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Abstract

This is a translation of a paper [5] I wrote in 1971, and may help for
Parimala’s course. Evidently completely outdated, but still may be useful.
I changed some notation so as to be compatible with the course.

1 Introduction and Notation

Let K be a field, let Sm(K) = {x2
1 + · · ·+ x2

m , xi ∈ K} be the set of sums of m
squares of K, S(K) = S∞(K) =

⋃
m Sm(K) the set of elements of K which are

sums of squares. Clearly if m ≤ m′ then Sm(K) ⊂ Sm′(K), Sm(K)+Sm′(K) =
Sm+m′(K), and Sm(K) · Sm′(K) ⊂ Smm′(K). With the usual convention that
inf(∅) = +∞, we will set:

s(K) = inf{m, −1 ∈ Sm(K)} and p(K) = inf{m, Sm(K) = S(K)}

(s(K) is called the level of K, and the letter s is from the German name
“Stufe”, the letter p is from Pythagoreas). Clearly Sm(K) = S(K) if and only if
Sm(K) = Sm+1(K). Also, in characteristic 2 we have trivially s(K) = p(K) = 1,
so if needed we may assume that char(K) 6= 2.

2 Quadratic Forms

Let V be a K-vector space of finite dimension, and let q be a quadratic form
defined on V . We say that a ∈ K is represented by q if there exists X ∈ V
with X 6= 0 and such that q(X) = a (note that the condition X 6= 0 is needed
only when a = 0). We say that q is isotropic if it represents 0, and universal
over K if any nonzero a ∈ K∗ is represented. Recall the link between these two
notions:
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Proposition 2.1 Let q be a nondegenerate quadratic form over K with char(K) 6=
2. Then if q is isotropic, it is universal over any K-algebra, and in particular
over K.

(Note: in the course, nondegenerate is called “regular”.)
Let q and q′ be two quadratic forms on V and V ′ respectively. We will say

that q and q′ are equivalent (in the course, “isometric”), and write q ∼ q′, if
there exists an isomorphism φ from V to V ′ such that q′(φ(X)) = q(X) for
all X ∈ V , or equivalently q′(Y ) = q′(φ−1(Y )). Clearly two equivalent forms
represent the same elements. In addition, when char(K) 6= 2 it is easy to show
that any quadratic form is equivalent to a diagonal form

〈a1, a2, . . . , an〉 ,

which will be our notation for the form a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n on V = Kn.

Since we study forms up to equivalence, there is little loss of generality in
restricting to diagonal forms and to V = Kn.

We define the following binary operations ⊕ and ⊗ on diagonal forms as
follows:

〈a1, . . . , am〉 ⊕ 〈b1, . . . , bn〉 = 〈a1, . . . , am, b1, . . . , bn〉 ,
〈a1, . . . , am〉 ⊗ 〈b1, . . . , bn〉 = 〈aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n〉 .

In addition, if c ∈ K we define

c〈a1, . . . , am〉 = 〈ca1, . . . , cam〉 .

It is not difficult to show that these operations are compatible with equivalence
of quadratic forms.

3 Multiplicative Quadratic Forms

The definitions and theorems of this section are due to Pfister; see [10].

Definition 3.1 Let q be a quadratic form over K. We will say that q is mul-
tiplicative if for all d ∈ K∗ represented by q we have q ∼ dq.

Fundamental Examples:
• The form 〈1〉 = x2 is trivially multiplicative.
• The form 〈1, a〉 = x2 + ay2 is multiplicative since (x2

1 + ax2
2)(x2 + ay2) =

(x1x−ax2y)2 +a(x1y+x2x)2, and since when d = x2
1 +ax2

2 6= 0 the determinant
of the transformation matrix is nonzero.

Before stating and proving the first of Pfister’s theorems, we prove a lemma:

Lemma 3.2 Assume that a 6= 0 is represented by the form 〈b, c〉. Then

〈b, c〉 ∼ 〈a, abc〉 .
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Proof. Write a = bx2
1 + cx2

2. Generalizing the above example, we have the
identity

(bx2
1 + cx2

2)x2 + (b2cx2
1 + bc2x2

2)y2 = b(x1x− cx2y)2 + c(bx1y + x2x)2 ,

and since the determinant of the transformation matrix is bx2
1 + cx2

2 = a 6= 0,
the lemma follows. ut

Pfister’s first theorem is the following:

Theorem 3.3 If q is multiplicative, then

q ⊗ 〈1, a〉 = q ⊕ aq

is also multiplicative.

Proof. Let d 6= 0 be represented by the form q ⊕ aq. We can thus write
d = b+ ac, where b and c are values of q. We can immediately take care of the
cases where either one is 0: if c = 0 then d = b and d(q⊕aq) = bq⊕abq ∼ q⊕aq
since q is multiplicative. Similarly, if b = 0 then d = ac and d(q ⊕ aq) =
acq ⊕ a2cq ∼ aq ⊕ q since q is multiplicative and trivially a2q ∼ q. We may
therefore assume that b and c are nonzero, so are really represented by q. Thus,
again since q is multiplicative we have

d(q ⊕ aq) = dq ⊕ adq ∼ dq ⊕ abdq ∼ dq ⊕ abcdq ,

so by the above lemma and the fact that d = b · 12 + ac · 12 is represented by
〈b, ac〉 we have

d(q ⊕ aq) ∼ 〈d, abcd〉 ⊗ q ∼ 〈b, ac〉 ⊗ q
∼ bq ⊕ acq ∼ q ⊕ aq

again since q is multiplicative and b and c are represented by q, finishing the
proof. ut

Corollary 3.4 The so-called Pfister forms in 2k variables

〈1, a1〉 ⊗ 〈1, a2〉 ⊗ · · · 〈1, ak〉

are multiplicative.

Corollary 3.5 For any k ≥ 0 the set S2k(K) \ {0} is a multiplicative subgroup
of K∗, and in particular S2k(K) · S2k(K) = S2k(K).

Proof. Immediate and left to the reader. ut

Note that before Pfister the above corollary was known (in fact with K
replaced by a commutative ring) only for k = 0, 1, 2, and 3, since it corresponds
to the multiplicativity of the norm in R, C, H (the noncommutative Hamilton
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quaternions), and O (the nonassociative Cayley octonions). For k ≥ 4 the result
is not true for a general commutative ring, even for a domain of characteristic
0. In fact:

Exercise:

(1) Following in detail the above proof and using a computer algebra system,
compute explicitly rational functions Zi in the 16 variables Xi and Yi,
such that  ∑

1≤i≤8

X2
i

  ∑
1≤i≤8

Y 2
i

 =

 ∑
1≤i≤8

Z2
i

 .

In particular, note that they are not polynomials, so do not correspond
to octonion multiplication.

(2) If you have the courage, do the same for sums of 16 squares.

4 Computation of s(K) and p(K) for Nonordered
Fields

Recall that by a theorem of Artin–Schreier, a field cannot have an order com-
patible with the field laws if and only if −1 ∈ S(K), in other words if and only
if s(K) is finite (by abuse of language we will say that K is nonordered). For
such a field we have trivially p(K) ≥ s(K). On the other hand, −1 ∈ Sm(K)
means that the form x2

1 + · · · + x2
m + x2

m+1 is isotropic in K, hence that it is
universal if char(K) 6= 2 by Proposition 2.1. We have thus shown:

Proposition 4.1 If K is a nonordered field then S(K) = K and s(K) ≤
p(K) ≤ s(K) + 1, in other words p(K) = s(K) or p(K) = s(K) + 1.

In [9], Pfister shows that the possible values of s(K), hence of p(K), are
extremely restricted in this case; this is Pfister’s second main theorem proved
in the present paper:

Theorem 4.2 Let K be a nonordered field. There exists k such that s(K) = 2k.

Proof. Let k be the unique integer such that 2k ≤ s(K) < 2k+1. By definition
we can thus write−1 = a+b with a ∈ S2k(K) and b ∈ Ss(K)−2k(K) ⊂ S2k−1(K).
Note that a 6= 0 since otherwise −1 ∈ S2k−1(K) so s(K) < 2k. We can thus
write −1 = (b+ 1)/a. Since by Pfister’s theorem S2k(K) \ {0} is a subgroup of
K∗ and since b + 1 ∈ S2k(K), it follows that −1 ∈ S2k(K) so that s(K) ≤ 2k,
proving the theorem. ut

We will see below in Proposition 8.2 that this is best possible, in other words
that for every k there exists a field K such that s(K) = 2k.

Thanks to this theorem it is easy to give the values of s(K) and p(K) for
some simple nonordered fields. For instance:
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Field K s(K) p(K)
F2m 1 1
Fq, q ≡ 1 (mod 4) 1 2
Fq, q ≡ 3 (mod 4) 2 2
F2m(X1, . . . , Xn) 1 1
Fq(X1, . . . , Xn), q ≡ 1 (mod 4) 1 2
Fq(X1, . . . , Xn), q ≡ 3 (mod 4) 2 3
Q2 4 4
Qp, p ≡ 1 (mod 4) 1 2
Qp, p ≡ 3 (mod 4) 2 3
Q2(X1, . . . , Xn) 4 5
Qp(X1, . . . , Xn), p ≡ 1 (mod 4) 1 2
Qp(X1, . . . , Xn), p ≡ 3 (mod 4) 2 3

In the above, n is implicitly assumed to be at least 1. Note also that trivially
if K is algebraically closed we have s(K) = p(K) = 1.

5 Ordered Fields; Pfister’s Third Theorem

The results of this section are also due to Pfister; see [11].
The case of ordered fields is much more difficult, and many conjectures

remain. We evidently have s(K) = +∞, but on the other hand we cannot a
priori determine whether p(K) is finite or not. It is in fact easy to construct
fields with p(K) = +∞, for instance K = R(Xi ; i ≥ 1), see Proposition 8.1
below.

The first fields which are natural to study are the fields R(X1, . . . , Xn). We
have the beautiful result of Pfister [11]:

Theorem 5.1
p(R(X1, . . . , Xn)) ≤ 2n .

Before proving this theorem, a few remarks are in order. First, by a clas-
sical theorem of Artin [1], the set S(R(X1, . . . , Xn)) of sums of squares in
R(X1, . . . , Xn) is equal to the set of rational functions which are nonnegative for
all values of the variables for which they are defined. It follows from Pfister’s
theorem that such a rational function is in fact the sum of the squares of at
most 2n rational functions.

Second, note that the theorem is trivial for n = 0, very easy for n = 1, and
was proved by Hilbert for n = 2; see [7]. For n = 3, it was first proved by Ax
using cohomological methods; see [2]. As we will see, Pfister’s proof is quite
elementary.

Since K is ordered, i =
√
−1 /∈ K, and the idea is to study quadratic forms

over K(i). We will in fact prove the following theorem, which as we will see
generalizes the above:
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Theorem 5.2 Assume that in K(i) any quadratic form in m > 2n variables is
isotropic. Then p(K) ≤ 2n.

Before proving this theorem, we need some preliminary results. In what
follows we assume that the assumption of the theorem is satisfied. In addition,
since p(K) = 1 when char(K) = 2 we may of course assume that char(K) 6= 2.

We first prove two simple lemmas:

Lemma 5.3 Let q be a nondegenerate quadratic form in 2n variables over K(i).
Then q is universal on K(i).

Proof. Indeed, if a ∈ K(i)∗ then by assumption the form q ⊕ 〈−a〉 which
has 2n + 1 variables is isotropic, hence either a is represented by q, or q itself is
isotropic, hence universal by Proposition 2.1. ut

Lemma 5.4 Let q be a nondegenerate multiplicative quadratic form over K.
If q represents b+ ic 6= 0 in K(i), then q represents b2 + c2 in K.

Proof. By assumption there exists X and Y in Kn such that q(X + iY ) =
b + ic, hence since i /∈ K by conjugation q(X − iY ) = b − ic. We may assume
Y 6= 0, otherwise c = 0 and q represents b, hence also b2 in K since it is
multiplicative. In addition we may assume that q(Y ) 6= 0, otherwise q would
be isotropic, hence universal, so would represent b2 + c2. Thus, if we denote by
B(X,Y ) the bilinear form associated with the quadratic form q we have

b2 + c2 = q(X + iY )q(X − iY )
= (q(X)− q(Y ) + 2iB(X,Y ))(q(X)− q(Y )− 2iB(X,Y ))

= (q(X)− q(Y ))2 + 4B(X,Y )2 .

On the other hand, note that

q(2B(X,Y )X + (q(Y )− q(X))Y ) = 4B(X,Y )2q(X) + (q(Y )− q(X))2q(Y )

+ 4B(X,Y )2(q(Y )− q(X)) = q(Y )((q(Y )− q(X))2 + 4B(X,Y )2)

= q(Y )(b2 + c2) ,

and since q(Y ) 6= 0 and q is multiplicative we deduce that b2 + c2 is represented
by q. ut

We can now begin the proof proper.
Proof of Theorem 5.2. It is of course sufficient to prove that S2n+1(K) =

S2n(K). Thus, let a 6= 0 be such that a = e20 + e21 + · · ·+ e22n . We will set

ai =
∑

2i<j≤2i+1

e2j for 1 ≤ i ≤ n− 1 , an = −a , and

qi = 〈1, a1〉 ⊗ · · · ⊗ 〈1, ai〉 for 0 ≤ i ≤ n
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(where by convention q0 = 〈1〉). All the partial sums occuring in a can be
assumed to be nonzero, otherwise trivially a ∈ S2n(K). In particular e21 +e22 6= 0
and ai 6= 0 for all i, so the forms qi are nondegenerate, and by Pfister’s first
theorem they are all multiplicative. In particular the form qn is a nondegenerate
multiplicative form in 2n variables, so by Lemma 5.3 it is universal in K(i), so
it represents e1 + ie2, hence by Lemma 5.4 it represents e21 + e22 in K. Now note
the following immediate additional lemma:

Lemma 5.5 For all i such that 0 ≤ i ≤ n we have:

(1)
qi = 〈1〉 ⊕ a1q0 ⊕ a2q1 ⊕ · · · ⊕ aiqi−1 .

(2) Any element of K represented by qi is a sum of 2i+1 − 1 squares.

Proof. (1) is trivial by induction, and (2) is also immediate by induction by
Pfister’s first theorem, since ai ∈ S2i(K). ut

Resuming the proof of the theorem, for 0 ≤ i ≤ n set q′i = 〈1〉 ⊕ qi. By
definition of the ai we have

0 = e20 + e21 + e22 + a1 + · · ·+ an−1 + an ,

so by the above lemma and the fact that qn represents e21 + e22, the form

q′0 ⊕ a1q
′
0 ⊕ · · · ⊕ anq

′
n−1 = 〈1〉 ⊕ 〈1〉 ⊕ a1q0 ⊕ · · · ⊕ anqn−1 ⊕ 〈a1, . . . , an〉

= 〈1〉 ⊕ qn ⊕ 〈a1, . . . , an〉

represents 0 nontrivially. Since an = −a, this means that there exist X and Y
in Kn such that

aq′n−1(X) = (q′0 ⊕ a1q
′
0 ⊕ · · · an−1q

′
n−2)(Y ) .

By construction, the first component of X is equal to 1 (it is the coefficient of an

in e20+e21+e22+a1+· · ·+an−1+an), and in particularX 6= 0. If we had q′n−1(X) =
0 then by (2) of the above lemma we would have a nontrivial sum of 2n squares
which vanishes, so by Proposition 2.1 a ∈ S2n(K). Otherwise, using again (2)
of the above lemma we see by induction that (q′0 ⊕ a1q

′
0 ⊕ · · · an−1q

′
n−2)(Y ) is a

sum of 21 + 21 + 22 + · · ·+ 2n−1 = 2n squares, and so is q′n−1(X) again by (2)
of the lemma, so a ∈ S2n(K) by Pfister’s first theorem once again, finishing the
proof of Theorem 5.2. ut

Pfister’s third theorem now follows from a classical theorem of Tsen–Lang:

Corollary 5.6 p(R(X1, . . . , Xn)) ≤ 2n.

Proof. If K = R(X1, . . . , Xn) we have K(i) = C(X1, . . . , Xn), and by a the-
orem of Tsen–Lang which we will assume (see for instance [6]), the assumption
of Theorem 5.2 is satisfied. ut
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6 Ordered Fields; Cassels’ Theorem

Pfister’s theorem only gives an upper bound on p(R(X1, . . . , Xn)). To find a
lower bound, we use the following elegant theorem of Cassels [3]:

Theorem 6.1 Let q be a nondegenerate quadratic form over a field K with
char(K) 6= 2. If q represents f ∈ K[X] in K(X), then q also represents f in
K[X].

Proof. Since q is nondegenerate and char(K) 6= 2, we may assume that
q = 〈a1, . . . , an〉 with ai 6= 0 for all i. If q is isotropic in K then by Proposition
2.1 it is universal in the algebra K[X] (note that it is not a field), so represents
f . We may therefore assume that q is not isotropic. By assumption, there
exist fi ∈ K[X] with f0 6= 0 such that ff2

0 = a1f
2
1 + · · · anf

2
n. Choose f0

with the lowest possible degree, and assume by contradiction that deg(f0) > 0.
Computing the Euclidean division of fi by f0 we obtain polynomials gi such
that deg(fi − gif0) < deg(f0) and g0 = 1.

Denote by B(X,Y ) the bilinear form associated to the quadratic form 〈−f〉⊕
q, and set F = (f0, . . . , fn) and G = (g0, . . . , gn). The assumption is equivalent
to B(F, F ) = 0. On the other hand, since g0 = 1 and f0 has the lowest possible
degree, but deg(f0) > 0, we have B(G,G) 6= 0. Now set

H = B(G,G)F − 2B(F,G)G .

I claim that H 6= 0. Indeed, otherwise we would have B(F,G) = 0 (otherwise
G = λF for some λ so B(G,G) = λ2B(F, F ) = 0, absurd), so B(G,G)F = 0,
hence F = 0, again a contradiction, proving my claim. On the other hand one
checks immediately that B(H,H) = 0, and that if H = (h0, . . . , hn) we have

h0 = (
∑

i

aig
2
i − f)f0 − 2(

∑
i

aifigi − f0f) =
1
f0

∑
i

ai(fi − gif0)2 .

ThusH is a nonzero vector of polynomials satisfyingB(H,H) = 0 with deg(h0) <
2 deg(f0)−deg(f0) < deg(f0), and h0 6= 0 otherwise q would be isotropic. Thus
f0 is not of minimal degree, a contradiction which proves the theorem. ut

Remark. There is an analogous theorem for Q and Z due to Davenport
and Cassels, as follows:

Theorem 6.2 Let q be a positive definite quadratic form in n variables with
integer matrix coefficients, in other words such that B(X,Y ) ∈ Z for any X, Y
in Zn. Assume that for any X ∈ Qn there exists Y ∈ Zn such that q(X−Y ) < 1.
Then if k ∈ Z is represented by q in Q, it is also represented by q in Z.

The proof follows similar lines to the above proof, and left as an excellent
excercise for the reader.
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7 Consequences of Cassels’s Theorem

In what follows we always assume implicitly that all quadratic forms are non-
degenerate and that char(K) 6= 2.

Lemma 7.1 Let q = 〈a1, . . . , an〉 with ai ∈ K∗. Then q represents the polyno-
mial anX

2 + d in K(X) if and only if at least one of the following conditions is
satisfied:

(1) q is isotropic in K.

(2) d is represented by 〈a1, . . . , an−1〉 in K.

Proof. By Proposition 2.1 it is clear that these conditions are sufficient.
Conversely, assume that q is not isotropic in K and represents anX

2 + d in
K(X). By Cassels’s theorem, q also represents anX

2 + d in K[X], and since
q is not isotropic (exercise: why is this necessary?), there exist bi and ci in K
such that

anX
2 + d =

∑
1≤i≤n

ai(biX + ci)2 .

Since char(K) 6= 2 one of the two elements 1 ± bn is invertible, so there exist
c ∈ K and a suitable sign such that c = ±(bnc+ cn). Thus

anc
2 + d =

∑
1≤i≤n

ai(bic+ ci)2 = anc
2 +

∑
1≤i≤n−1

ai(bic+ ci)2 ,

so that d =
∑

1≤i≤n−1 ai(bic+ ci)2 as claimed. ut

Corollary 7.2 Let K be an ordered field and L = K(X1, . . . , Xn). Then

X2
1 + · · ·+X2

n /∈ Sn−1(L) and

1 +X2
1 + · · ·+X2

n /∈ Sn(L) .

In particular, p(L) ≥ n+ 1.

Proof. Immediate from the lemma by induction. ut

Remark. Cassels’s theorem does not generalize to several variables: for
instance q can represent f in K(X,Y ) without representing it in K[X,Y ]
(although by Cassels’s theorem it will be representable in K(X)[Y ] and in
K(Y )[X]). For instance, let f(X,Y ) = 1 − 3X2Y 2 + X2Y 4 + X4Y 2. We
check that

f(X,Y ) =
(1−X2Y 2)2 +X2(1− Y 2)2 +X2Y 2(1−X2)2

1 +X2
,

so as a quotient of a sum of 4 squares it is a sum of 4 squares in K(X,Y ). On
the other hand it is immediate to check that f is not even a sum of squares in
K[X,Y ].
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The above results imply that n + 1 ≤ p(R(X1, . . . , Xn)) ≤ 2n, which leaves
a large margin of uncertainty. One conjectures that Pfister’s upper bound is
in fact the correct value. For n = 0 and n = 1 this is clear, and in fact is
immediate directly. For n = 2, in [4], Cassels–Ellison–Pfister have shown that
the polynomial f(X,Y ) given in the above remark is not a sum of 3 squares in
R(X,Y ), so that indeed p(R(X,Y )) = 4, which implies by induction the slightly
stronger inequality n + 2 ≤ p(R(X1, . . . , Xn)) ≤ 2n. Nothing better is known
for n ≥ 3, for instance p(R(X,Y, Z)) = 5, 6, 7, or 8.

In the case of other ordered fields such as K = Q, even less is known. For
instance Euler–Lagrange’s theorem on sums of four squares of integers together
with the trivial fact that 7 /∈ S3(Q) says that p(Q) = 4. In [12], Pourchet
proved that p(Q(X)) = 5, and in an unpublished preprint Pop generalized this
to number fields with the inequality 5 ≤ p(K(X)) ≤ 6 for K a number field. On
the other hand, one does not even know whether p(Q(X,Y )) is finite or not.

8 Some Additional Examples

Proposition 8.1 There exists a field L such that p(L) = +∞.

Proof. Indeed, choose L = R(Xi ; i ≥ 1). Taking K = R(Xi ; i > n),
Corollary 7.2 tells us that 1 +X2

1 + · · ·+X2
n /∈ Sn(L), so that for all n we have

p(L) > n. ut

Proposition 8.2 For any k ≥ 0 there exists a nonordered field K with s(K) =
2k.

We have seen above that these are the only possible values of s(K).
Proof. Set n = 2k. We will choose K = R(X1, . . . , Xn)(Y ) where Y

is a root of the equation Y 2 + X2
1 + · · · + X2

n = 0 (more abstractly K =
R(X1, . . . , Xn+1)/(X2

1 + · · ·+X2
n+1)). By construction −1 =

∑
1≤i≤n(Xi/Y )2,

so that s(K) ≤ n. Let us show that we cannot have s(K) ≤ n − 1. Indeed,
this would mean that there exist f1,. . . ,fn in R[X1, . . . , Xn][Y ] not all zero and
such that f2

1 + · · ·+ f2
n = 0. Replacing all Y 2 by −

∑
1≤i≤nX

2
i , we may assume

that the degree in Y of all the fi is at most equal to 1. Thus, taking representa-
tives Fi of the fi in R[X1, . . . , Xn+1] of degree at most 1 in Xn+1, the identity
f2
1 + · · ·+ f2

n = 0 means that there exists P ∈ R[X1, . . . , Xn+1] such that

F 2
1 + · · ·+ F 2

n = P · (X2
1 + · · ·+X2

n+1)

in R[X1, . . . , Xn+1]. Since
∑

i F
2
i has degree at most equal to 2 in Xn+1 we must

have P ∈ R[X1, . . . , Xn]. If we replace Xn+1 by 0, it follows from the fact that
n = 2k and multiplicativity of S2k(L) for a field L that P ∈ Sn(R(X1, . . . , Xn)).
Since the Fi are not all equal to 0, applying again multiplicativity we deduce that
X2

1 + · · · + X2
n+1 ∈ Sn(R(X1, . . . , Xn+1)), which clearly contradicts Corollary

7.2 (2). ut
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