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Abstract

A mixed model is said to be constrained if none of its fixed factors is nested
within a random factor. Hess and Iyer have asked the question of enumerating
non-isomorphic mixed models (with or without constraint), solving the problem
for mixed models of size at most 5. In this article, using previous results about
posets, we present a new algorithm, and obtain results for mixed models of size
at most 10.

1 Introduction

The number of non-isomorphic fixed effects ANOVA models is known for n ≤ 16 [2],
since there is a one-to-one correspondence with posets. Hess and Iyer have worked on
the problem of enumerating non-isomorphic mixed models (with or without constraint).
A mixed model is said to be constrained if no fixed factor is nested with a random
factor. They obtained results for mixed models of size at most 5 [8], proving there are
576 mixed models with constraint.
Mixed model is a special case of the general linear model, where both the mean

function and covariance matrix for a data have a linear structure. More precisely, the
vector of observations y is assumed to have moments:

E[y] = Xα

V ar[y] =
[
t

φtVt

where α = (α1, . . . ,αp)
t and φ = (φ1, . . . ,φq)

t are unknown parameters and the matri-
ces X,V1, . . . ,Vq are given. Any mean vector and covariance matrix can be written in
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this form, but we are interested in models in which the parameters α1, . . . ,αp,φ1, . . . ,φq
are functionally independent.
Hess and Iyer have written a SAS macro which allows to determine confidence

intervals so as to facilitate the calculations of the Satterwaite method using the im-
plementation of Burdick and Graybill [3]. Efficiency domain of their macro is reduced
to models with at most 5 factors. We announced in [1] that we have succeeded in
enumerating constrained and unconstrained mixed models up to 9 factors. We present
here our work, which uses previous works about posets [7, 4, 5], and we extend the
results, at the present time, to constrained mixed models with at most 10 factors.

2 Propositions

We start with the following correspondence which was established in [8]:

THEOREM 1. There exists a one-to-one correspondence between fixed effects mod-
els and posets (P,<).

PROOF. Let us consider a poset P with n elements and a fixed effects model F with
n factors. Crossed factors of the mixed model correspond to incomparable elements of
the poset. A factor j is nested within a factor i in the mixed model if, and only if, we
have j < i in the poset P .

Thanks to this correspondence, the number of non-isomorphic fixed effects models
of size at most n is known [2].
For mixed models, we introduce the notion of proset, which stands for Partially

Reflexive Ordered SET.

DEFINITION 1. A proset is a set with a transitive and anti-symmetric binary
relation.

REMARK 1. One can think a proset Pr as a poset P for which the order relation
has been slightly modified, so that it can be reflexive for some elements of P only. In
other words, we allow diagonal coefficients of the incidence matrix of the proset Pr to
be one or zero. In this case, we shall say that the proset Pr induces the poset P .

THEOREM 2. There is a one-to-one correspondence between mixed models (with-
out constraint) and prosets.

PROOF. Let us consider a proset P with n elements and a mixed model M with
n elements. For distinct elements of the proset, it is the same situation as before.
A reflexive element of P corresponds to a random factor of M , and a non-reflexive
element of P corresponds to a fixed factor of M .

We have a natural notion of duality within prosets.

DEFINITION 2. A proset P 3 is the dual of the proset P if, and only if:

• P and P 3 induce the same poset P .·
• the reflexive elements of P 3 are exactly the non-reflexive elements of P .

With incidence matrix, P 3 is obtained from P by changing 0 into 1 and 1 into 0 on
the diagonal of the incidence matrix of P .
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REMARK 2. Let n be an odd integer. By duality, we can say that the number of
mixed models of size n without constraint is even.

Hess and Iyer managed to enumerate non-isomorphic mixed models of size at most
5, with and without constraint. Our algorithm has allowed us to extend these results
for n ≤ 10.

3 Enumeration of mixed models

We represent a proset M = (x1, x2, ..., xn,≺) by its incidence matrix (mij) ∈ {0, 1}n2
with mij = 1 if, and only if, xi ≺ xj . Not only is this a good representation in terms
of implementation, but also it leads us to index and sort the vertices. Our algorithm
aims at minimising the number of permutations of the vertices to detect isomorphic
prosets.
Hess and Iyer algorithm:
1. Generation of adjacency matrices of posets of size n.
2. For each poset, construction of the set of matrix obtained by all possible combi-

nations of 0 and 1 on the diagonal.
3. If only constrained mixed models are wanted, suppression of any matrices A

which violates the constraint, by computing A3 =
Si=n−1
i=0 Ak and by checking whether

A3(i, j) ≥ 1 for any couple (i, j) such as A(i, i) = 1 and A(j, j) = 0.
4. Suppression of isomorphic models.

Our algorithm:
1. Generation of adjacency matrices of posets of size n with the algorithm of

enumeration of Chaunier and Lygeros [4, 5].
2. For each poset, construction of the incidence matrix A obtained by putting 0

and 1 on the diagonal such as the number of 1 is at most n2 . This way, we generate only
one proset for each couple of dual prosets, thus reducing the number of isomorphism

tests. Note that there are 2n−1 such matrices if n is odd and 2n−1 +
�
n
n
2

�
if n is even.

3. Elimination of all isomorphic prosets.
4. Incrementing by 2 the number of mixed models without constraint. Then we

check whether the mixed model, and its dual, satisfy the constraint or not.

REMARK 3. So as to check whether a proset validates the constraint or not, it is
sufficient to check whether a reflexive element is adjacent to a non-reflexive element.
As our algorithm creates canonical prosets (via the generation algorithm of posets),
this test is elementary.

REMARK 4. If only the number of constrained mixed models is wanted, one can
eliminate mixed models that violate the constraint before doing the isomorphism test.

4 Results and interpretation.

First we remind known results about the enumeration of non-isomorphic posets, and
then we give the results obtained for mixed models.
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Table 1: Number of fixed effects models

Factors Fixed effects models Names and years
n = 1 1
n = 2 2
n = 3 5
n = 4 16
n = 5 63
n = 6 318
n = 7 2.045 Wright 1972
n = 8 16.999 Das 1977
n = 9 183.231 Mohring 1984
n = 10 2.567.284 Culberson, Rawlins 1990
n = 11 46.749.427 Culberson, Rawlins 1990
n = 12 1.104.891.746 C. Chaunier, N. Lygeros 1991
n = 13 33.823.827.452 C. Chaunier, N. Lygeros 1994
n = 14 1.338.193.159.771 N. Lygeros, P. Zimmermann 2000
n = 15 68.275.077.901.156 G. Brinkmann, B. D. McKay 2002
n = 16 44.831.306.651.195.087 G. Brinkmann, B. D. McKay 2002

Table 2: Number of mixed models (Not Constrained)

Factors Mixed models (Not Constrained) Names and years
n = 1 2 A. Hess, H. Iyer 1999
n = 2 7 A. Hess, H. Iyer 1999
n = 3 32 A. Hess, H. Iyer 1999
n = 4 192 A. Hess, H. Iyer 1999
n = 5 1.490 A. Hess, H. Iyer 1999
n = 6 15.067 R. Bayon, N. Lygeros, J.-S. Sereni 2002
n = 7 198.296 R. Bayon, N. Lygeros, J.-S. Sereni 2002
n = 8 3.398.105 R. Bayon, N. Lygeros, J.-S. Sereni 2002
n = 9 75.784.592 R. Bayon, N. Lygeros, J.-S. Sereni 2002
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Table 3: Number of constrained mixed models

Factors Mixed models (Constrained) Names and years
n = 1 2 A. Hess, H. Iyer 1999
n = 2 6 A. Hess, H. Iyer 1999
n = 3 22 A. Hess, H. Iyer 1999
n = 4 101 A. Hess, H. Iyer 1999
n = 5 576 A. Hess, H. Iyer 1999
n = 6 4.162 R. Bayon, N. Lygeros, J.-S. Sereni 2002
n = 7 38.280 R. Bayon, N. Lygeros, J.-S. Sereni 2002
n = 8 451.411 R. Bayon, N. Lygeros, J.-S. Sereni 2002
n = 9 6.847.662 R. Bayon, N. Lygeros, J.-S. Sereni 2002
n = 10 133.841.440 R. Bayon, N. Lygeros, J.-S. Sereni 2003

Now, we underline the relation between the number of fixed effects ANOVA models
with n elements and the order of the automorphism group of the associated poset [6, 9].
In the following, MPm ×K means that there are M posets with automorphism groups
of order m, each generating K mixed models (without constraint).
M1 = 2 = 1P1 × 2
M2 = 7 = 1P1 × 4 + 1P2 × 3
M3 = 32 = 2P1 × 8 + 2P2 × 6 + 1P6 × 4
M4 = 192 = 5P1 × 16 + (6P2 × 12 + 1P2 × 10) + 1P4 × 9 + 2P6 × 8 + 1P24 × 5

We see here that the order of the automorphism group of the poset is not sufficient
to know the number of mixed models generated. The smallest posets to illustrate this
have 4 elements:

P0 =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 P1 =


0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0


Both have an automorphism group of order 2, but P0 generates 10 mixed models

whereas P1 generates 12. This is due to the structure of the automorphism group:
A(P0) = {id, (12)(34)} whereas A(P1) = {id, (12)}.
More precisely:

PROPOSITION 1. Let (P,<) be a poset of size n with automorphism group G of
order a.

(i) If a = 1 then P generates 2n mixed models (without constraint).

(ii) If a = n! then P generates n+ 1 mixed models (without constraint).

(iii) If we know the composition of G, we can compute the number of mixed models
(without constraint) generated by P , thanks to Pólya Theorem [10]. This number
is:
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ZG(2) = 1

a

[
g∈G

2λ1(g)+λ2(g)+···+λn(g)

where λi(g) is the number of disjoint cycles of size i in the decomposition of g in
disjoint cycles.

Last, the result of Prömel [11] on rigid posets, that is almost all posets have trivial
automorphism group, explicitly shows us the efficiency of our method. By a structure
isomorphism, it is easily seen that almost all prosets are rigid, and that proportionally,
prosets have an effective density which is superior for a given n.
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