−(s−1/2)x dx =

∫ ∞
−∞

F (−x)e(s−1/2)x dx ,

so we simply apply the first formula to F (−x). ut

Corollary 7.10. For any c > 1 and any p ≥ 1 we have∫ c+i∞

c−i∞
Φ(s)p−ks ds = F (k log(p))p−k/2 and∫ c+i∞

c−i∞
Φ(1− s)p−ks ds = F (−k log(p))p−k/2 .

Proof. Simply apply the lemma to x = k log(p). ut

Note that we will also use this corollary for p = 1.

Lemma 7.11. Denote as usual by ψ(s) the logarithmic derivative Γ′(s)/Γ(s)
of the gamma function. We have∫ c+i∞

c−i∞
Φ(s)ψ(s/2) =

∫ ∞
0

(
e−x

x
F (0)− e−x/4

1− e−x
F (x/2)

)
dx and∫ c+i∞

c−i∞
Φ(1− s)ψ(s/2) =

∫ ∞
0

(
e−x

x
F (0)− e−x/4

1− e−x
F (−x/2)

)
dx .

Proof. We use one of the most common integral representations of
ψ, see [5]: we have

ψ(s) =

∫ ∞
0

(
e−x

x
− e−sx

1− e−x

)
dx .

55



Thus, assuming that we can interchange integrals (which is easy to
justify), we have, using the preceding lemma:

∫ c+i∞

c−i∞
Φ(s)ψ(s/2) ds =

∫ ∞
0

(
e−x

x

∫ c+i∞

c−i∞
Φ(s) ds

− 1

1− e−x

∫ c+i∞

c−i∞
Φ(s)e−(s/2)x ds

)
dx

=

∫ ∞
0

(
e−x

x
F (0)− e−x/4

1− e−x
F (x/2)

)
dx ,

proving the first formula, and the second follows by changing F (x) into
F (−x). ut

Proof. (of the theorem). Recall from above that if we set Λ(s) =
N s/2π−s/2Γ(s/2)L(χ, s) we have the functional equation Λ(1 − s) =
W (χ)Λ(χ, s) for some W (χ) of modulus 1.

For c > 1, consider the following integral

J =
1

2iπ

∫ c+i∞

c−i∞
Φ(s)

Λ′(s)

Λ(s)
ds ,

which by our assumptions does not depend on c > 1. We shift the line
of integration to the left (it is easily seen that this is allowed) to the
line <(s) = 1− c, so by the residue theorem we obtain

J = S +
1

2iπ

∫ 1−c+i∞

1−c−i∞
Φ(s)

Λ′(s)

Λ(s)
ds ,

where S is the sum of the residues in the rectangle [1−c, c]×R. We first
have possible poles at s = 0 and s = 1, which occur only for N = 1,
and they contribute to S

−δN,1(Φ(0) + Φ(1)) = −2δN,1

∫ ∞
−∞

F (x) cosh(x/2) dx ,

and of course second we have the contributions from the nontrivial
zeros ρ, which contribute

∑
ρ Φ(ρ), where it is understood that zeros

are counted with multiplicity, so that

S = −2δN,1

∫ ∞
−∞

F (x) cosh(x/2) dx+
∑
ρ

Φ(ρ) .

On the other hand, by the functional equation we have Λ′(1−s)/Λ(1−
s) = −Λ

′
(s)/Λ(s) (note that this does not involve W (χ)), where we
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write Λ(s) for Λ(χ, s), so that∫ 1−c+i∞

1−c−i∞
Φ(s)

Λ′(s)

Λ(s)
ds =

∫ c+i∞

c−i∞
Φ(1− s)Λ′(1− s)

Λ(1− s)
ds

= −
∫ c+i∞

c−i∞
Φ(1− s)Λ

′
(s)

Λ(s)
ds .

Thus,

S = J − 1

2iπ

∫ 1−c+i∞

1−c−i∞
Φ(s)

Λ′(s)

Λ(s)
ds

=
1

2iπ

∫ c+i∞

c−i∞

(
Φ(s)

Λ′(s)

Λ(s)
+ Φ(1− s)Λ

′
(s)

Λ(s)

)
ds .

Now by definition we have as above

log(Λ(s)) = s/2 log(N/π) + log(Γ(s/2)) +
∑
p,k≥1

χk(p)/(kpks)

(where the double sum is over primes and integers k ≥ 1), so

Λ′(s)

Λ(s)
=

1

2
log(N/π) +

1

2
ψ(s/2)−

∑
p,k≥1

χk(p) log(p)p−ks ,

and similarly for Λ
′
(s)/Λ(s). Thus, by the above lemmas and corollar-

ies, we have

S = log(N/π)F (0)+J1−
∑
p,k≥1

log(p)

pk/2
(χk(p)F (k log(p))+χk(p)F (−k log(p))) ,

where

J1 =

∫ ∞
0

(
e−x

x
F (0)− e−x/4

1− e−x
F (x/2) + F (−x/2)

2

)
dx ,

proving the theorem. ut

This theorem can be used in several different directions, and has
been an extremely valuable tool in analytic number theory. Just to
mention a few:

(1) Since the conductor N occurs, we can obtain bounds on N ,
assuming certain conjectures such as the generalized Riemann
hypothesis. For instance, this is how Stark–Odlyzko–Poitou–
Serre find discriminant lower bounds for number fields. This is
also how Mestre finds lower bounds for conductors of abelian
varieties, and so on.

(2) When the L-function has a zero at its central point (here of
course it usually does not, but for more general L-functions it
is important), this can give good upper bounds for the order of
the zero.
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(3) More generally, suitable choices of the test functions can give
information on the nontrivial zeros ρ of small imaginary part.

8. Some Useful Analytic Computational Tools

We finish this course by giving a number of little-known numerical
methods which are not always directly related to the computation of
L-functions, but which are often very useful.

8.1. The Euler–MacLaurin Summation Formula. This numerical
method is very well-known (there is in fact even a chapter in Bourbaki
devoted to it!), and is as old as Taylor’s formula, but deserves to be
mentioned since it is very useful. We will be vague on purpose, and
refer to [1] or [5] for details. Recall that the Bernoulli numbers are
defined by the formal power series

T

eT − 1
=
∑
n≥0

Bn

n!
T n .

We have B0 = 0, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, and
B2k+1 = 0 for k ≥ 1.

Let f be a C∞ function defined on R > 0. The basic statement of
the Euler–MacLaurin formula is that there exists a constant z = z(f)
such that

N∑
n=1

f(n) =

∫ N

1

f(t) dt+z(f)+
f(N)

2
+
∑

1≤k≤p

B2k

(2k)!
f (2k−1)(N)+Rp(N) ,

where Rp(N) is “small”, in general smaller than the first neglected
term, as in most asymptotic series.

The above formula can be slightly modified at will, first by changing
the lower bound of summation and/or of integration (which simply

changes the constant z(f)), and second by writing
∫ N
1
f(t) dt+ z(f) =

z′(f) −
∫∞
N
f(t) dt (when f tends to 0 sufficiently fast for the integral

to converge), where z′(f) = z(f) +
∫∞
1
f(t) dt.

The Euler–MacLaurin summation formula can be used in many con-
texts, but we mention the two most important ones.
• First, to have some idea of the size of

∑N
n=1 f(n). Let us take an

example. Consider S2(N) =
∑N

n=1 n
2 log(n). Note incidentally that

exp(S2(N)) =
N∏
n=1

nn
2

= 112222 · · ·NN2

.
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What is the size of this generalized kind of factorial? Euler–MacLaurin
tells us that there exists a constant z such that

S2(N) =

∫ N

1

t2 log(t) dt+ z +
N2 log(N)

2

+
B2

2!
(N2 log(N))′ +

B4

4!
(N2 log(N))′′′ + · · · .

We have
∫ N
1
t2 log(t) dt = (N3/3) log(N)− (N3 − 1)/9, (N2 log(N))′ =

2N log(N)+N , (N2 log(N))′′ = 2 log(N)+3, and (N2 log(N))′′′ = 2/N ,
so using B2 = 1/6 we obtain for some other constant z′:

S2(N) =
N3 log(N)

3
−N

3

9
+
N2 log(N)

2
+
N log(N)

6
+
N

12
+z′+O

(
1

N

)
,

which essentially answers our question, up to the determination of the
constant z′. Thus we obtain a generalized Stirling’s formula:

exp(S2(N)) = NN3/3+N2/2+N/6e−(N
3/9−N/12)C ,

where C = exp(z′) is an a priori unknown constant. In the case of
the usual Stirling’s formula we have C = (2π)1/2, so we can ask for a
similar formula here. And indeed, such a formula exists: we have

C = exp(ζ(3)/(4π2)) .

Exercise: Do a similar (but simpler) computation for S1(N) =∑
1≤n≤N n log(n). The corresponding constant is explicit but more dif-

ficult (it involves ζ ′(−1); more generally the constant in Sr(N) involves
ζ ′(−r)).

• The second use of the Euler–MacLaurin formula is to increase
considerably the speed of convergence of slowly convergent series. For
instance, if you want to compute ζ(3) directly using the series ζ(3) =∑

n≥1 1/n3, since the remainder term after N terms is asymptotic to

1/(2N2) you will never get more than 15 or 20 decimals of accuracy.
On the other hand, it is immediate to use Euler–MacLaurin:

Exercise: Write a computer program implementing the computa-
tion of ζ(3) (and more generally of ζ(s) for reasonable s) using Euler–
MacLaurin, and compute it to 100 decimals.

A variant of the method is to compute limits: a typical example is
the computation of Euler’s constant

γ = lim
N→∞

(
N∑
n=1

1

n
− log(N)

)
.
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Using Euler–MacLaurin, it is immediate to find the asymptotic expan-
sion

N∑
n=1

1

n
= log(N) + γ +

1

2N
−
∑
k≥1

B2k

2kN2k

(note that this is not a misprint, the last denominator is 2kN2k, not
(2k)!N2k).

Exercise: Implement the above, and compute γ to 100 decimal
digits.

Note that this is not the fastest way to compute Euler’s constant,
the method using Bessel functions given above is better.

8.2. Zagier’s Extrapolation Method. The following nice trick is
due to D. Zagier. Assume that you have a sequence un that you suspect
of converging to some limit a0 when n→∞ in a regular manner. How
do you give a reasonable numerical estimate of a0 ?

Assume for instance that as n → ∞ we have un =
∑

0≤i≤p ai/n
i +

O(n−p−1) for any p. One idea would be to choosing for n suitable values
and solve a linear system. This would in general be quite unstable and
inaccurate. Zagier’s trick is instead to proceed as follows: choose some
reasonable integer k, say k = 10, set vn = nkun, and compute the kth
forward difference ∆k(vn) of this sequence (the forward difference of a
sequence wn is the sequence ∆(w)n = wn+1 − wn). Note that

vn = a0n
k +

∑
1≤i≤k

ain
k−i +O(1/n) .

The two crucial points are the following:

• The kth forward difference of a polynomial of degree less than
or equal to k − 1 vanishes, and that of nk is equal to k!.
• Assuming reasonable regularity conditions, the kth forward dif-

ference of an asymptotic expansion beginning at 1/n will begin
at 1/nk+1.

Thus, under reasonable assumptions we have

a0 = ∆k(v)n/k! +O(1/nk+1) ,

so choosing n large enough can give a good estimate for a0.
A number of remarks concerning this basic method:
Remarks

(1) It is usually preferable to apply this not to the sequence un
itself, but for instance to the sequence u100n, if it is not too
expensive to compute.

(2) It is immediate to modify the method to compute further coef-
ficients a1, a2, etc...

(3) If the asymptotic expansion of un is in powers of 1/n1/2, say,
simply apply the method to the sequence un2 or u100n2 .
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Example. Let us compute numerically the constant occurring in
the first example of the use of Euler–MacLaurin that we have given.
We set

uN =
∑

1≤n≤N

n2 log(n)− (N3/3 +N2/2 +N/6) log(N) +N3/9−N/12 .

We compute for instance that u1000 = 0.0304456 · · · , which has only 4
correct decimal digits. On the other hand, if we apply the above trick
with k = 12 and N = 100, we find

a0 = lim
N→∞

uN = 0.0304484570583932707802515304696767 · · ·

with 29 correct decimal digits (recall that the exact value is ζ(3)/(4π2) =
0.03044845705839327078025153047115477 · · · ).

8.3. Computation of Euler Sums and Euler Products. Assume
that we want to compute numerically

S1 =
∏
p

(
1 +

1

p2

)
,

where here and elsewhere, the expression
∏

p always means the product
over all prime numbers. Trying to compute it using a large table of
prime numbers will not give much accuracy: if we use primes up to
X, we will make an error of the order of 1/X, so it will be next to
impossible to have more than 8 or 9 decimal digits.

On the other hand, if we simply notice that 1+1/p2 = (1−1/p4)/(1−
1/p2), by definition of the Euler product for the Riemann zeta function
this implies that

S2 =
ζ(2)

ζ(4)
=

π2/6

π4/90
=

15

π2
= 1.519817754635066571658 · · ·

Unfortunately this is based on a special identity. What if we wanted
instead to compute S2 =

∏
p(1 + 2/p2) ? There is no special identity

to help us here.
The way around this problem is to approximate the function of which

we want to take the product (here 1+2/p2) by infinite products of values
of the Riemann zeta function. Let us do it step by step before giving
the general formula.

When p is large, 1 + 2/p2 is close to 1/(1−1/p2)2, which is the Euler
factor for ζ(2)2. More precisely, (1+2/p2)(1−1/p2)2 = 1−3/p4+2/p6,
so we deduce that

S2 = ζ(2)2
∏
p

(1− 3/p4 + 2/p6) = (π4/36)
∏
p

(1− 3/p4 + 2/p6) .

Even though this looks more complicated, what we have gained is that
the new Euler product converges much faster. Once again, if we com-
pute it for p up to 108, say, instead of having 8 decimal digits we now
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have approximately 24 decimal digits (convergence in 1/X3 instead
of 1/X). But there is no reason to stop there: we have (1 − 3/p4 +
2/p6)/(1 − 1/p4)3 = 1 + O(1/p6) with evident notation and explicit
formulas if desired, to we get an even better approximation by writing
S2 = ζ(2)2/ζ(4)3

∏
p(1 + O(1/p6)), with convergence in 1/X5. More

generally, it is easy to compute by induction exponents an ∈ Z such
that S2 =

∏
2≤n≤N ζ(n)an

∏
p(1 +O(1/pN+1)) (in our case an = 0 for n

odd but this will not be true in general). It can be shown in essentially
all examples that one can pass to the limit, and for instance here write
S2 =

∏
n≥2 ζ(n)an .

Exercise:

(1) Compute explicitly the recursion for the an in the example of
S2.

(2) More generally, if S =
∏

p f(p), where f(p) has a convergent

series expansion in 1/p starting with f(p) = 1 + 1/pb + o(1/pb)
with b > 1 (not necessarily integral), express S as a product of
zeta values raised to suitable exponents, and find the recursion
for these exponents.

An important remark needs to be made here: even though the prod-
uct

∏
n≥2 ζ(n)an may be convergent, it may converge rather slowly:

remember that when n is large we have ζ(n) − 1 ∼ 1/2n, so that in
fact if the an grow like 3n the product will not even converge. The way
around this, which must be used even when the product converges, is as
follows: choose a reasonable integer N , for instance N = 50, and com-
pute

∏
p≤50 f(p), which is of course very fast. Then the tail

∏
p>50 f(p)

of the Euler product will be equal to
∏

n≥2 ζ>50(n)an , where ζ>N(n) is
the zeta function without its Euler factors up to N , in other words
ζ>N(n) = ζ(n)

∏
p≤N(1− 1/pn) (I am assuming here that we have zeta

values at integers as in the S2 example above, but it is immediate to
generalize). Since ζ>N(n) − 1 ∼ 1/(N + 1)n, the convergence of our
zeta product will of course be considerably faster.

Finally, note that by using the power series expansion of the loga-
rithm together with Möbius inversion, it is immediate to do the same
for Euler sums, for instance to compute

∑
p 1/p2 and the like, see [5]

for details.

8.4. Summation of Alternating Series. This is due to Rodriguez–
Villegas, Zagier, and the author.

We have seen above the use of the Euler–MacLaurin summation
formula to sum quite general types of series. If the series is alternating
(the terms alternate in sign), the method cannot be used as is, but it
is trivial to modify it: simply write∑

n≥1

(−1)nf(n) =
∑
n≥1

f(2n)−
∑
n≥1

f(2n− 1)
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and apply Euler–MacLaurin to each sum. One can even do better and
avoid this double computation, but this is not what I want to mention
here.

A completely different method which is much simpler since it avoids
completely the computation of derivatives and Bernoulli numbers, due
to the above authors, is as follows. The idea is to express (if possible)
f(n) as a moment

f(n) =

∫ 1

0

xnw(x) dx

for some weight function w(x). Then it is clear that

S =
∑
n≥0

(−1)nf(n) =

∫ 1

0

1

1 + x
w(x) dx .

Assume that Pn(X) is a polynomial of degree n such that Pn(−1) 6= 0.
Evidently

Pn(−1)− Pn(−1)

X + 1
=

n−1∑
k=0

cn,kX
k

is still a polynomial (of degree n− 1), and we note the trivial fact that

S =
1

Pn(−1)

∫ 1

0

Pn(−1)

1 + x
w(x) dx

=
1

Pn(−1)

(∫ 1

0

Pn(−1)− Pn(x)

1 + x
w(x) dx+

∫ 1

0

Pn(x)

1 + x
w(x) dx

)
=

1

Pn(−1)

n−1∑
k=0

cn,kf(k) +Rn ,

with

|Rn| ≤
Mn

|Pn(−1)|

∫ 1

0

1

1 + x
w(x) dx =

Mn

|Pn(−1)|
S ,

and where Mn = supx∈[0,1] |Pn(x)|. Thus if we can manage to have
Mn/|Pn(−1)| small, we obtain a good approximation to S.

It is a classical result that the best choice for Pn are the shifted
Chebychev polynomials defined by Pn(sin2(t)) = cos(2nt), but in any
case we can use these polynomials and ignore that they are the best.

This leads to an incredibly simple algorithm which we write explic-
itly:

d ← (3 +
√

8)n; d ← (d + 1/d)/2; b ← −1; c ← −d; s ← 0; For
k = 0, . . . , n− 1 do:
c← b− c; s← s+ c · f(k); b← (k + n)(k − n)b/((k + 1/2)(k + 1));
The result is s/d.

The convergence is in 5.83−n.
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It is interesting to note that, even though this algorithm is designed
to work with functions f of the form f(n) =

∫ 1

0
xnw(x) dx with w

continuous and positive, it is in fact valid in regions where its validity
is not only not proved but even false. For example:

Exercise: It is well-known that the Riemann zeta function ζ(s) can
be extended analytically to the whole complex plane, and that we have
for instance ζ(−1) = −1/12 and ζ(−2) = 0. Apply the above algorithm
to the alternating zeta function

β(s) =
∑
n≥1

(−1)n−1
1

ns
=

(
1− 1

2s−1

)
ζ(s)

(incidentally, prove this identity), and by using the above algorithm,
show the nonconvergent “identities”

1− 2 + 3− 4 + · · · = 1/4 and 1− 22 + 32 − 42 + · · · = 0 .

8.5. Numerical Differentiation. The problem is as follows: given a
function f , say defined and C∞ on a real interval, compute f ′(x0) for
a given value of x0. To be able to analyze the problem, we will assume
that f ′(x0) is not too close to 0, and that we want to compute it to a
given relative accuracy, which is what is usually required in numerical
analysis.

The näıve, although reasonable, approach, is to choose a small h > 0
and compute (f(x0+h)−f(x0))/h. However, it is clear that (using the
same number of function evaluations) the formula (f(x0 + h)− f(x0−
h))/(2h) will be better. Let us analyze this in detail. For simplicity we
will assume that all the derivatives of f around x0 that we consider are
neither too small nor too large in absolute value. It is easy to modify
the analysis to treat the general case.

Assume f computed to a relative accuracy of ε, in other words that
we know values f̃(x) such that f̃(x)(1 − ε) < f(x) < f̃(x)(1 + ε)
(the inequalities being reversed if f(x) < 0). The absolute error in
computing (f(x0 + h) − f(x0 − h))/(2h) is thus essentially equal to
ε|f(x0)|/h. On the other hand, by Taylor’s theorem we have (f(x0 +
h) − f(x0 − h))/(2h) = f ′(x0) + (h2/6)f ′′′(x) for some x close to x0,
so the absolute error made in computing f ′(x0) as (f(x0 + h)− f(x0−
h))/(2h) is close to ε|f(x0)|/h + (h2/6)|f ′′′(x0)|. For a given value of
ε (i.e., the accuracy to which we compute f) the optimal value of h is
(3ε|f(x0)/f

′′′(x0)|)1/3 for an absolute error of (1/2)(3ε|f(x0)f
′′′(x0)|)2/3

hence a relative error of (3ε|f(x0)f
′′′(x0)|)2/3/(2|f ′(x0)|).

Since we have assumed that the derivatives have reasonable size, the
relative error is roughly Cε2/3, so if we want this error to be less than
η, say, we need ε of the order of η3/2, and h will be of the order of η1/2.

Note that this result is not completely intuitive. For instance, assume
that we want to compute derivatives to 38 decimal digits. With our
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assumptions, we choose h around 10−19, and perform the computations
with 57 decimals of relative accuracy. If for some reason or other we
are limited to 38 decimals in the computation of f , the “intuitive” way
would be also to choose h = 10−19, and the above analysis shows that
we would obtain only approximately 19 decimals. On the other hand,
if we chose h = 10−13 for instance, close to 10−38/3, we would obtain 25
decimals.

There are of course many other formulas for computing f ′(x0), or
for computing higher derivatives, which can all easily be analyzed as
above. For instance (exercise), one can look for approximations to
f ′(x0) of the form S = (

∑
1≤i≤3 λif(x0 + h/ai))/h, for any nonzero

and pairwise distinct ai, and we find that this is possible as soon
as
∑

1≤i≤3 ai = 0 (for instance, if (a1, a2, a3) = (−3, 1, 2) we have
(λ1, λ2, λ3) = (−27,−5, 32)/20), and the absolute error is then of the
form C1/h+C2h3, so the same analysis shows that we should work with
accuracy ε4/3 instead of ε3/2. Even though we have 3/2 times more eval-
uations of f , we require less accuracy: for instance, if f requires time
O(Da) to be computed to D decimals, as soon as (3/2) · ((4/3)D)a <
((3/2)D)a, i.e., 3/2 < (9/8)a, hence a ≥ 3.45, this new method will be
faster.

Perhaps the best known method with more function evaluations is
the approximation

f ′(x0) ≈ (f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h))/(12h) ,

which requires accuracy ε5/4, and since this requires 4 evaluations of
f , this is faster than the first method as soon as 2 · (5/4)a < (3/2)a, in
other words a > 3.81, and faster than the second method as soon as
(4/3) · (5/4)a < (4/3)a, in other words a > 4.46. To summarize, use
the first method if a < 3.45, the second method if 3.45 ≤ a < 4.46, and
the third if a > 4.46. Of course this game can be continued at will,
but there is not much point in doing so. In practice the first method
is sufficient.

8.6. Double Exponential Numerical Integration. A remarkable
although little-known technique invented around 1970 deals with nu-
merical integration (the numerical computation of a definite integral∫ b
a
f(t) dt, where a and b may even be ±∞). In usual numerical analysis

courses one teaches very elementary techniques such as the trapezoidal
rule, Simpson’s rule, or more sophisticated methods such as Romberg
or Gaussian integration. These methods apply to very general classes
of functions f(t), but are unable to compute more than a few decimal
digits of the result.

However, in most mathematical (as opposed for instance to physical)
contexts, the function f(t) is extremely regular, typically holomorphic
or meromorphic, at least in some domain of the complex plane. It was
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observed in the late 1960’s by two Japanese mathematicians Takahashi
and Mori, that this property can be used to obtain a very simple and
incredibly accurate method to compute definite integrals of such func-
tions. It is now instantaneous to compute 100 decimal digits (out of
the question for classical methods), and takes only a few seconds to
compute 500 decimal digits, say.

In view of its importance it is essential to have some knowledge of
this method. It can of course be applied in a wide variety of contexts,
but note also that in his thesis, P. Molin has applied it specifically to
the rigorous and practical computation of values of L-functions, which
brings us back to our main theme.

There are two basic ideas behind this method. The first is in fact a
theorem, which I state in a vague form: If F is a holomorphic function
which tends to 0 “sufficiently fast” when x → ±∞, x real, then the
most efficient method to compute

∫
R F (t) dt is indeed the trapezoidal

rule. Note that this is a theorem, not so difficult but a little surprising
nonetheless. The definition of “sufficiently fast” can be made precise.
In practice, it means at least like e−ax

2
(e−a|x| is not fast enough), but it

can be shown that the best results are obtained with functions tending
to 0 doubly exponentially fast such as exp(− exp(a|x|)). Note that it
would be (very slightly) worse to choose functions tending to 0 even
faster.

To be more precise, we have an estimate coming for instance from
the Euler–MacLaurin summation formula:

∫ ∞
−∞

F (t) dt = h
N∑

n=−N

F (nh) +RN(h) ,

and under suitable holomorphy conditions on F , if we choose h =
a log(N)/N for some constant a close to 1, the remainder term RN(h)
will satisfy Rn(h) = O(e−bN/ log(N)) for some other (reasonable) con-
stant b, showing exponential convergence of the method.

The second and of course crucial idea of the method is as follows:
evidently not all functions are doubly-exponentially tending to 0 at
±∞, and definite integrals are not all from −∞ to +∞. But it is
possible to reduce to this case by using clever changes of variable (the
essential condition of holomorphy must of course be preserved).

Let us consider the simplest example, but others that we give below
are variations on the same idea. Assume that we want to compute

I =

∫ 1

−1
f(x) dx .
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We make the “magical” change of variable x = φ(t) = tanh(sinh(t)),
so that if we set F (t) = f(φ(t)) we have

I =

∫ ∞
−∞

F (t)φ′(t) dt .

Because of the elementary properties of the hyperbolic sine and tan-
gent, we have gained two things at once: first the integral from −1
to 1 is now from −∞ to ∞, but most importantly the function φ′(t)
is easily seen to tend to 0 doubly exponentially. We thus obtain an
exponentially good approximation∫ 1

−1
f(x) dx = h

N∑
n=−N

f(φ(nh))φ′(nh) +RN(h) .

To give an idea of the method, if one takes h = 1/200 and N = 500,
hence only 1000 evaluations of the function f , one can compute I to
several hundred decimal places!

Before continuing, I would like to comment that in this theory many
results are not completely rigorous: the method works very well, but
the proof that it does is sometimes missing. Thus I cannot resist giving
a proven and precise theorem due to P. Molin (which is of course just
an example). We keep the above notation φ(t) = tanh(sinh(t)), and
note that φ′(t) = cosh(t)/ cosh2(sinh(t)).

Theorem 8.1 (Molin). Let f be holomorphic on the disc D = D(0, 2)
centered at the origin and of radius 2. Then for all N ≥ 1, if we choose
h = log(5N)/N we have∫ 1

−1
f(x) dx = h

N∑
n=−N

f(φ(nh))φ′(nh) +RN ,

where

|RN | ≤
(
e4 sup

D
|f |
)

exp(−5N/ log(5N)) .

Coming back to the general situation, I briefly comment on the com-

putation of general definite integrals
∫ b
a
f(t) dt.

(1) If a and b are finite, we can reduce to [−1, 1] by affine changes
of variable.

(2) If a (or b) is finite and the function has an algebraic singularity
at a (or b), we remove the singularity by a polynomial change
of variable.

(3) If a = 0 (say) and b = ∞, then if f does not tend to 0 expo-
nentially fast (for instance f(x) ∼ 1/xk), we use x = φ(t) =
exp(sinh(t)).
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(4) If a = 0 (say) and b =∞ and if f does tend to 0 exponentially

fast (for instance f(x) ∼ e−ax or f(x) ∼ e−ax
2
), we use x =

φ(t) = exp(t− exp(−t)).
(5) If a = −∞ and b = ∞, use x = φ(t) = sinh(sinh(t)) if f

does not tend to 0 exponentially fast, and x = φ(t) = sinh(t)
otherwise.

The problem of oscillating integrals such as
∫∞
0
f(x) sin(x) dx is more

subtle, but there does exist similar methods when, as here, the oscilla-
tions are completely under control.

Remark. The theorems are valid when the function is holomorphic
in a sufficiently large region compared to the path of integration. If the
function is only meromorphic, with known poles, the direct application
of the formulas may give totally wrong answers. However, if we take
into account the poles, we can recover perfect agreement. Example of
bad behavior: f(t) = 1/(1+ t2) (poles ±i). Integrating on the intervals
[0,∞], [0, 1000], or even [−∞,∞], which involve different changes of
variables, give perfect results (the latter being somewhat surprising).
On the other hand, integrating on [−1000, 1000] gives a totally wrong
answer because the poles are “too close”, but it is easy to take them
into account if desired.

Apart from the above pathological behavior, let us give a couple
of examples where we must slightly modify the direct use of doubly-
exponential integration techniques.

• Assume for instance that we want to compute

J =

∫ ∞
1

(
1 + e−x

x

)2

dx ,

and that we use the built-in function intnum of Pari/GP for doing so.
The function tends to 0 slowly at infinity, so we should compute it using
the GP syntax [1] to represent∞, so we write f(x)=((1+exp(-x))/x)^2;,
then intnum(x=1,[1],f(x)). This will give some sort of error, because
the software will try to evaluate exp(−x) for large values of x, which
it cannot do since there is exponent underflow. To compute the result,
we need to split it into its slow part and fast part: when a function
tends exponentially fast to 0,∞ is represented as [[1],1], so we write
J = J1 + J2, with J1 and J2 computed by:
J1=intnum(x=1,[[1],1],(exp(-2*x)+2*exp(-x))/x^2); and
J2=intnum(x=1,[1],1/x^2); (which of course is equal to 1), giving

J = 1.3345252753723345485962398139190637 · · · .
Note that we could have tried to “cheat” and written directly
intnum(x=1,[[1],1],f(x)), but the answer would be wrong, be-

cause the software would have assumed that f(x) tends to 0 exponen-
tially fast, which is not the case.
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• A second situation where we must be careful is when we have “ap-
parent singularities” which are not real singularities. Consider the func-
tion f(x) = (exp(x)−1−x)/x2. It has an apparent singularity at x = 0
but in fact it is completely regular. If you ask J=intnum(x=0,1,f(x)),
you will get a result which is reasonably correct, but never more than
19 decimals, say. The reason is not due to a defect in the numerical
integration routine, but more in the computation of f(x): if you simply
write f(x)=(exp(x)-1-x)/x^2;, the results will be bad for x close to
0.

Assuming that you want 38 decimals, say, the solution is to write
f(x)=if(x<10^(-10),1/2+x/6+x^2/24+x^3/120,(exp(x)-1-x)/x^2);

and now we obtain the value of our integral as

J = 0.59962032299535865949972137289656934022 · · ·

8.7. The Use of Abel–Plana for Definite Summation. We finish
this course by describing an identity, which is perhaps not so computa-
tionally useful, but which is quite amusing. Consider for instance the
following theorem:

Theorem 8.2. Define by convention sin(n/10)/n as equal to its limit
1/10 when n = 0, and define

∑′
n≥0 f(n) as f(0)/2 +

∑
n≥1 f(n). We

have
′∑

n≥0

(
sin(n/10)

n

)k
=

∫ ∞
0

(
sin(x/10)

x

)k
for 1 ≤ k ≤ 62, but not for k ≥ 63.

If you do not like all these conventions, replace the left-hand side by

1

2 · 10k
+
∑
n≥1

(
sin(n/10)

n

)k
.

It is clear that something is going on: it is the Abel–Plana formula.
There are several forms of this formula, here is one of them:

Theorem 8.3 (Abel–Plana). Assume that f is an entire function and
that f(z) = o(exp(2π|=(z)|)) as |=(z)| → ∞ uniformly in vertical
strips of bounded width, and a number of less important additional
conditions which we omit. Then∑

m≥1

f(m) =

∫ ∞
0

f(t) dt− f(0)

2
+ i

∫ ∞
0

f(it)− f(−it)
e2πt − 1

dt

=

∫ ∞
1/2

f(t) dt− i
∫ ∞
0

f(1/2 + it)− f(1/2− it)
e2πt + 1

dt .

In particular, if the function f is even, we have

f(0)

2
+
∑
m≥1

f(m) =

∫ ∞
0

f(t) dt .
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Since we have seen above that using doubly-exponential techniques
it is easy to compute numerically a definite integral, the Abel–Plana
formula can be used to compute numerically a sum. Note that in the
first version of the formula there is an apparent singularity (but which is
not a singularity) at t = 0, and the second version avoids this problem.
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