
Using GAP

Alexander Hulpke

Department of Mathematics
The Ohio State University

231 West 18th Avenue
Columbus, OH 43210, USA

ahulpke@math.ohio-state.edu
http://www.math.ohio-state.edu/~ahulpke

1 Preface

This set of notes on GAP was prepared for a tutorial at ISSAC
2000 in St Andrews.
This tutorial is intended neither to give an introduction to
computational group theory, nor to be a replacement for a
manual. Instead, I want to give ideas what can be done with
the system and how I would tackle certain problems. Much
of this is based on questions colleagues came up with over the
last years.
While working with the system might be a bit foreign at the
beginning, usually there is no problem is finding out what
commands such as:

1+2;
Normalizer(group,subgroup);
IsSolvableGroup(G);

do. This tutorial therefore is not intended as a hands-on tutorial
you follow simultaneously (there is a part of the GAP manual
devoted to this purpose). Instead I hope you will follow the
mathematical concepts how things can be done and then can
adapt this tutorial’s examples for your own purposes.
If you have never used the system before, I hope you will get
an idea what the system is capable of and might find starting
points to translate the problems you face for the system. If you
used the system, I hope this tutorial will eludicate some of the
more quirky bits of the system.
Some of the examples might look as if I was throwing an
overkill of technology at problems one could solve easily by
hand. That’s certainly true. On the other hand I want to show
how to use the system, and not how clever a human can be.
Besides, I guess most people value their personal time higher
than a computer’s and having it slaving away for a while is
what it was built for.
Due to my own background in group theory the emphasis
might be overly on groups. I hope, however, the examples
and descriptions will show enough of the general “flavour” or
“look-and-feel” of the system to be useful also if you work
with other structures.
I would like to thank Inna Korchagina, David Pollack, and Jeff
Riedl for helpful comments on a first version.

Columbus, July 2000

2 The system

2.1 Authors

Consisting of several 106s lines of code, the system is the
result of the work of many people.
An explicit authors list can be found in the manual and on the
web page.

2.2 Getting Information and Help

http://www-gap.dcs.st-and.ac.uk
(and mirrors): System information. Download.

gap-trouble@dcs.st-and.ac.uk
General system help.

gap-forum@dcs.st-and.ac.uk
Discussion list

2.3 User interface

The user interface is text based (there is a graphical front end
XGAP for Unix). The editing commands are Unix/EMACS-
like. (In particular <TAB> offers command completion and ^P,
^N go back and forth in the history). If you have used a text-
only version of Maple, say, you will feel at home soon. ?topic
calls the online help. ??sub lists all help topics that contain
the substring sub. SetHelpViewer permits to change the way
the online help is displayed. For example:

gap> SetHelpViewer("netscape");

under UNIX.

2.4 Break Loop

If you interrupt a calculation with ^C or run into an error you
enter the break loop, indicated by the brk> prompt.
At this point you can:

• Abandon the calculation with quit; or ^D.

In rare cases this might leave a corrupted data structure.

• Continue after an interruption with return;

• Investigate local variables.

• See the function call stack with Where().

1

• Step up and down the call stack (and investigate variables
there) with DownEnv(n).

DownEnv takes negative values to step up.

If you cause an error in a break loop, you enter another
(deeper) break loop.

2.5 Bugs and Problems

In the course of your calculations you might run into problems:

• There seems to be no way to do the calculation you want
to.

• The calculation is too slow.

• GAP might run into an error (or worse: returns a wrong
result)

While this tutorial tries to help you around problems of the
first two kinds, there still could be performance problems we
don’t yet know about.
If you suspect the system to have any such problem, please do
not keep this knowledge to yourself and grumble quietly. If
we don’t know aboput a problem we cannot fix it. We might
not be able to remedy all performance problems you come up
with, but we will certainly try (and the experience so far with
this has been quite good).
The email address gap-trouble@dcs.st-and.ac.uk has
been set up especially for this purpose.
(In most cases we will need not only a description of the
problem, but it is extremely helpful to also have the input
which caused the problem.)

2.6 View, Print and Display

There are three default ways how GAP shows objects to the
user:

2.6.1 View

shows a short description of an object. All output that GAP
provides without being asked for is created by View. A
double semicolon at the end of a line will inhibit View.

gap> GL(3,2).1;
<an immutable 3x3 matrix over GF2>

2.6.2 Print

shows output that describes the object in sufficient detail that
it could be used to recreate the object.

gap> Print(GL(3,2).1);
[[Z(2)^0,Z(2)^0,0*Z(2)],[0*Z(2),Z(2)^0,0*Z(2)],
[0*Z(2),0*Z(2),Z(2)^0]]

Print is the bottom level function used to output Numbers or
strings. Do not forget the \n line end character.
There also are PrintTo and AppendTo to write to files.
Print/Read so far provide the only possibility to save single
objects. The file created by Print has to be edited to add a
variable assignment and a semicolon.

2.6.3 Display

pretty-prints the most human-readable version.

gap> Display(GL(3,2).1);
1 1 .
. 1 .
. . 1

In case you want to install own methods: The corresponding
single-argument operations are called ViewObj, PrintObj,
DisplayObj.

2.7 Language

The GAP programming language is of the ALGOL (Pascal, C,
Java, ...) family. It is interpreted but has time-critical routines
in the (C-) kernel. There also is the possibility to compile the
interpreted language into C for further optimization.

The standard way for argument lists is to have the “largest”
arguments first.

By default, a lot of user operations test the input for validity
(for example checking whether a prescribed map actually is
a homomorphism). These tests are helpful when working
interactively to spot careless errors, they can be a severe
nuisance in an algorithm where the context ensures the input
data is valid. In such cases there often is a second operation
whose name is the same but for an appended NC (for “no
check”).

2.8 Basic objects

The basic objects are (essentially) rational and cyclotomic
numbers, finite field elements, permutations, words in free
structures, lists and records. Using the latter two iteratively,
it is possible to create more complicate data structures.
GAP internally uses positional objects and component objects
which are essentially like lists and recoreds, however
component access requires use of an !. NamesOfComponents
will return the components stored for an component object.
You can access these components, but in most cases such
access is undocumented and will lead to code that might not
run with future versions.
Finite field elements are given by Zech logarithms as power of
a primitive element.

gap> AsList(GF(8));
[0*Z(2),Z(2)^0,Z(2^3),Z(2^3)^2,Z(2^3)^3,
Z(2^3)^4,Z(2^3)^5,Z(2^3)^6]

Use n*Z(p)^0 to convert an integer into a prime field and
Int(n) to get the integer corresponding to a prime field
element.

2.9 List functions

These functions are incredibly convenient and permit to code
substantial code in just a single line. (They are not necessarily
the fastest possible way of doing the task so use them with care
in inner loops). For example to find all sublists in a list which
contain exactly two prime numbers, one could use:

Filtered(l,i->Number(i,IsPrimeInt)=2);

All of these functions take as input a list and a one-argument
function. The shorthand notation

2

x->myfunction(x+1)

for

function(x) return myfunction(x+1);end

is useful in this context.

2.10 Sorted lists

Finding elements in a list using in or Position works
much faster if the list is sorted and binary search can be
used. This however requires that a total order can be
computed cheaply for the objects in the list, which is not
the case for complicated objects, such as subgroups. (The
filter CanEasilySortElements is useful here.) Therefore
it can be worth to convert a list into sorted form (using
AsSSortedList/Set or Sort) before working with it.
A list of mutable objects cannot remember that it is sorted
(→ 4.12).
A general setup for such problems is provided by dictionaries
(→ 4.10).

2.11 Equal versus identical

Objects are identical, if they are indeed the same object in
memory. However the “same” object might be stored several
times or several objects might be considered to be equal (for
example different words representing the same element of a
finitely presented group) .
Avoiding to keep equal, nonidentical, objects can save a lot of
memory. When working with (mutable) objects, however a bit
of care has to be taken:

gap> a:=[1,2];;
gap> b:=[a,[1,2],a];
[[1, 2], [1, 2], [1, 2]]
gap> b[1][2];
2
gap> b[1][2]:=3;;b;
[[1, 3], [1, 2], [1, 3]]
gap> b[2][2]:=4;; b;
[[1, 3], [1, 4], [1, 3]]
gap> b[1]:=[1,2];; b;
[[1, 2], [1, 4], [1, 3]]

3 System Capabilities

3.1 Standard Questions

There are different levels of difficulty of computing tasks:

Level 0: Element Arithmetic

Level 1: |G|, [G : U], a ∈U ,

Level 2: Composition series, Normalizer, Centralizer, Cen-
tre, Normal subgroups, factor groups, Complements,
Homomorphisms

Level 3: Conjugacy classes, Subgroups, Character table,
Automorphism group, group isomorphism

Level 4: Test conjectures/find counterexample, Enumerations
of structures,

Except for finitely presented groups (where element equality
is potentially undecidable) there exist algorithms for problems
of level up to 3. However most research problems fall in level
4. Therefore I want to concentrate on how to phrase these
problems in a way suitable for GAP.

3.2 How hard are questions

The different levels of difficulty roughly correspond to the
time I’m willing to wait for a result. The following table
gives some ideas of how large problems one can tackle on a
“current” (Summer 2000) system.

Level Perm PcGroup
Degree/Size Composition Length

0 107/107! 300
1 5 ·105/10500 100
2 105/1080 60
3 104/1020 20

Matrix groups defer to permutation groups, the only extra
problem there is to find a faithful permutation representation.
Finitely presented groups again suffer from undecidability
results.

It is usually better to work in matrix groups than fp groups,
permutation groups than matrix groups and pc groups rather
than permutation groups.

3.3 Creating Domains

Groups, rings, Algebras etc. are implemented in GAP as
sets of elements, for which certain operations (+,−,∗,/,̂ , . . .)
are defined. The manual (→ Manual: Domains and their
Elements) calls such sets domains.
On the lowest level domains work like sets: The standard
operations in,IsSubset, Size, Intersection, Union work
as for sets (but often try to be more clever than to use element
lists).
There are three common ways to define domains:

• Generators — The domain created is the closure of
a given generating set under the admitted operations.
Examples are matrices, permutations or endomorphisms.

• Relations — The domain is given as

– Quotient of a universal object by factoring out
relations. Examples are Finitely presented groups,
algebras (structure constants are a special case)

– Subset of a larger domain which leaves a given
structure invariant. (So far this is rarely used,
element tests in the classical matrix groups are the
only situation that comes to mind.)

• Special objects that claim to be certain domains and use
bespoke methods. GAP for example implements most
prime fields and polynomial rings in this way.

3.3.1 Permutations

A permutation is written in cycle form

gap> g:=Group((1,2,3,4,5),(1,2,3));

Permutations act from the right, multiplication is accordingly.

3

3.3.2 Matrices

Matrices are lists of lists of field elements

gap> mat:=[[1,2],[3,4]]*Z(5)^0;
[[Z(5)^0, Z(5)], [Z(5)^3, Z(5)^2]]

Matrices implemented as mutable, plain lists are problematic
(→ 4.12). GAP therefore converts all matrix group generators
into immutable compressed matrices if possible, and all matrix
group elements are of this kind as well.

3.4 Finitely presented structures

The first step here is to define a suitable free structure.Relators
(for groups and algebras) are elements of this free structure,
relations (for semigroups) pairs of elements.
The finitely presented structure then is obtained by taking the
quotient of the free structure by the relators.

gap> f:=FreeGroup("a","b");
<free group on the generators [a, b]>
gap> x:=f.1;y:=f.2;
a
b
gap> rels:=[x^2,y^3,(x*y)^5];
[a^2, b^3, a*b*a*b*a*b*a*b*a*b]
gap> g:=f/rels;
<fp group on the generators [a, b]>

The resulting finitely presented structure has generators which
are the images of the free generators. Note that the relators
are formed from products of variables, the variable names
displayed need not correspond to the identifier names.
Though they view under the same name, the elements of
the free group and the corresponding elements of the finitely
presented group are not the same

gap> g.1;
a
gap> g.1^3=g.1;
true
gap> f.1^3=f.1;
false

You can use UnderlyingElement to obtain a representative
in the free group. Vice versa ElementOfFpGroup (the first
argument is the family of elements of the finitely presented
group) creates an element of a finitely presented group
represented by a given word.

gap> UnderlyingElement(g.1);
a
gap> UnderlyingElement(g.1)=f.1;
true
gap> ElementOfFpGroup(FamilyObj(One(g)),f.1*f.2);
a*b
gap> Order(last);
5

While two permutation groups created by the same
permutations are equal, finitely presented groups given by the
same presentation (even as quotient of the same free group
by the same relators) are different and incompatible. When
trying to multiply elements from different FpGroups, GAP
will complain even though the elements seem to be of the same
kind (→ 7.2).

At the moment calculations in finitely presented groups will
cause the calculation of coset tables for subgroups and (if
needed) a faithful permutation representation.
Words are stored in generator/exponent form. This makes
operations which are letter-based such as Subword, and
Length comparatively expensive. Try to use syllable
indexing instead with NrSyllables, GeneratorSyllable
and ExponentSyllable.

3.5 PC groups

A special case is polycyclic presentations (which exist for a
finite group if and only if the group is solvable.) For these
groups there is an algorithm, collection, to compute a normal
form for an element. To make use of this, it is not sufficient to
write down such a presentation, but the group must be stored
in a special form as PcGroup. The easiest way to create such a
group is via IsomorphismPcGroup (→ 3.10). Creating them
directly is a bit technical.
You cannot Print a Pc group to a file and then read it in.
The function GapInputPcGroup creates a special string that
can be printed to a file to produce a program that creates a pc
group with the same pc presentation. This output also shows
how to create a PcGroup from scratch.
A calculation in a pc group will have to do a large number
of exponent tuple calculations (→ 6.2). If the pcgs used is
not the family pcgs this can cause a severe slowdown. It can
be worth to change to an isomorphic pc group, whose family
pcgs is better adapted to the calculations, for example by using
IsomorphismSpecialPcGroup.

3.6 External input

The easiest way to communicate with an external program is
to have GAP PrintTo/AppendTo input for another program
to a file, call a program with Exec and let this program print
GAP input (assignments to variables) to a file which then is
read into GAP.

There also is a more elaborate way of communicating with
other processes using streams and one can use this approach to
read in arbitrary text files. In particular this removes the need
for the external program to print GAP variable assignments
(or the need for a translation script). In this case however your
code might have to do the parsing itself.

3.7 Standard tasks

Computing things such as an element’s Order, a group’s
Size, Normalizer or Centralizer do not require much
explanation. Tests for properties start with Is such as
IsSolvableGroup, IsNilpotentGroup, IsPerfect.

The performance of such operations of course might depend
substantially on the chosen representation.
If the same name is used for different concepts
for different algebraic structures (for example a Lie
algebra is not simple if it is simple as a group), the
name of the structure gets added. Similarly there is
KernelOfMultiplicativeGeneralMapping – the mapping
could be additive as well.
There are overlay functions that try to guess the right structure,
so IsSolvable is recognized as well.
Some operations are related to homomorphisms: Con-
version of representations (→ 3.10), Factor groups (via

4

NaturalHomomorphismByNormalSubgroup) and group ac-
tions are done by asking for the corresponding homomor-
phism.

3.8 Structured subsets

Conjugacy classes of elements or subgroups and cosets are
stored as objects that keep a Representative. They usually
provide methods for Size and in. One can use AsList or
AsSSortedList to get an explicit element list.

If the set is an orbit under a group action, it is often
stored in the form of an external set (→ Manual: External
Sets). This means that besides Representative, it also
supports the attributes ActingDomain, FunctionAction,
and StabilizerOfExternalSet (a stabilizer of the repre-
sentative).

3.9 Homomorphisms

Homomorphisms are one of the most important concepts in
algebra. As GAP provided a setup that will support also
relations (multivalued functions), the user interface might look
a bit complicated at the first look, but most complications can
simply be ignored. This is the gist about homomorphisms:
There are three ways to create homomorphisms:

• By assigning images for generators:
GroupHomomorphismByImages, or — better (as
no test for being a homomorphism is done) –
GroupHomomorphismByImagesNC.

But if there is no algorithm to decompose into
generators, evaluating images will cause GAP to list all
group elements internally.

• Induced by action: ActionHomomorphism. The image
permutations are computed by acting on a domain.
(To compute preimages we decompose into permutation
geenerators in the image.)

The kind of action is specified by a GAP function whose
first argument is a point and the second argument a group
element. By default OnPoints is used.

Unless you create the homomorphism to be surjective,
the range will be the full symmetric group.

• By a function: MappingByFunction.

No test for being a homomorphism is done.

The basic operations for a homomorphism are:

• Source and Range (domain and codomain) – these are
usually already stored.

• ImagesSource is the image of the homomorphism.,
KernelOfMultiplicativeGeneralMapping the ker-
nel. You can use shorthand commands Image and
Kernel if you like.

• Image is also used to compute the image of an element or
a subgroup. In contrast to ImageElm and ImagesSet it
will check whether the mapped element is in the source.

• PreImage will return the full preimage.

The preimage of a subgroup is always a subgroup, the
preimage of an element a list of elements.

• PreImagesRepresentative returns one preimage of
an element.

• InverseGeneralMapping creates the inverse (^-1
is not recognized for mappings which are not
automorphisms),

• CompositionMapping (or *, but note the different
argument order) the composition of mappings.

Do not try to compute images or preimages of objects
such as cosets or conjugacy classes – GAP will often
take the preimage of them as sets of elements and return
a large element list. Instead take the preimage of the
Representative and create a class or coset anew in the
original group.

3.10 Conversion

For resons of efficiency (→ 3.2) or because of nonavailability
of methods it can be helpful or necessary to convert from
one representation to another. The standard way to
change representations is to create a homomorphism onto
an isomorphic domain in the new representation. This
isomorphism can also be used to transfer results between
the old and the new representation. The Image of the
isomorphism is the new domain.

gap> g:=GL(3,3);
GL(3,3)
gap> iso:=IsomorphismPermGroup(g);
<action homomorphism>
gap> Image(iso);
Group([(10,19)(11,20)(12,21)(13,22)(14,23)
(15,24)(16,25)(17,26)(18,27),
(2,7,10,20,18,5,25,21,15,14,17,8,16)
(3,4,19,12,23,9,13,11,26,27,24,6,22)])

3.11 Computing in another representation

As long as one is only interested in the abstract group, the
best strategy usually is to go to a “good” representation and
do all calculations there. In some cases however one needs
a result in a particular representation which is not optimal for
calculations.
In such a situation one can calculate in the “nicer”
representation and then pull the result back by taking pre-
images under the isomorphism.
In particular one can take pre-images of attributes and store
them as attributes in the original group, thus having the
information automatically available.

gap> g:=Group((1,2,3,4),(1,2),(5,6,7));;
gap> iso:=IsomorphismPcGroup(g);;
gap> h:=Image(iso);;
gap> z:=Centre(h);;
gap> SetCentre(g,PreImage(iso,z));
gap> cl:=ConjugacyClasses(h);;
gap> ncl:=[];;
gap> for c in cl do
> nc:=ConjugacyClass(g,
> PreImage(iso,Representative(c)));;
> SetSize(nc,Size(c));
> SetStabilizerOfExternalSet(nc,
> PreImage(iso,StabilizerOfExternalSet(c)));
> Add(ncl,nc);

5

> od;
gap> List(ncl,Size);
[1, 1, 6, 8, 3, 1, 6, 8, 3, 6, 6, 8, 3, 6, 6]
gap> SetConjugacyClasses(g,ncl);

A useful operation to know in this context is
SmallerDegreePermutationRepresentation which tries
to find a smaller degree faithful permutation representation
for a permutation group.

3.12 NiceMonomorphisms

This situation happens all the time for matrix groups and
groups of automorphisms. The best way implemented so far
to compute with these groups is via a faithful permutation
representation. The way this is done in GAP is via the concept
of a nice monomorphism:

• There is a special filter
IsHandledByNiceMonomorphism.

• This filter is implied by IsMatrixGroup
and IsFinite, respectively by
IsGroupOfAutomorphisms. (Note:
IsGroupOfAutomorphisms is not set automatically if
you create the group via Group.)

• There are high-ranking special methods (in
lib/grpnice.g?) applicable under the condition
IsHandledByNiceMonomorphism. These methods
translate the input via the NiceMonomorphism of the
group.

• NiceMonomorphism is an attribute. It must be a
homomorphism that can be evaluated without much
information about the group. Thus it is usually an action
homomorphism.

3.13 Character Tables

The typical questions here are to compute a table, get the
CharacterDegrees or to compute structure constants.
CharacterTable takes either a group (in this case the table
will be computed) or a string (fetching the table from the
library) as argument.
Unless you deliberately ask for Irr (the list of irreducible
characters) the table might not be computed in fyll.
Characters are a special case of class functions. A class
function is created from a list of values by ClassFunction,
the list of values is stored as ValuesOfClassFunction.
ScalarProduct computes the scalar product of class
functions.

InducedClassFunction and RestrictedClassFunction
compute inductions and restrictions, but one needs the
fusion map of the classes. If such a map is not stored
already in the table library, one can compute candidates with
PossibleClassFusions, often the number of choices can be
restricted with RepresentativesFusions:

gap> c:=CharacterTable("A7");;
gap> d:=CharacterTable("A6");;
gap> Irr(d)[2];
Character(CharacterTable("A6"),
[5, 1, 2, -1, -1, 0, 0])

gap> List(Irr(c),i->i[1]);

[1, 6, 10, 10, 14, 14, 15, 21, 35]
gap> fus:=PossibleClassFusions(d,c);
[[1,2,3,4,5,6,6],[1,2,4,3,5,6,6]]
gap> fus:=RepresentativesFusions(
> AutomorphismsOfTable(d),
> fus,AutomorphismsOfTable(c));
[[1, 2, 3, 4, 5, 6, 6]]
gap> StoreFusion(d,c,fus[1]);

gap> ind:=InducedClassFunction(Irr(d)[2],c);
Character(CharacterTable("A7"),
[35, 3, 8, -1, -1, 0, 0, 0, 0])

gap> res:=RestrictedClassFunction(ind,d);
Character(CharacterTable("A6"),
[35, 3, 8, -1, -1, 0, 0])

gap> ScalarProduct(d,res,res);
12
gap> MatScalarProducts(d,Irr(d),[res]);
[[1, 3, 0, 0, 0, 1, 1]]

Display will print the table nicely. You might want to use
SizeScreen and LogTo to produce an output of suitable line
length for printing. GAP tries to use the ATLAS notation for
algebraic irrationalities.

The classes of a character tables are indexed by numbers. If
the table is computed from a group the class arrangement
is likely to be a bit arbitrary (it corresponds to the attribute
ConjugacyClasses of the table which is a list of classes of
the group). For tables in the library it is the same as given in
the ATLAS.
You can use ClassNames to get names for the conjugacy
classes and (once ClassNames has been called) refer to class
numbers via their name.

gap> ClassMultiplicationCoefficient(c,2,3,2);
12
gap> ClassNames(c);
["1a","2a","3a","3b","4a","5a","6a","7a","7b"]
gap> c.7a;
8

4 Harder Problems

A problem which one wants to investigate on the computer
typically falls in one of the following three classes:

• Compute a property or associated value/object (size,
character table, number of classes, p-class) for a given
domain. These questions are usually easily asked to the
system. In many cases there is already an operation for
this defined ((→ 8) about own operations).

The only problem might be to get the right group in the
first place (→ 5.1)

• Find an element or substructure with certain properties.
While there are GAP functions that can do this for
moderate-sized problems, larger problems might require
some care in phrasing the problem.

• Classify (or at least count) all objects with certain
properties. This can be a major task, requiring a lot of
preparation and task-specific programming.

6

4.1 General Strategies

• Do not ask for more than you need. Use the most specific
command available.

For example to prove that groups are (non)isomorphic
with no need for an explicit isomorphism compute
invariants, use IdGroup and RandomIsomorphismTest
for small solvable groups.

• It might be easier not to check the definition of a
property, but (as a first step if they are not equivalent)
deduced properties.

For example when looking for characteristic subgroups
you need to check only normal subgroups.

• Reduce the search space.

4.2 Reducing the search space

The most naı̈ve reduction is to reduce the group you work in.
For example a problem that only involves p-elements can be
solved in a Sylow subgroup and a better representation for this
group may then be used.

A more natural approach is to use symmetries. This reduces
the search space by the size of the acting symmetry group.

Since we work in a group itself, chances are good that this
group (or its automorphism group or at least a subgroup) acts
by conjugation on potential solutions. It is thus sufficient to
search for the solution only up to conjugacy. In practice this
means running only over class representatives (→ 4.7).
When using conjugacy under the automorphism group it can
become necessary to change the representation to one, in
which the automorphisms can be realized.

4.3 Homomorphism principle

Another, often even better and not mutually exclusive, way
of reduction is to look at homomorphisms. If the problem
is in some way invariant under homomorphisms, try to solve
it first in a (smaller) homomorphic image and then to lift
the result to the group. Using a series of normal subgroups
(for example a ChiefSeries) this can be iterated. Use
NaturalHomomorphismByNormalSubgroup to construct the
factor groups.

Many of the algorithms for solvable groups work this way
(→ 6.2).

4.4 All Elements

One type of questions asks for elements with certain
properties. GAP can list all elements of a group, but this
will not only clog up the memory (one can often avoid this
sometimes by using an Enumerator instead), but searching
for all elements is likely to be slow.

If conjugacy is unimportant, try to use only class
representatives.

Elements of certain orders might reside in smaller subgroups
(search for p-elements in Sylow subgroups).

If the group is very big, but you expect that certain elements
exist, a random search might bring up the desired type of
elements. (This can give a solution but of course cannot be
used to disprove a conjecture.)
A few rules of thumb:

• How likely is a random search to find an element,
respectively: How many elements of the group should be
“good”? (For example random search might be a good
strategy to find a pair of elements whose product is in
a given class, it is not good for finding an element to
conjugate one given subgroup to another.)

• If the group is big, do not use Random (which
guarantees equal distribution but therefore might need to
precompute a lot of information) but PseudoRandom.

• Elements of small order are hard to find directly. But
they often have a root of high order which is easy to find.

4.5 All Subgroups

Everything said for elements holds for subgroups even more.
There are operations to compute the subgroup lattice, but if
the size of the group gets in the range of 106, or if the group
has large elementary abelian subfactors (vector spaces have
awfully many subgroups) problems arise.
There are a few classes of subgroups which can be found
comparatively easily:

• Cyclic subgroups (via ConjugacyClasses).

• NormalSubgroups.

• Derived, Lower Central etc. series.

• Sylow subgroups.

• Hall subgroups (so far only for solvable groups).

• Maximal subgroups (so far only for solvable groups).

• Complements to solvable normal subgroups.

MaximalSubgroups will return all subgroups. You are
likely to want ony MaximalSubgroupClassReps.

• Subgroups derived from these.

In particular, it can be worth to construct step-by-step by
first constructing only subgroups of a subgroup, and then
obtaining the desired subgroups as their Normalizers or
similar. A particular advantage is that the extending step
then can be done sequentially qith no need to keep all
subgroups simultaneously in memory.

The homomorphism principle might reduce the search to a
subgroup (the preimage of the solution in the image).
At the moment, GAP uses two different methods to compute
the subgroup lattice of a group. Both provide ways (which are
corresponding to the algorithm employed and therefore differ)
to compute only a subset of groups.

SubgroupsSolvableGroup works only for solvable groups
and uses an approach based on the homomorphism principle.
It can be adapted to compute only groups invariant under given
automorphisms, or of at least a certain size.

LatticeByCyclicExtension works for all groups and uses
the cyclic extension algorithm. It can be adapted to stop
extending groups which don’t fulfill certain properties which
can be effective if only “small” subgroups are searched for.

If you must run a subgroup lattice calculation consider
adapting either of the algorithms for your task – by adding
extra checks it is usually possible to prune the construction tree
much better than could be done with the predefined features.

7

4.6 Example 1: Testing a conjecture

A typical question solved by checking the data library is
(P. CAMERON, group-pub-forum, 1999):

If P is a 2-group which is not elementary abelian,
then some non-identity element of the centre of P
is a square?

We want to check this for the groups given in the small groups
library. For this we have to run through the groups of a given
size (2-power) and check the property for each nonabelian
group.
Checking whether a given element is a square (i.e. searching
for the roots) can be a bit hard. (Roots must centralize the
element, but this does not help here.) But we search only
for a nontrivial central element which is a square. And
of course we do not need to consider all elements, but only
representatives up to conjugation.
In other words: Is there a class representative which has a
nontrivial power in the centre. Of course we can take this
power to be of the smallest possible order, that is 2.

Check:=function(size)
local i,g,r,reps,prop,z;
for i in [1..NrSmallGroups(size)] do

g:=SmallGroup(size,i);
if not IsAbelian(g) then
test
z:=Centre(g);
prop:=false; # so far we did not find

a suitable element
reps:=List(ConjugacyClasses(g),Representative);
for r in reps do
if Order(r)>2 and r^(Order(r)/2) in z then

prop:=true;
fi;

od;
if not prop then return g; fi;

fi;
Print(".\c"); # progress report
od;
return true;
end;

Running for size 128, we find a counterexample:

gap> Check(128);
...................................
<pc group of size 128 with 7 generators>

4.7 Example 2: Generating Set

Consider the question:

U3(3) cannot be generated by three involutions but
by an involution and an element of order 6.

The naı̈ve way is to look though all n-tuples of generators. Of
course we need to do this only up to conjugacy. Such a search
is provided by GQuotients from free product of the desired
cyclic groups:

gap> g:=PSU(3,3);;
gap> F:=FreeGroup(3);;
gap> F:=F/[F.1^2,F.2^2,F.3^2];;
gap> GQuotients(F,g);
[]

Similarly, 2,3, 2,4 and 2,5 generation fails, but:

gap> F:=FreeGroup(2);;F:=F/[F.1^2,F.2^6];;
gap> GQuotients(F,g);
[[f1,f2] -> [(1,61)(2,90)(3,29)(4,49)...]
[f1,f2] -> [(1,28)(2,14)(3,33)(5,84)...]]

The images of the generators of F give the desired 2,6
generating set.

4.8 Details

But let’s look at this example in slightly more detail:
By conjugating in the image group, we can assign the image
of the first generator up to conjugacy. The image of the
second generator then is determined only up to conjugacy
with elements centralizing the first generator image. So the
image of the second generator is determined up to CG(g1)-
conjugacy, where g1 is the image of the first generator. We
get those classes by conjugating class representatives g2 with
representatives of the double cosets CG(g2)\G/CG(g1).
We could code it in the following way:

class:=ConjugacyClasses(G);
for c1 in class do
img1:=Representative(c1);
for c2 in class do

dc:=DoubleCosets(G,Centralizer(c2),
Centralizer(c1));

dc:=List(dc,Representative);
Even better: DoubleCosetRepsAndSizes
for rep in dc do
img2:=Representative(c2)^rep;
now check whether img1,img2 is
a suitable set of images

od;
od;

od;

There is a whole family of algorithms similar to
GQuotients, which are used for IsomorphicSubgroups,
for Isomorphism and AutomorphismGroup (of nonsolvable
groups). They try to find images for a generating set. Their
runtime therefore depends not only on the size of a image
group but also the size of a generating set. For example they
don’t perform well for p-groups.
If the group gets very big, such an exhaustive search might
take too long. In this case one might want to look only at
random elements.

4.9 Orbit-Type algorithms

The main tool to work with the action of a group is via the
orbit-stabilizer algorithm.
One computes images under the group generators until no new
images arise. By keeping transversal elements as well, one can
generate Schreier generator for the point stabilizer:

orb:=[pnt];
t:=[One(group)];
s:=TrivialSubgroup(group);
for p in orb do
for g in gens do

img:=p^g;
if not img in orb then

8

Add(orb,img);
Add(t,t[Position(orb,p)]*g);

else
s:=ClosureGroup(s,

t[Position(orb,p)]*g
/t[Position(orb,img)]);

fi;
od;

od;

At the end, orb contains the full orbit and s is the stabilizer of
pnt.

Instead of “^” another action function can be used.

As only the generators act, it is possible to act implicitly via
a homomorphism, given only by the generator images. A
typical case is the action of a group on an elementary abelian
subfactor via matrices. For this it is not necessary to be able
to compute the images of other elements.

The user interface for operations thus is quite general.
Parameters are:

• the acting group,

• the domain,

• a (start) point,

• group generators and their acting images,

• an action function.

Most of the parameters are optional with automatic default
values. To avoid implementing 2n different almost equal
operations, all user commands are actually functions (say
Stabilizer) that will supply the default parameters and then
call the actual operation (say StabilizerOp) with a full
parameter set.
The only drawback is that this makes the calling stack
displayed in the break loop a bit more complicated: Typically
the operation that does the work will show up under the name
orbish.

4.10 Object Lookup

To get good performance, it is crucial to get the test img in
orb and the Position tests to perform quickly. Depending
on the kind of objects involved, there are various possibilities:

- Linear search in a list.

- Binary search in a sorted list. (Requires fast <
comparison.)

- Hashing. (Requires hash key function.)

- Perfect hashing. (If one can get the index in the domain
fast.)

GAP takes care of all these using dictionaries. The basic
operations for these are:

- NewDictionary(obj,look[, actiondomain]) creates a
new dictionary. obj is one “typical” object you will work
withm actiondomain a set that will contain all orbits.

- AddDictionary(dict,obj[, value]) adds a new element
(with position value).

- KnowsDictionary(dict,obj) checks whether obj is
known.

- LookupDictionary(dict,obj) returns the correspond-
ing (position) value.

4.11 Linear algebra

Linear algebra exists on two different levels in GAP. The
top-level is that of abstract vector spaces. These are
domains which admit operations such as Intersection, in,
IsSubset, Size. Elements of this spaces are not necessarily
row vectors, even though the methods internally use coefficent
lists.

On this level a Basis is an object itself which permits the
computation of Coefficients.
For use within algorithms the cost caused by this comfort
might be too high and it is better to stay on the level of row
vectors and matrices.

Vectors are represented in GAP as lists of field elements,
matrices are lists of vectors. Addition and multiplication of
vectors and matrices performs the usual products. A vector
is automatically transposed if the product otherwise does not
make sense.

There are however a couple of performance issues related to
matrices and vectors that might be crucial to get satisfactory
performance.

4.12 Mutability

The fact that vectors and matrices are built from lists can cause
two types of problems. The first is with potentially unfriendly
code:

gap> v1:=[1,2,3];;v2:=[4,5,6];;l:=[v1,v2];
[[1, 2, 3], [4, 5, 6]]
gap> IsSSortedList(l);
true
gap> v1[1]:=5;
5
gap> IsSSortedList(l);
false
gap> IsVector(v1);
true
gap> v1[1]:=’a’;
’a’
gap> IsVector(v1);
false

The assignments to v1 might be sideeffects from code that gets
called. So a list of vectors could not store that it is sorted, nor
could an object have the type “vector”.

We get around this problem by declaring objects to be
immutable, that is not admitting any change. By definition,
this is inherited by all subobjects.

Lists of immutable objects may store that they are sorted,
immutable vectors can remember their type.

• Vectors and Matrices should be immutable, unless you
want to change them physically.

• Products of immutable matrices/vectors are immutable
again.

9

• Use ShallowCopy for vectors (or
List(m,ShallowCopy) for matrices) to get a
modifiable copy. (You will need to do this surprisingly
infrequent, as modification does not corespond to an
operation in the matrix algebra.)

4.13 Fast matrix arithmetic

GAP will consider a list of lists (of the same lengths) of ring
elements as a matrix and provides matrix multiplication for
such objects. As the ring elements might be “library” objects,
the multiplication routine thus has to go through the generic
multiplication/addition routines.

If element arithmetic is very cheap (for example over finite
fields where one can do table lookup) this can greatly
decrease the performance. GAP therefore contains special
representations for compact vectors and matrices over small
(up to size 256) finite fields. Arithmetic with these compact
objects is much faster than with generic lists. However access
to entries via the sublist operator can be a bit slower.
As long as one works in the matrix algebra or in a vector space
without changing objects, it is beneficial to use these compact
representations.

A vector can be brought into compact form by
ConvertToVectorRep(vec,field) which changes a vector
vec in place. field is either a finite field or a field size.

A compact matrix consists of rows of immutable compact
vectors over the same field.
A further subtlety with this is given by field extensions.
The compact representation over GF(4) is different than the
compact representation over GF(16), even if all matrix entries
are in GF(4).

Depending on the input, you cannot assume that all rows of a
matrix are in the right representation, but might need to convert
(or even recreate) lines.

The function ImmutableMatrix(field,matrix) returns a
mathematically equal, immutable, matrix which is written in
compact form over field and is obtained by converting or
rewriting as necessary.

4.14 Gauss-Type algorithms

There is a variety of algorithms available that compute
triangulized and normal forms of matrices.
These operations still undergo performance engineering. In
the next release there will be extra versions that work
destructively (avoiding to copy the matrix first).
Almost all algorithms for linear algebra perform row or
column operations, i.e. multiply a row/column by a factor or
add a multiple of a row/column to another.

To access columns, the sublist operator can be useful:
mat{[1..dim]}[nr] returns a column vector of the matrix.

There are operations MultRowVector and AddRowVector
that will replace a row vector v by av, respectively v+aw.

4.15 Polynomials

GAP supports (the quotient field) of multivariate polynomial
rings. (But there is no multivariate GCD so far.) There is basic
arithmetic and univariate factorization.
I’m not aware of anyone who has seriously used the
multivariate polynomial arithmetic for topics such as Gröbner

Bases. I would be most interested to hear about performance
bottlenecks.
Polynomials are stored in terms of indeterminates (which
are represented by numbers internally). You can create
polynomials by arithmetic from monomials:

gap> x:=X(Rationals,"x");
x
gap> y:=X(Integers,"y");
y
gap> 4*x*y+3*x^7*y;
4*x*y+3*x^7*y

There is no correlation between variable names and printing
names.
Polynomials live in a characteristic, not over a single ring.
The polynomial 3x over the integers is equal to 3x over the
rationals. When factorizing, the appropriate field must be
given.

Alternatively, one can use the internal representation. For this
one needs to get the rational functions family (in our case over
the cyclotomics, represented by the number 1):

gap> rfam:=RationalFunctionsFamily(FamilyObj(1));
gap> PolynomialByExtRep(rfam,

[[2,1,3,1], 4, [2,7,3,1], 3]);
4*x*y+3*x^7*y

The monomials must be sorted according to degree/lex order!
In most cases you will not need to define a polynomial ring.
Polynomials themselves are defined over a family, so there is
no need to distinguish between GF(3) and GF(9), say.

5 Building Groups

5.1 Obtaining a group

The typical case when working with groups is not that one has
generators or a presentation, but a more informal description.
The first task therefore usually is to get the group(s) one wants.

5.2 Groups included with the system

If the group is “small”, chances are not too bad, that an
isomorphic group is part of the data libraries that come with
GAP. These include:

• Classical groups (Sn, PGU(n,q), O+
n (q), . . .)

• Groups of order up to 1000. (Isomorphism types.)

• Transitive groups up to degree 23. (Permutation
isomorphism)

• Perfect groups of order up to 106. (Isomorphism types.)

• Primitive groups up to degree 999. (Permutation
isomorphism.)

A full list with author information can be found in the manual.
The libraries provide selection functions to find all groups with
certain properties. For example

AllPrimitiveGroups(SocleTypePrimitiveGroup,
rec(series:="A",parameter:=6,width:=2));

10

will find all primitive groups whose socle is isomorphic to
A6 ×A6. See IsomorphismTypeFiniteSimpleGroup for a
description of the names of the socles.

Try to get a small list of candidates and then check their
properties to end up with one candidate.

For example, lets find M12.2:

gap> l:=AllPrimitiveGroups(Size,190080,
> SocleTypePrimitiveGroup,
> rec(series:="Spor",parameter:="M(12)",width:=1));
[m12#144.2,m12#144n.1,m12#396.2,m12#495.2,
m12#495a.2,m12#880.1]

The names in the primitive groups library refer to numbering
according to cohorts. A .n suffix is an index number and does
not reflect the composition structure.
The selection functions treat some precomputed information
specially and do not know about implications. Thus it can be
worth to add superfluous conditions that act as a cheap filter.
For example the (obvious) version

AllSmallGroups(Size,720,IsPerfectGroup,true);

is magnitudes slower than

AllSmallGroups(Size,720,IsSolvableGroup,false,
IsPerfectGroup,true);

For Almost/Quasi simple groups the lists of perfect groups or
primitive groups are good hunting grounds, if they prove to be
inefficient, the ATLAS web pages http://www.mat.bham.
ac.uk/atlas/ are a useful repository of generators.

5.3 Constructions

A more general approach is to try to build the group
from smaller constituents, using generic product or extension
theory.
A descriptive name such as 2.A5.2 or structure description may
not correspond to one unique group. An explicit construction
will end up constructing all possible candidates and you will
have to decide which one you want.
Not all product constructions work for all types of groups.
You will have most success with two groups in similar
representations, preferrably both permutation groups or both
Pc groups (→ 3.10).

5.4 Semidirect Products

Semidirect products initially might look a bit scary as they
are built from a lot of homomorphisms. These are required
to tell how the complement acts on the normal subgroup. So
the construction is not really hard, but one might have to be a
bit stubborn.
Lets construct 52 : SL2(5):
Of course one could immediately write down affine matrices
for the group as well, but I want to show how to use the
SemidirectProduct construction.
First we need the normal subgroup: GF(5)2. This is an abelian
group. We want it as a permutation group, because SL2(5) is
not solvable:

gap> N:=AbelianGroup(IsPermGroup,[5,5]);;
gap> bas:=IndependentGeneratorsOfAbelianGroup(N);
[(1,2,3,4,5), (6,7,8,9,10)]

Then we get SL2(5) – in the matrix form to compute the action
and in permutation from for the semidirect product:

gap> S:=SL(2,5);;
gap> iso:=IsomorphismPermGroup(S);
<action homomorphism>
gap> SPE:=Image(iso);;

Now for the action on the vector space. For each
matrix generator we need to write down the corresponding
automorphism. For this we have to do the matrix
multiplication by hand.

gap> mats:=GeneratorsOfGroup(S);;m1:=mats[1];
[[Z(5),0*Z(5)],[0*Z(5),Z(5)^3]];
gap> Product([1,2],i->bas[i]^Int(m1[1][i]));
(1,3,5,2,4)

This is the image of the first basis element under the first
matrix. We need to map both generators.

gap> hom1:=GroupHomomorphismByImages(N, N, bas,
> List([1,2],
> b->Product([1,2],i->bas[i]^Int(m1[b][i]))
>));
[(1,2,3,4,5), (6,7,8,9,10)]
-> [(1,3,5,2,4), (6,9,7,10,8)]

Since we don’t need a check, we can use the NC variant. And
of course we need homomorphisms for all matrix generators:

gap> homs:=List(mats,
> m-> GroupHomomorphismByImagesNC(N, N, bas,
> List([1,2],b->Product([1,2],
> i->bas[i]^Int(m[b][i]))
>)));
[[(1,2,3,4,5),(6,7,8,9,10)]
-> [(1,3,5,2,4),(6,9,7,10,8)],
[(1,2,3,4,5),(6,7,8,9,10)]
-> [(1,5,4,3,2)(6,7,8,9,10),(1,5,4,3,2)]]

GAP would find it out by itself, but it is a bit quicker if we tell
it that these mappings are indeed bijections:

gap> for h in homs do SetIsBijective(h,true);od;

Now we form a group of automorphisms of N and a mapping
from the permutation group into this group. The generating
sets to map all correspond to the original matrices.

gap> au:=Group(homs);
<group with 2 generators>
gap> auiso:=GroupHomomorphismByImagesNC(SPE,au,
> List(mats,i->Image(iso,i)),
> homs);
[(2,5,4,3)(6,11,16,21)(7,15,19,23)(...),
(2,16,9)(3,21,15)(4,6,17)(5,11,23)(...)]

-> [[(1,2,3,4,5), (6,7,8,9,10)]
-> [(1,3,5,2,4), (6,9,7,10,8)],
[(1,2,3,4,5), (6,7,8,9,10)]
-> [(1,5,4,3,2)(6,7,8,9,10),(1,5,4,3,2)]]

Be sure not to forget the NC here – checks can be very
expensive

Now we can form the product:

11

gap> SDP:=SemidirectProduct(SPE,auiso,N);
<permutation group with 4 generators>
gap> DisplayCompositionSeries(SDP);
G (5 gens, size 3000)
| A(5)
S (3 gens, size 50)
| Z(2)
S (2 gens, size 25)
| Z(5)
S (1 gens, size 5)
| Z(5)
1 (0 gens, size 1)

The operations Embedding and Projection permit to get
back the constituent groups from the product.

Exercise: Construct (24).SL2(4). You will need a GF(2)-
basis of GF(4). Or use BlownUpMat.
Construction of semidirect products will be a bit easier in
release 4.3

5.5 Forming Extensions

More general forms of products – central products or
amalgams – are not supported directly by functions. Instead
we have to construct these step by step by hand. I’ll show
how to get groups of the form 3.(A6 × A6).2, an extension
of a central product with an outer automorphism acting
simultaneously on both A6-factors as induced by GL(2,9)
(A6

∼= PSL2(9)).
The first step is to get one 3.A6. We get it from the perfect
groups library:

gap> NrPerfectGroups(3*360);
1
gap> g:=PerfectGroup(IsPermGroup,3*360,1);
A6 3^1

For 3.(A6 × A6) we factor out the diagonal 3 in the direct
product

g> d:=DirectProduct(g,g);;
g> e1:=Embedding(d,1);
1st embedding into <permutation group
of size 1166400 with 6 generators>

g> e2:=Embedding(d,2);
2nd embedding into <permutation group
of size 1166400 with 6 generators>

g> zg:=Centre(g).1;;
(1,2,4)(3,5,8)(6,9,12)(7,10,15)(11,16,14)(13,17,18)
g> zg:=Image(e1,zg)*Image(e2,zg);;
g> diag:=Subgroup(d,[zg]);;
g> nhom:=NaturalHomomorphismByNormalSubgroup(d,

diag);;
g> cp:=Image(nhom);
<permutation group of size 388800 with 6 generators>
g> Size(Centre(cp));
3

Now we know how the outer automorphism should act on
both A6, but we don’t know how to lift it to the full group.
We therefore compute the automorphism group of the central
product, and search for a suitable automorphism in there.

gap> aug:=AutomorphismGroup(cp);
<group with 10 generators>
gap> Size(aug);
2073600

This calculation takes a while.
We now get representatives for the outer automorphisms of
order 2. We do so by computing class representatives in
the outer automorphism group and taking preimages of the
representatives of order 2.

g> autin:=InnerAutomorphismsAutomorphismGroup(aug);
<group of size 129600 with 6 generators>
g> authom:=NaturalHomomorphismByNormalSubgroupNC
> (aug,autin);;
g> out:=Image(authom);;
g> cl:=List(ConjugacyClasses(out),Representative);
[<identity> of ..., f1, f2, f3, f4, f1*f3, f1*f4,
f2*f4, f3*f4, f1*f3*f4]

g> cl:=Filtered(cl,i->Order(i)=2);
[f1, f2, f3, f4, f1*f4, f2*f4, f3*f4]
g> cl:=List(cl,
> i->PreImagesRepresentative(authom,i));;

Next, we need to filter those, which act in the right way. First
we ensure that both normal subgroups 3.A6 are fixed.

gap> n:=NormalSubgroups(cp);
[Group(()), <perm. group of size 3 with 1 gens.>,
<perm. group of size 1080 with 5 gens.>,
<perm. group of size 1080 with 5 gens.>,
<perm. group of size 388800 with 6 gens.>]

gap> cl:=Filtered(cl,i->Image(i,n[3])=n[3]);;
gap> Length(cl);
5

Now we check, which automorphisms are induced on the
factors isomorphic A6. For this we construct a mapping on
the first subfactor.
Since we want to compute with automorphisms, we compute
the full automorphism group as well. This way GAP internally
computes a faithful permutation representation that is used for
all calculations (→ 3.12).

g> n1hom:=NaturalHomomorphismByNormalSubgroup
(n[3],n[2]);

<action homomorphism>
g> a6:=Image(n1hom);;
g> a6aut:=AutomorphismGroup(a6);
<group with 7 generators>
g> a6inn:=InnerAutomorphismsAutomorphismGroup

(a6aut);
<group with 5 generators>

In the next step, we restrict the outer automorphisms found
before on the normal subgroup and compute the automorphism
induced on the factor. The image of each group under its
NiceMonomorphism is an isomorphic permutation group.

g> ind:=List(cl,i->
InducedAutomorphism(n1hom,

RestrictedMapping(i,n[3])));;
g> indgp:=List(ind,

i->ClosureSubgroupNC(a6inn,i));
[<group>, <group>, <group>, <group>, <group>]
g> indprm:=List(indgp,

i->Image(NiceMonomorphism(i),i));;

12

As the groups are small enough, we can use IdGroup to
identify their type (otherwise we would have to do an
isomorphism test) . The third and fourth automorphisms are
of PGL type.

gap> List(indprm,IdGroup);
[[360, 118], [720, 765], [720, 764],
[720, 764], [720, 763]]

gap> IdGroup(PGL(2,9));
[720, 764]
gap> cl2:=cl{[3,4]};;

You might ask why I did not call IdGroup on the
automorphism groups in ‘indgp’. Indeed this ought to work
– alas there was still an error lurking in the system, that will
be fixed in the next release.
We now duplicate the calculation for the second normal
subgroup: It turns out only the first automorphism in cl2 is
of the right type.

g> n2hom:=NaturalHomomorphismByNormalSubgroup
(n[4],n[2]);;

g> a6:=Image(n2hom);;
g> a6aut:=AutomorphismGroup(a6);;
g> a6inn:=InnerAutomorphismsAutomorphismGroup

(a6aut);;
g> ind:=List(cl2,
> i->InducedAutomorphism(n2hom,
> RestrictedMapping(i,n[4])));;
g> indgp:=List(ind,i->ClosureSubgroupNC(a6inn,i));
[<group>, <group>]
g> indprm:=List(indgp,

i->Image(NiceMonomorphism(i),i));;
g> List(indprm,IdGroup);
[[720, 764], [720, 763]]
g> outo:=cl2[1];;

We finally have the group and a suitable automorphism, its
time to build the extension. However, there is no generic code
for constructing extensions (there is some code for solvable
groups) , mainly because specifying the cocycle information
could be tedious. We therefore use the theorem, that an
extension N.G can be embedded in the wreath product N
G
with G acting regularly.

gap> w:=WreathProduct(cp,Group((1,2)));
<permutation group of size 302330880000
with 13 generators>
gap> e1:=Embedding(w,1);;
gap> e2:=Embedding(w,2);;
gap> e3:=Embedding(w,3);;

The base subgroup (isomorphic to N) of the embedded group
consists of diagonals under the action of G.

gap> diag:=List(GeneratorsOfGroup(cp),
> i->Image(e1,i)*Image(e2,Image(outo,i)));;
gap> u:=Subgroup(w,diag);;
gap> Size(u);
388800

We then find an element that maps these diagonal generators
in the same way the automorphism does. This element
normalizes the subgroup.

g> diaemb:=GroupHomomorphismByImages(cp,w,
> GeneratorsOfGroup(cp),diag);;
g> diagim:=List(GeneratorsOfGroup(cp),

i->Image(diaemb,Image(outo,i)));;
g> r:=RepresentativeOperation(w,
> diag,diagim,OnTuples);;
g> Order(r);
30
g> u^r=u;
true

The resulting group however has an extra (centralizing) 3. We
thus go to the factor group to eliminate the 3 there.

g> cu:=ClosureGroup(u,r);;
g> Index(cu,u);
6
g> Size(Centralizer(cu,u));
9
g> Size(Centralizer(w,u));
9
g> hom:=NaturalHomomorphismByNormalSubgroup(cu,u);;
g> gp:=PreImage(hom,SylowSubgroup(Image(hom),2));
<permutation group with 7 generators>

As 2 and 3 are coprime, there is no problem of isoclinism with
this group. (Otherwise we would have a larger centralizer and
choices about which subgroup of the factor to take.)

5.6 Blatant Advertisement

A further longish example of constructing groups can
be found in the article of S. LINTON and mine:
http://www-gap.dcs.st-and.ac.uk/~ahulpke/
paper/bathexample.html

5.7 Automorphism Groups

One of the most important applications of group theory are
automorphisms of structures. They can often be represented
as permutation groups acting on a suitable set (for example
the vertices of a graph).

Finding such automorphism groups is a much harder task.
The share packages GRAPE and GUAVA provide interfaces
to extrenal programs that compute automorphism groups of
graphs or codes.

There is a generic way to do this in GAP (SubgroupProperty
finds the largest subgroup of Sn or another permutation group
that fulfills a property). In most cases the performance of this
will be very slow. To get a better performance one would
have to adapt the generic backtrack search to make more use
of the concrete problem given when pruning the search tree
(→ Manual: Extending GAP).

6 Data structures and Algorithms

It would be easy to fill several lectures with descriptions of all
the algorithms used in GAP and I won’t even try to attempt to
do this here.
On the other hand a basic knowledge of the algorithms and
data structures involved might be crucial for estimating which
kinds of calculations are feasible and which are not.

13

6.1 Permutation Groups

The data structure used to represent a permuation group (given
by generators) is called a stabilizer chain. The idea behind this
is to take a sequence of points [b1,b2, . . . ,bl] (a base) such
that the only element of the group that fixes all points is the
identity.
Unless the group is the full symmetric group, a base is (often
much) shorter, than the permutation domain.
Each group element g then corresponds to a base image
[bg

1,b
g
2, . . . ,b

g
l]. We can arrange these base images on the

leaves of a tree, whose branches on different levels correspond
to the images of the first, second, etc. base point.

✁✁❆❆ ✁✁❆❆ ✁✁❆❆
�

�❅
❅

✁✁❆❆ ✁✁❆❆ ✁✁❆❆
�

�❅
❅

✁✁❆❆ ✁✁❆❆ ✁✁❆❆
�

�❅
❅

✟✟✟✟✟✟�
�
� 





 ❛❛❛❛❛❛❛

1 2 nb1

b2

b3

4 7 8 3 4

7 2 4 3 4

9 6 . . . 3 9

9

Base point

Image b1

Image b2

Image b3. . .

Since there is a group acting, we only need to store the left
branches each time.
The first step needed to compute with a permutation group
is to compute such a stabilizer chain (and base). The hard
part therein is to know that the full chain has been computed.
If the group’s size is known, one can speed up this process
substantially by storing the size in the group using SetSize.
It is also possible to permit a randomized calculation (which
might end up with a size too small in rare cases).(→ Manual:
Permutation Groups).
An element is contained in the group, if we can trace its base
images through the tree and end up with the same element as
the group. This process is called sifting.
When searching for elements to find centralizer, normalizer,
conjugating elements, etc., we run through the tree in a
backtrack algorithm. Much care is taken to prune branches,
but essentially these remain exponential algorithms. The
comamnds SubgroupProperty and ElementProperty offer
a simple-minded interface for these operations, however they
do not offer any clever pruning.

6.2 PCGS

The algorithms for Pc-Groups use a general data structure,
called a polycyclic generating system. Such systems exist for
every finite solvable group, but computing with them is most
efficient for PcGroups where the internal data structures used
for arithmetic already form a pcgs.
To get a pcgs, take a subnormal series of the group with
cyclic factors. On each level, take a representative gi, which
generates the cyclic factor. The resulting sequence [g1, . . .gn]
forms a pcgs.
Each group element can be written in unique form (iterated
decomposition into generators for the cyclic factors)

ge1
1 ·ge2

2 · · · ·gen
n

with 0 ≤ ei < mi where mi is the order of the cyclic factor. We
call [e1,e2, . . . ,en] the exponent vector of the element.
We can do the same for a solvable factor group, taking the
gi representatives from the group. In this case we call the
generating sequence a modulo pcgs.
The basic operations of a Pcgs are:

a) element −→ exponents.

b) exponents −→ element.

In general, step a) requires element tests in subgroups of the
subnormal series. Step b) requires multiplications of elements.

Fortunately, Pc groups use the same data structure for their
arithmetic internally. The corresponding generating system is
called the family pcgs. Both types of operations are very fast
with respect to the family pcgs.

It can therefore be worth to change to another pc group for
which the family pcgs is better adapted to the calculation in-
tended. For example there is IsomorphismSpecialPcGroup.

Calculations using pcgs use the homomorphism principle and
lift a result via a series of normal subgroups. Each new factor
is elementary abelian and one can (try to) do linear algebra
with exponent vectors there.

6.3 Induced PCGS

Subgroups are also represented via pcgs, these must be
compatible (this means, that its elements have ascending
depths) with the pcgs of the whole group. We call such a
subgroup pcgs q, compatible with the pcgs p an induced pcgs
and call p the parent pcgs of q.

If U is a subgroup, the command InducedPcgs(p,U) will
return an induced pcgs. (If only a generating set is known,
InducedPcgsByGeneratorsNC will do the task.)

Do not call InducedPcgsWrtHomePcgs or
InducedPcgsWrtSpecialPcgs yourself. InducedPcgs will
utilize these if applicable, but it could happen (in particular
for non-pc groups) that the pcgs they refer to is different.

Induction of pcgs is transitive, but inducing from an induced
pcgs will deteriorate the performance. If possible always
induce with respect to the original pcgs (or its parent). A
typical pc group algorithm thus computes once a pcgs for the
whole group and then always induces with respect to this pcgs
(or even the parent pcgs).

If you get a generator sequence for a subgroup, you can make
a pcgs from it by calling InducedPcgsByPcSequenceNC.
If you don’t need to compute exponents with respect to this
sequence, it can be faster to keep it simply as a generating
sequence and remember in the algorithm implicitly that it is a
pcgs.

7 Types and method selection

Each object in GAP carries a type which stores

• i) its mathematical identity (say, ring-with-one consist-
ing of matrices over a finite field),

• ii) how the object is represented (say, by a list of
generators),

• iii) what is known so far about it (say: it is finite and its
size is known).

All these informations are represented by bits in a long bit list
(for example there is a bit (or set of bits) for “matrix group
over finite field”, a bit for: “univariate polynomial stored by
coefficient list”, a bit for: “object knows its size”). Some of

14

this information will be acquired over time and the type will
change accordingly.

On the user level, each bit corresponds to a filter, one can call
this filter like a function and get the corresponding bit value.

Formally, the filters that represent concepts i) are called
Categories, concept ii) Representations and concept iii)
Properties and Attribute tester.
There also is a type iv): Filter that represent that certain basic
calculations (for example equality test or computing the < total
order can be done with reasonable amount of work.
Unless you want to implement new concepts or create own
objects, you don’t need to know about the formal difference
between these concepts.

Most of the user “functions” are formally declared as
operations, taking a certain input and promising certain
output, but not specifying anything about how it is done. (For
example: the Centralizer is the set of all elements in the
group that commute with a given element.) Normally this is
all one needs to know when using the system.

The library then installs methods for the operations which do
the actual work. A method is an ordinary GAP function (that
will do the computation), together with a collection of bit lists
for all the argument.

Internally, whenever an operation is called, the system looks
at the bit lists of all the arguments and compares these (logical
and) with the bit lists of all the functions installed for the
operation. If the required bits are a subset, the method is
called applicable. The applicable method with the largest
number of required filters then is executed.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

arg1,arg2

Operation (called by user)

Bit lists:

via Type

stored for operation ApplicableMethods:

fn1(a,b)

fn2(a,b)

fn3(a,b)

fn4(a,b)

fn2(arg1,arg2)
GAP calls function and returns result:

DoSomething();

7.1 Attributes

Attributes are one-argument operations that store the result
once computed. For this, they use an extra filter, the Attribute
tester. If the value is stored this filter is set. There is a high-
ranking method that will just fetch the precomputed result.
You can use the attribute tester HasAttribute in the method
selection if you require attributes to be known.

Properties are attributes whose value can only be true or false.
A known true value of a property can also be used in the
method selection.
For attributes that are not properties to be stored, the represen-
tation of the object must be IsAttributeStoringRep.

7.2 Families

Families are the part of the type system which usually causes
most confusion. The system would work without families, but
checking compatibility of objects then would be harder. For

method installation you can ignore families if you prefer, but
you will then have to check compatibility yourself.
There is an extra bit of information in the type, which
describes how objects fit together. For example

• Elements of finitely presented groups for different
presentations.

• Polynomials in different characteristic

• Homomorphisms from different permutation groups.

We want to check quickly, whether two objects fit together
(say in Centralizer if a finitely presented group and an
element belong to the same presentation). This cannot be done
on the level of bit lists – these check each argument separately.

Instead the type carries an extra object we call a family. In the
method selection, GAP can also check, whether families are
compatible.

Different finitely presented groups for example have different
families. So the method in the Centralizer example above
does not have to check whether group and element belong
to the same presentation – this is done by requiring family
compatibility in the method selection.
The family of a group is different from the family of
its elements. A collection of objects (list, group, ...)
automatically gets a the collections family. Nothing needs to
be declared for this.

7.3 Method installation

A typical method installation thus looks like this:
InstallMethod(
DoSomething, operation
"ident.

string", for debugging
fampred, A function that takes the

argument’s families and must return
true for applicability. Just use
true itself to ignore the feature

[req1, Requirements for the arguments
. . .
reqn],
rank, ranking offset, normally 0
func) function of n arguments

to implement method
InstallOtherMethod works the same but does not require
the number of arguments to correspond to the declaration.

7.4 Which method is used

When debugging (or just for curiosity) one might want
to find out, which method is used for certain arguments.
One can use TraceMethods(Operation) (respectively
UntraceMethods) to print the identification string,
whenever a method for a given operation is called.
ApplicableMethod(operation,argumentlist,printlevel)
will do the method selection “by hand” and return the actual
method for given arguments. Its print level can be used to
display why prior methods were not applicable. It is also
possible to get “next best” methods.

15

gap> g:=Group((1,2,3,4),(1,2));;
gap> h:=DerivedSubgroup(g);;
gap> me:=ApplicableMethod(\=,[g,h],2);
#I Searching Method for EQ with 2 arguments:
#I Total: 146 entries
#I 1: ‘‘EQ: 2 lists, second empty’’,
value: 1*SUM_FLAGS+13

...
#I 39: ‘‘EQ: for GF2 vectors’’, value: 38
#I 40: ‘‘EQ: generic for groups’’, value: 38
function(G, H) ... end
gap> Print(me);
function (G, H)

if IsFinite(G) then
...
end;

A few operations (Arithmetic, Position, Length) dispatch
through the kernel first and ApplicableMethod might not
return the right method.

If the operation is in fact a function, you will get an error
message. Remember that some operations are actual functions
and there is a corresponding operation XyzOp or XyzNC. For
operations with a variable number of arguments the method-
selected operation might only take two arguments and be
called iteratively.

8 Adding to the system

This is a vast subject one could probably spend months on.
There “Programming in GAP” manual gives much more detail
than I can do here and thus might be the next place to look at.

8.1 Own methods

Installing own methods is not hard, once you know the syntax
of Install(Other)Method. You need to know:

• The name (and parameter set) of the actual operation and

• The filter that specify the set of parameters for which the
function should work.

For example a special method to compute the normalizer of
the trivial group in a solvable permutation group would be
installed as:

InstallMethod(NormalizerOp,
"trivial group in solvable permgroup",
true, # or: IsIdenticalObj
[IsPermGroup and IsSolvableGroup,
IsTrivial], 0

function(a,b)
...
end);

Normally there should be no reason to change the ranking (i.e.
keep the value to 0) – the specification of the filters should
have taken care of it. You can use TraceMethods to see that
your new method gets called or ApplicableMethod to see its
place in the list of methods.

If the method gets ranked too low, you might have forgotten to
specify “obvious” filters for some arguments – for example
IsFinite. If filters are properties, keep in mind that

an unknown property is false for purposes of the method
selection.

To add own operations one can simply use NewOperation or
DeclareOperation, the arguments are a string and a list of
filters that specify the reach of the operation:

DeclareOperation("Blubber",[IsMyObject,IsFinite]);

8.2 Own objects

Lets finally look a bit at what is necessary to implement
a new kind of elements. There is a do-it-all function
ArithmeticElementCreator which might be the easiest
way to get started. If you don’t want to use it, you first need to
specify at least one type for your objects.

In general, own objects need at least one type. For this you
need a family (just define

MyObjectsFamily:=NewFamily("MyObjectsFamily");

to get one, if you don’t need extra features.)
If you want to use category collections the family declaration
will have to specify the category.

You also need at least one category (IsObject
would do, but you are likely to use for example
IsMultiplicativeElementWithInverse).
This category would specify that the object potentially
might be multiplied or inverted, but it might fail
for ceratin objects. for example all matrices are
IsMultiplicativeElementWithInverse.

You then need a representation. Either use
IsPositionalObjectRep for list-like objects (access
to entries via obj![3]) or IsComponentObjectRep (and
IsAttributeStoringRep if you want to be able to store
attributes) for (more complex) record-like objects (access to
components via obj!.component).
Either as category or representation you will want to throw
in one filter, that describes your objects (so you can method-
select for them. The easiest way is this to have this filter imply
all the filters you want. (So you only need to refer to this
single filter later on.)

IsMyKindOfObject:=NewRepresentation(
"IsMyKindOfObject",
IsMultiplicativeElementWithInverse
and IsPositionalObjectRep,
[]);

The extra empty list argument is a relic from an attempt to be
very picky with declarations.

Finally you need a type:

IsMyType:=NewType(MyObjectsFamily,
IsMyKindOfObject);

You then can create objects of your type via

newobj:=Objectify(IsMyType,
[data,you,want,in,the,object]);

In this case newobj would be a positional object and
newobj!.[3] would be the value of want.
Once this is done you can forget about everything but
IsMyKindOfObject.

16

8.3 Required operations

For the generic functions to work, you must implement
methods for:

Arithmetic Operations. You must implement \+, *,
AdditiveInverseOp and InverseOp (if applicable).
There are default methods which enable \/, - and \^
in the obvious ways, but you can implement your own
methods if there are better ways for the specific objects.

PrintObj to actually see the objects.

Equality via \=. Equal objects should be mathematically
equal – they can be represented in completely different
ways.

Total order within the family. If this is left out anything
which requires sorting or sets will fail. Only \< needs
to be implemented.

When testing, note that reading in the input file again will
define new families, types, etc. under the same names. You
might also have to create the objects anew (or move the
declarations into a separate file).

Once these methods are implemented, it should be possible
to form groups, rings etc. from the new objects and generic
methods for the operations are available.

17

