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Abstract

This article addresses the problem of finding an optimal allocation of funds among
different asset classes in a robust manner when the estimates of the structure of returns
are unreliable. Instead of point estimates used in classical mean-variance optimization,
moments of returns are described using uncertainty sets that contain all, or most, of
their possible realizations. The approach presented here takes a conservative viewpoint
and identifies asset mixes that have the best worst-case behavior. Techniques for
generating uncertainty sets from historical data are discussed and numerical results
that illustrate the stability of robust optimal asset mixes are reported.

Key words: Robust optimization, mean-variance optimization, saddle-point prob-
lems.

1 Introduction

Portfolio optimization is one of the best known and most widely used methods in
financial portfolio selection. Developed by Harry Markowitz (1952) five decades ago,
this approach quantifies the trade-off between the expected return and the risk of
portfolios of financial securities using mathematical techniques and offers a method for
determining a frontier of optimal (Pareto-efficient) portfolios. Since risk is measured
by the variance of the random portfolio return in this approach, it is also called mean-
variance optimization (MVO). Here, we address asset allocation problems, i.e., the
problem of finding an optimal allocation of funds among different asset classes which
can be formulated in an identical manner to MVO.

Often, the set of optimal or efficient portfolios is described using a two-dimensional
graph called the efficient frontier that plots their expected returns and standard de-
viations. Each efficient portfolio can be identified by solving an associated convex
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quadratic programming (QP) problem, a well-studied problem in the optimization lit-
erature. To determine the entire efficient frontier ranging from the portfolio with the
smallest overall variance to the portfolio with the highest expected return, one has to
solve a parametric QP problem using, for example, Markowitz’ method of critical lines.

Despite the elegance of the model developed by Markowitz, the powerful optimiza-
tion theory supporting this model, and the availability of efficient software to solve the
resulting problem, MVO continues to encounter skepticism among investment practi-
tioners. One reason usually cited for this skepticism is the counter-intuitive nature of
the optimal portfolios generated by the MVO approach. Optimal portfolios tend to
concentrate on a small subset of the available securities, and appear not to be well
diversified. Furthermore, optimal portfolios are often sensitive to changes in the in-
put parameters of the problem (expected returns and the covariance matrix) and lead
to large turnover ratios with periodic readjustments of the input estimates; see for
example Michaud (1989, 1998).

This last observation indicates that the inputs to the MVO model need to be very
accurately estimated. However, this is a very difficult task, especially in the case of
expected return estimates. Different techniques used in moment estimation can and
do generate significantly different point estimates of MVO inputs which, in turn, lead
to large variations in the composition of efficient portfolios. Using estimates from a
particular source in the MVO model introduces an estimation risk in portfolio choice,
and methods for optimal selection of portfolios must take this risk into account, see
Bawa, Brown, and Klein (1979).

Robust optimization, an emerging branch of the field of optimization, offers vehicles
to incorporate estimation risk into the decision making process in portfolio choice/asset
allocation. Generally speaking, robust optimization refers to finding solutions to given
optimization problems with uncertain input parameters that will achieve good objec-
tive values for all, or most, realizations of the uncertain input parameters. It should
be noted, however, that there are different interpretations of robustness that lead to
different mathematical formulations–see Jen (2001) for at least 17 different definitions
of robustness in different contexts. Here, we take the pessimistic view of robustness
and look for a solution that has the best performance under its worst case.

In our approach, uncertainty is described using an uncertainty set which includes
all, or most, possible realizations of the uncertain input parameters. Given a problem
with uncertain inputs and an uncertainty set for these inputs, our robust optimization
approach addresses the following problem: What choice of the variables of the problem
will optimize the worst case objective value? That is, for each choice of the decision
variables, we consider the worst case realization of the data and evaluate the corre-
sponding objective value, and then pick the set of values for the variables with the
best worst-case objective. We apply this approach to the portfolio selection problem
using a judicious choice of the uncertainty set. We demonstrate that the resulting
robust optimization problem is simple in some cases meaning that it can be solved
as a standard quadratic programming problem. In most cases, however, this simplifi-
cation is not possible. For such cases we formulate the robust optimization problem
as a saddle-point problem and apply an interior-point algorithm to this saddle-point
problem.
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While the approach in this article is related to the methods in Lobo et al. (1999),
Goldfarb and Iyengar (2003), the formulation and the algorithm used here are based
on those developed by Halldórsson and Tütüncü (2003). In addition to presenting
a variation of their formulation and discussing a new formulation for identifying ro-
bust portfolios with the largest Sharpe ratio, we discuss an implementation of these
algorithms.

We also address the issue of generating uncertainty sets and describe two ap-
proaches; one based on bootstrapping and the other on moving averages. Since our
worst-case based approach can be detrimentally influenced by outliers in the data, un-
certainty sets need to be carefully chosen. This is why we may prefer to include most
rather than all possible realizations of the uncertain parameters in uncertainty sets.
To minimize outlier effects, we eliminate some of the lowest and highest quantiles of
the processed data in both the bootstrapping and moving averages strategies and use
the remaining data to define uncertainty sets.

Our numerical experiments indicate that robust asset allocation is indeed a valu-
able alternative for conservative investors. Robustness is achieved at relatively little
cost–robust efficient portfolios are only marginally inefficient when faced with nominal
inputs. In contrast, efficient portfolios derived from nominal inputs can be severely in-
efficient under worst-case realizations of the uncertain parameters. We further demon-
strate that robust optimal allocations are stable in the sense that re-solving the robust
asset allocation problem periodically as new data is collected results in essentially un-
changed portfolios. This type of low turnover is often attractive for long-term investors.

The remainder of this article is organized as follows: Section 2 presents formulations
of problems to find robust optimal allocation of assets and robust portfolios with the
maximum Sharpe ratio. In Section 3, we present a rigorous description of the method
we implemented to determine the robust efficient frontier. A detailed description of a
key subroutine is given in the Appendix. Numerical experiments and their results are
discussed in Section 4. We present our conclusions in Section 5.

2 Robust Optimization Problems

2.1 The Robust MVO Problem

Optimal portfolio selection/asset allocation problems can be formulated mathemati-
cally as quadratic programming (QP) problems. Convex QP refers to minimizing a
convex quadratic function (or, equivalently, maximizing a concave quadratic function)
subject to linear equality and inequality constraints. Solution of a convex QP associ-
ated with an asset allocation problem generates an efficient portfolio on the efficient
frontier. To generate the entire efficient frontier, the QP has to be parametrized and
this can be done in three essentially equivalent ways: (i) maximize expected return
subject to an upper limit on the variance, (ii) minimize the variance subject to a lower
limit on the expected return, (iii) maximize the risk-adjusted expected return. These
three problems are parametrized by the variance limit, expected return limit, and the
risk-aversion parameter, respectively. Since the variance constraint is nonlinear, the
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first formulation is not a QP. Hence, we focus on the last two of these formulations:

minx∈<n xTQx
s.t. µTx ≥ R

x ∈ X
, (1)

maxx∈<n µTx− λxTQx
s.t. x ∈ X . (2)

Above, µi–the ith component of the vector µ–denotes the estimated expected return
of security i. The matrix Q is the covariance matrix of these returns. Diagonal elements
qii of the Q matrix denote the variance of the return on security i while off-diagonal
elements qij denote the covariance between the returns of securities i and j. The
components xi of the variable vector x denote the proportion of the portfolio to be
invested in security i. R in the right-hand-side of (1) is the lower limit on the expected
return one would like to achieve. X represents the polyhedral set of feasible portfolios,
i.e., portfolios that satisfy certain linear constraints imposed by the investor. The
scalar λ in (2) represents the risk-aversion parameter mentioned above. The objective
function of problem (2) represents a risk-adjusted expected return function. Since the
covariance matrix Q is always positive semidefinite, problems (1) and (2) are convex
quadratic programming problems solvable in polynomial time.

By solving (1) and (2) for different values of R and λ, one can generate a sequence of
optimal portfolios on the efficient frontier ranging from the portfolio with the smallest
overall variance to the portfolio with the highest expected return. Problems (1) and
(2) are equivalent in the following sense: If x∗(λ) solves (2) for a fixed value of λ, it
also solves (1) for R = µTx∗(λ).

We will make the reasonable assumption that the set X of feasible portfolios is
non-empty and bounded. For example,

X = {x ∈ <n|
n∑

i=1

xi = 1, x ≥ 0} (3)

corresponds to the case where short-sales are not allowed and satisfies this assumption.
In a more general setting, X may contain additional constraints corresponding to sector
distribution requirements, minimal investment restrictions, bounds on the total number
of assets in the portfolio, etc.

We argued above that one of the main criticisms against the MVO approach centers
on the observation that the optimal portfolios generated by this approach are often
quite sensitive to the input parameters–µ and Q in our notation. To make matters
worse, these parameters can never be observed and one has to settle for estimates
found using some particular technique. In the presence of, say, equally reliable multiple
estimates for µ and Q, the best way to integrate all available information is no longer
clear. Our strategy is to represent all the available information on the unknown input
parameters in the form of an uncertainty set, i.e., a set that contains most of the
possible values for these parameters.
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In the case of the MVO problems (1) and (2), an uncertainty set for the expected
return vector µ and the covariance matrix Q may take the form of intervals:

Uµ = {µ : µL ≤ µ ≤ µU}, (4)
UQ = {Q : QL ≤ Q ≤ QU , Q � 0}, (5)
U = {(µ,Q) : µ ∈ Uµ, Q ∈ UQ}. (6)

Above, µL, µU , QL, QU are the extreme values of the intervals we just mentioned. The
restriction Q � 0 indicates that Q is a symmetric positive semidefinite matrix which is
a necessary property for the uncertain Q to be a covariance matrix. The uncertainty
set U need not be separable as above, but we focus on separable sets in this paper as
they appear more natural than compound uncertainty sets U that are not separable.

There are, of course, other ways to describe uncertainty sets. For example, they
could be discrete sets representing a collection of estimates for the unknown input pa-
rameters. Goldfarb and Iyengar (2003) consider ellipsoidal uncertainty sets. We prefer
intervals and there are several reasons for this preference. For example, the end-points
of the interval may correspond to the extreme values of the corresponding statistic in
historical data, in analyst estimates, in simulated scenarios, etc. Alternatively, a mod-
eler may choose a confidence level and then generate estimates of return and covariance
parameters in the form of prediction intervals. For the examples we present in Section
4, we generated the bounds µL, µU , QL, QU using percentiles of bootstrapped samples
of historical data as well as the percentiles of moving averages.

Given the uncertainty set U , the robust versions of the mean-variance optimization
problems (1) and (2) can be expressed as follows:

min {maxQ∈UQ
xTQx}

s.t. x ∈ X
minµ∈Uµ µ

Tx ≥ R,
(7)

max
x∈X

{ min
µ∈Uµ,Q∈UQ

µTx− λxTQx}. (8)

The minimax problem in (7) was formulated by Goldfarb and Iyengar (2003). The
maximin problem in (8) was formulated in Halldórsson and Tütüncü (2003) where a
saddle-point representation and a solution algorithm were also provided. We discuss
their algorithm in the Appendix.

We have argued above that the problems (1) and (2) are equivalent. There is a
similar equivalence between the robust optimization problems (7) and (8) as well:

Proposition 1 Let x∗(λ) denote an optimal solution of (8) for a given positive value
of λ. Then, x∗(λ) is also an optimal solution of (7) for

R = min
µ∈Uµ

µTx∗(λ). (9)

Proof:
Since objective function of the inner minimization problem in (8) is separable, this prob-
lem can be solved by solving the two smaller problems minµ∈Uµ µ

Tx and maxQ∈UQ
xTQx.

Let µ∗(λ) and Q∗(λ) be the optimal solutions to these problems corresponding to x∗(λ).
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Now, if x∗(λ) is not optimal for (7) with R as in (9), there must exist x̂ ∈ X and
Q̂ ∈ UQ satisfying the following:

min
µ∈Uµ

µT x̂ ≥ R = min
µ∈Uµ

µTx∗(λ) = µ∗(λ)Tx∗(λ),

max
Q∈UQ

x̂TQx̂ = x̂T Q̂x̂ < x∗(λ)TQ∗(λ)x∗(λ).

But this would imply that

min
(µ,Q)∈U

(
µT x̂− λx̂TQx̂

)
= min

µ∈Uµ

µT x̂− λx̂T Q̂x̂ > µ∗(λ)Tx∗(λ)− λx∗(λ)TQ∗(λ)x∗(λ)

contradicting the optimality of x∗(λ) for (8). Thus, x∗(λ) must be optimal for (7) as
well when R = minµ∈Uµ µ

Tx∗(λ).

2.2 Robust Portfolios with the Maximum Sharpe Ratio

There are assets such as US Treasury Bills that can be considered essentially riskless
for investment or borrowing purposes. If such an asset is included in the asset pool for
optimal portfolio selection, all efficient portfolios turn out to be linear combinations of
this riskless asset and a unique optimal risky portfolio. This optimal risky portfolio is
the efficient portfolio with the highest Sharpe ratio, which is defined as follows for a
portfolio x:

h(x) =
µTx− rf√
xTQx

. (10)

Here, rf represents the known return on the riskless asset. This quantity represents the
reward to variability (measured by the standard deviation) ratio of a zero-investment
portfolio funded by riskless borrowing. We assume that there are feasible portfolios
with positive Sharpe ratios–otherwise, the riskless asset is the only efficient portfolio.

In this section, we assume that Q is positive definite so that xTQx > 0 and,
therefore, h(x) is defined for all non-zero portfolios. Since the covariance matrix Q
is always positive semidefinite, this assumption is equivalent to assuming that Q is
nonsingular and is essentially equivalent to assuming that there are no redundant
assets in our collection.

The portfolio with the highest Sharpe ratio is obtained by solving the optimization
problem

maxh(x) s.t. x ∈ X . (11)

This maximization problem, however, has a nonlinear and non-concave objective func-
tion and may be difficult to solve directly. In what follows, we generalize an approach
introduced by Goldfarb and Iyengar (2003), to reduce this problem into a convex mini-
mization problem, which is easier to solve. Then, we will present the robust formulation
corresponding to this problem.

The elegant argument in Goldfarb and Iyengar (2003) is based on the simple ob-
servation that eTx = 1 whenever x ∈ X (e represents an n-dimensional vector of 1’s)

6



since proportions in all securities must sum to 1, and therefore, h(x) can be rewritten
as a homogeneous function of x–we call this function g(x):

h(x) =
µTx− rf√
xTQx

=
(µ− rfe)Tx√

xTQx
=: g(x) = g(

x

κ
), ∀κ > 0.

The vector µ− rfe is the vector of returns in excess of the risk-free lending rate. Gold-
farb and Iyengar demonstrate that when X has the form in (3), using the argument
above, one can replace the normalization constraint eTx = 1 with the alternative nor-
malization constraint (µ−rfe)Tx = 1 without affecting the optimal solution. But then,
the objective function is equivalent to minimizing xTQx, a strictly convex quadratic
function of x (recall our assumption that Q is a positive definite matrix).

We show that, a similar reduction can be achieved even when X is not in the form
in (3), as long as x ∈ X implies that eTx = 1. To achieve the desired reduction, we
first homogenize X applying the lifting technique to it, i.e., we consider a set X+ that
lives in a one higher dimensional space than X and is defined as follows:

X+ := {x ∈ <n, κ ∈ <|κ > 0,
x

κ
∈ X} ∪ (0, 0). (12)

We add the vector (0, 0) to the set to achieve a closed set. Note that X+ is a cone. For
example, when X is a circle, X+ resembles an ice-cream cone. When X is polyhedral,
e.g., X = {x|Ax ≥ b, Cx = d}, we have X+ = {(x, κ)|Ax−bκ ≥ 0, Cx−dκ = 0, κ ≥ 0}.
Now, using the observation that h(x) = g(x),∀x ∈ X and that g(x) is homogeneous,
we conclude that (11) is equivalent to

max g(x) s.t. (x, κ) ∈ X+. (13)

Again, using the observation that g(x) is homogeneous in x, we see that adding the
normalizing constraint (µ−rfe)Tx = 1 to (13) does not affect the optimal solution–from
among a ray of optimal solutions, we will find the one on the normalizing hyperplane.
Note that for any x ∈ X with (µ − rfe)Tx > 0, the normalizing hyperplane will
intersect with an (x+, κ+) ∈ X+ such that x = x+/κ+. In fact, x+ = x

(µ−rf e)T x
and

κ+ = 1
(µ−rf e)T x

. The normalizing hyperplane will miss the rays corresponding to points

in X with (µ− rfe)Tx ≤ 0, but since they can not be optimal, this will not affect the
optimal solution. Therefore, substituting (µ − rfe)Tx = 1 into g(x) we obtain the
following equivalent problem:

max
1√
xTQx

s.t. (x, κ) ∈ X+, (µ− rfe)Tx = 1. (14)

Thus, we proved the following result:

Proposition 2 Given a set X of feasible portfolios with the property that eTx =
1, ∀x ∈ X , the portfolio x∗ with the maximum Sharpe ratio in this set can be found by
solving the following problem with a convex quadratic objective function

minxTQx s.t. (x, κ) ∈ X+, (µ− rfe)Tx = 1, (15)

with X+ as in (12). If (x̂, κ̂) is the solution to (15), then x∗ = x̂
κ̂ .
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As in Goldfarb and Iyengar (2003), we observe that the normalizing constraint in (15)
can be relaxed to (µ − rfe)Tx ≥ 1 by recognizing that this constraint will always be
tight at an optimal solution. The relaxed problem will be in the form (1) and therefore,
its robust version can be formulated as follows:

min {maxQ∈UQ
xTQx}

s.t. (x, κ) ∈ X+

minµ∈Uµ(µ− rfe)Tx ≥ 1.
(16)

3 Finding Robust Portfolios

In this section, we discuss methods for solving the robust formulation (8) of the MVO
problem presented in the introduction. First, we discuss a special case of the robust
optimization formulation that can be solved as a standard QP problem and therefore,
does not require the development of any new solution techniques:

3.1 The Simple Case

In most asset allocation problems, short sales are not allowed. Money managers often
look for a nonnegative portfolio of mutual funds representing different asset classes. If
there are no additional considerations for the asset allocation problem, the feasible set
of portfolios has precisely the description given in (3):

X = {x ∈ <n|
n∑

i=1

xi = 1, x ≥ 0}.

Above, x ≥ 0 represent the “no-short-sales” constraint and the restriction
∑n

i=1 xi = 1
is necessary to ensure that all the money available for investment is allocated.

Now, we consider an uncertainty set U of the form (6) with the property that the
matrix QU is positive semidefinite. In this case, we have the following result that
simplifies the search for robust portfolios:

Proposition 3 Let x ∈ <n be a nonnegative vector and let U be as in (4)–(6) with a
positive semidefinite matrix QU . Then, an optimal solution of the problem

min
(µ,Q)∈U

µTx− λxTQx (17)

is µ∗ = µL and Q∗ = QU regardless of the values of the nonnegative scalar λ and the
vector x.

Proof:
First note that both the objective function µTx− λxTQx and the constraint set U are
separable in µ and Q. Therefore, as in the proof of Proposition 1, the problem (17)
can be solved by solving the following two smaller problems:

min µTx
s.t. µL ≤ µ ≤ µU ,

max xTQx
s.t. QL ≤ Q ≤ QU

Q � 0
. (18)
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Since x ≥ 0, the objective value of the first problem in (18) is minimized when each
element of the vector µ is at its lower bound, i.e., when µ = µL. Consider the relaxation
of the second problem obtained by ignoring the positive semi-definiteness constraint
Q � 0. For this relaxation, since xixj ≥ 0 for all i and j, xTQx =

∑
i,j qijxixj will

be maximized when all qij attain their largest feasible values, i.e., when Q = QU .
Since QU is assumed to be a positive semidefinite matrix, it must be optimal for the
unrelaxed problem as well.

The proposition above indicates that when short sales are not allowed and when
the upper bounds on the covariance matrix form an acceptable covariance matrix, then
the worst-case realization of the data is the same regardless of what portfolio is chosen–
expected returns are realized at their lowest possible values and the covariances are
realized at their highest possible values. In this scenario, the maximin problem given
in (8) reduces to the following maximization problem:

max
x∈X

(
µL

)T
x− λxTQUx. (19)

This is a standard MVO problem and the associated efficient frontier can be determined
using methods such as the method of critical lines in Markowitz (1952). A similar
argument shows that the minimax problem (7) reduces to the following minimization
problem when QU is positive semidefinite:

min xTQUx
s.t. x ∈ X(

µL
)T

x ≥ R.

(20)

3.2 The General Case

In the previous subsection we saw that the robust asset allocation problem can be
reduced to a simple MVO problem under certain assumptions. When these assumptions
do not hold, the worst-case realization of the uncertain inputs is no longer the same
for all possible portfolios. This means that we cannot expect to solve the robust asset
allocation problem in a sequential manner, i.e., by first finding the worst-case input
data and then finding the best allocation with this data, as we did in the previous
subsection. Fortunately, the robust problem can still be solved using a saddle-point
formulation as we describe below. The arguments below follow the construction in
Halldórsson and Tütüncü (2003):

First we need to introduce some notation to represent the objective function of the
robust optimization problem (8). Let

ψλ(x, µ,Q) := µTx− λxTQx, x ∈ X , (µ,Q) ∈ U . (21)

For fixed (µ,Q) ∈ U and a given λ ≥ 0, the function ψλ is a concave quadratic function
of x. Similarly, for fixed x and a given λ, the function ψλ is a linear function of µ and
Q. This last fact follows from the observation that xTQx =

∑
i,j(xixj)qij .

Combining these observations with the assumptions that the sets X and U are
nonempty and bounded, and Lemma 2.3 from Halldórsson and Tütüncü (2003), we
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have the following conclusion: Optimal values of the following pair of primal and dual
problems,

max
x∈X

{ min
(µ,Q)∈U

ψλ(x, µ,Q)}, and min
(µ,Q)∈U

{max
x∈X

ψλ(x, µ,Q)} (22)

are equal and are obtained at a saddle-point of the function ψλ(x, µ,Q). In other
words, there exists a vector x̄ ∈ X and a vector-matrix pair (µ̄, Q̄) ∈ U such that

ψλ(x, µ̄, Q̄) ≤ ψλ(x̄, µ̄, Q̄) ≤ ψλ(x̄, µ,Q), ∀ x ∈ X , (µ,Q) ∈ U , (23)

and x̄ ∈ X , (µ̄, Q̄) ∈ U collectively solve both problems in (22).
Therefore, the maximin problem (8) we formulated for the robust solution of the

asset allocation problem (2) is equivalent to finding a saddle-point of the function
ψλ(x, µ,Q). This equivalence is significant because we can now use the rich literature
on saddle-point problems and in particular, the work of Halldórsson and Tütüncü
(2003) where an interior-point algorithm for their solution is developed.

In a similar manner, we can develop a saddle-point formulation for the minimax
problem (7). First, we note that the constraint minµ∈Uµ µ

Tx ≥ R can be simplified into(
µL

)T
x ≥ R when Uµ is given by (4) and x ∈ X implies that x ≥ 0, which is natural

for asset allocation problems. Now, defining φ(x,Q) = xTQx and XR := {x ∈ X :(
µL

)T
x ≥ R}, we obtain the following saddle-point formulation for (7): Find x̄ ∈ XR

and Q̄ ∈ UQ such that

φ(x̄, Q) ≤ φ(x̄, Q̄) ≤ φ(x, Q̄), ∀ x ∈ XR, Q ∈ UQ. (24)

One can deduce conditions characterizing saddle-points of the function φ(x,Q) using
the optimality of x̄ for minx∈XR

φ(x, Q̄) and of Q̄ for maxQ∈UQ
φ(x̄, Q), which forms

the basis of the algorithm we present next.

3.3 The Algorithm

Given µ, Q, and X , the efficient frontier is the collection of portfolios that are optimal
solutions to the problem (1) for all possible values of R (or to problem (2) for all possible
values of λ). By representing each optimal portfolio as a point in two-dimensional space
with coordinates equal to the standard deviation and expected return of the portfolio,
one obtains the familiar depiction of this efficient frontier.

Since there are potentially infinitely many points on the efficient frontier, obtaining
a precise description of this set may appear impossible. The method of critical lines in
Markowitz (1952), which is essentially a parametric quadratic programming algorithm,
recognizes that there are a finite number of critical values of R in (1) with corresponding
critical optimal portfolios. As R varies between two of its consecutive critical values,
say Rk and Rk+1, the optimal solutions to corresponding problems (1) can be obtained
as a convex combination of the two critical portfolios corresponding to Rk and Rk+1.
Therefore, the infinite number of points on the efficient frontier can be generated by a
finite algorithm, such as the method of critical lines.
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In the robust case, however, such methods are either not available or not imple-
mented. While there are algorithms to solve the robust portfolio selection/asset allo-
cation problems (see, Halldórsson and Tütüncü (2003), Goldfarb and Iyengar (2003)),
these algorithms find a single point on the robust efficient frontier. The literature
on parametric min-max problems or parametric saddle-point problems appears to be
surprisingly sparse–we are aware of only one reference, and there the emphasis is on
continuity properties of the solutions of such problems rather than algorithms, Morgan
and Raucci (1997). Therefore, to generate the efficient frontier, we will first determine
the robust efficient portfolios with the lowest and highest expected returns, discretize
the range between these two extremes to obtain a finite number of set levels of the
expected return and solve the problem (7) for each set level of the expected return. As
we discussed at the end of Section 3.2, assuming that x ∈ X , the min-max problem (7)
is equivalent to the saddle-point problem (24).

To obtain the robust efficient portfolios with highest and lowest expected returns
as well as to solve the problem (7) (or, equivalently, the problem (24)) for each inter-
mediate value we use the saddle-point algorithm (SP Algorithm, for short) developed
by Halldórsson and Tütüncü (2003). This is an interior-point path-following method
with computationally attractive polynomial-time convergence guarantees. We include
a description of this method in the Appendix of this article.

We are now ready to formally present the algorithm that generates a discrete ap-
proximation to the robust efficient frontier:

Robust Efficient Frontier Algorithm

1. Solve problem (7) without the expected return constraint using the SP Algorithm.

Let xmin denote its optimal solution. Set Rmin =
(
µL

)T
xmin.

2. Solve problem (8) with λ = 0. Let xmax denote its optimal solution. Set Rmax =(
µL

)T
xmax and ∆ = Rmax −Rmin.

3. Choose K, the number of desired points on the efficient frontier. For R ∈ {Rmin+
∆

K−1 , Rmin + 2 ∆
K−1 , . . . , Rmin + (K − 2) ∆

K−1} solve problem (7) with the expected
return constraint using the SP algorithm.

As we mentioned above, in Steps 1 and 3 of the Robust Efficient Frontier Algorithm,
we actually solve the saddle-point problem (24) that is equivalent to the corresponding
min-max problem (7). Step 1 generates the robust efficient portfolio that has the
overall minimum worst-case variance, without any regard for the expected returns.
The worst-case expected return of this portfolio is the the minimum expected return
for a robust efficient portfolio since no portfolio with a smaller return (and necessarily
higher variance) would be efficient.

In contrast, Step 2 finds the robust efficient portfolio with the highest (worst-case)
expected return without giving any consideration to the variance of the portfolio. This
turns out to be a trivial problem. We want to solve the following maximin problem:

max
x∈X

{min
µ∈Uµ

µTx}. (25)
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When Uµ is as in (4) and x ≥ 0 when x ∈ X , this problem is equivalent to the following
LP and can be solved easily:

max
x∈X

(
µL

)T
x. (26)

Once we determined the robust efficient portfolios with the lowest and highest worst-
case expected returns, in Step 3, we generate a sequence of robust efficient portfolios
whose expected returns lie in between these two extremes with equal increments.

4 Computational Results

In this section, we apply the robust asset allocation methods discussed in the previous
sections to market data and compare the behavior of the solutions obtained by the
robust optimization technique and the solutions obtained by standard approaches using
nominal data.

For our first experiment, we use a universe of 5 asset classes: large cap growth
stocks, large cap value stocks, small cap growth stocks, small cap value stocks, and
fixed income securities. To represent each asset class, we use a monthly log-return time
series of corresponding market indices: Russell 1000 growth and value indices for large
cap stocks, Russell 2000 growth and value indices for small cap stocks, and Lehman
Brothers US Intermediate Government/Credit Bond index for fixed income securities.
Lehman Brothers U.S. Intermediate Government/Credit Bond Index is an unmanaged
index generally representative of government and investment-grade corporate securities
with maturities of 1-10 years. Our time series data spans the period January 1979 to
July 2002, a total of n = 283 months.

Using this data, we computed the historical means and covariances of the five indices
mentioned above. Further, we computed lower and upper bound vectors and matrices
on means and covariances using a bootstrapping strategy. Namely, a time series of
length n was chosen for each index by bootstrapping from the available observations
and means and covariances were computed for these series. This process was repeated
3000 times and the quantiles of the statistics were computed. Table 1 lists the 2.5, 50,
and 97.5 percentiles for means of monthly returns and covariances of these returns.

The ranges for the return and covariance estimates presented in Table 1 can be
considered wide. However, most of these ranges are not wide enough to include the
negative or very high returns and/or negative correlations often observed in shorter
observation periods. By bootstrapping over the entire history of the time series, we
obtained bounds that can be considered reliable for average behavior of returns over
long investment periods. We will discuss an alternative method to generate lower and
upper bounds on returns and covariances below which may be more suitable for robust
asset allocation over shorter investment horizons.

Using the data presented above, we generated the classical and robust efficient
frontiers. Figure 1 depicts the classical efficient frontier obtained by using the 50 per-
centile values for expected returns and covariances as inputs as well as the robust
efficient frontiers obtained by using the 2.5 and 97.5 percentile values for expected
returns and covariances as inputs. Note that the robust efficient frontier lies below the

12



10−2× Ru 1000 Gr Ru 1000 Va Ru 2000 Gr Ru 2000 Va LB IT Gov/Cre
2.5 percentile 0.3398 0.6330 -0.1358 0.5866 0.5868
50 percentile 0.9644 1.1135 0.7221 1.1726 0.7449

97.5 percentile 1.5602 1.5825 1.5497 1.7145 0.9029

10−3× Ru 1000 Gr Ru 1000 Va Ru 2000 Gr Ru 2000 Va LB IT Gov/Cre

Ru 1000 Gr
2.2147
2.8891
3.6629

Ru 1000 Va
1.3493
1.8417
2.4820

1.3060
1.7427
2.3011

Ru 2000 Gr
2.3928
3.2870
4.3749

1.4138
2.1361
3.0965

3.8449
5.1551
6.7911

Ru 2000 Va
1.2949
1.9204
2.7833

1.1212
1.6879
2.4465

2.1245
3.0847
4.4034

1.6247
2.4182
3.5308

LB IT Gov/Cre
0.0477
0.1346
0.2162

0.0628
0.1441
0.2224

-0.0332
0.0859
0.1950

0.0152
0.1158
0.2116

0.1337
0.1848
0.2500

Table 1: 2.5, 50, and 97.5 percentiles of mean monthly log-returns as well as the entries of the
covariance matrix obtained from bootstrapped samples. Only the lower diagonal entries in the
covariance matrix are listed for brevity.

classical efficient frontier since it depicts the worst-case values of the expected returns
and standard deviations. In contrast, the classical efficient frontier shows nominal
values of these quantities. Therefore, a direct comparison of the classical and robust
efficient portfolios should not be made based on this figure. They are presented to-
gether to show how different the efficient frontier may look if optimization inputs are
inexact/incorrect.
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Figure 1: The classical efficient frontier found using nominal data and the robust efficient frontier
found using worst-case data.

We mentioned that we used the 2.5 and 97.5 percentiles listed in Table 1 as the
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lower and upper bounds µL, µU , QL, and QU when computing the robust efficient
portfolios. We observe that QU obtained in this manner is a positive definite matrix.
Therefore, using the result of Proposition 2, the robust efficient portfolios were found
using the classical mean-variance optimization approach with inputs µL and QU .

Next, we compare the compositions of the classical and robust efficient portfolios.
They are presented in Figure 2. On the classical efficient frontier, the lowest risk
efficient portfolios are obtained, as expected, using the fixed income securities. As
one moves along the efficient frontier toward the efficient portfolio with the highest
expected return, fixed income securities are gradually replaced by a mixture of large-
cap and small-cap value stocks. Close to the high-return end of the frontier, large-cap
stocks are also phased out and one gets a portfolio consisting entirely of small cap value
stocks. In contrast to the classical efficient portfolios, robust efficient portfolios focus
almost all equity holdings in large cap value stocks. A mixture of small cap growth
and value stocks are used only in very small amounts and only at the low-risk end of
the frontier. One might be surprised that the robust efficient portfolios are even less
inclusive (i.e., contain fewer asset classes) than the classical efficient portfolios–we will
comment on this observation in our conclusion.
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Figure 2: The composition of the classical and robust efficient portfolios. 2.5 and 97.5 percentiles
of means and covariances of bootstrapped samples were used to describe the uncertainty intervals
for robust portfolios.

We then repeated the robust asset allocation algorithm on the same set of asset
classes using a different method to generate the lower and upper bounds for the input
parameters. We considered moving windows of four years and computed mean returns
and covariances in each such window. Then, we computed different quantiles of the
moving window time series. Table 2 lists the 5 and 95 percentiles for means of monthly
log-returns and covariances of these returns. Interestingly, QU obtained with this
method is also positive definite and is the unique worst-case covariance matrix within
the interval for all possible feasible portfolios. As can be seen from these tables, this
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process generates wider bounds on the returns and covariances than the bootstrapping
strategy discussed above. We have the following explanation for this observation. The
bootstrapping strategy we used considers (and averages out) 23 years of return data
and therefore is not able to identify significantly volatile nature of returns over short
and mid-term horizons. Moving averages with two-to-four year windows detect such
behavior and result in wider interval estimates for the returns and covariances.

10−2× Ru 1000 Gr Ru 1000 Va Ru 2000 Gr Ru 2000 Va LB IT Gov/Cre
5 percentile 0.3093 0.5333 -0.0666 0.2560 0.4570

95 percentile 2.1511 1.9658 1.7425 2.0545 1.2664

10−3× Ru 1000 Gr Ru 1000 Va Ru 2000 Gr Ru 2000 Va LB IT Gov/Cre
Ru 1000 Gr 0.8309/5.2834
Ru 1000 Va 0.5621/3.1729 0.6309/2.8234
Ru 2000 Va 0.9239/5.4941 0.5957/3.8920 1.7901/8.9472
Ru 2000 Gr 0.5265/3.7516 0.4963/3.2523 0.9815/5.2682 0.7193/4.4271

LB IT Gov/Cre -0.0555/0.3909 -0.0313/0.3582 -0.0737/0.3976 -0.0307/0.3819 0.0582/0.5433

Table 2: Percentiles of 4-year moving averages of monthly log-returns and covariances of monthly
log-returns.

Figure 3 illustrates the robust efficient frontier and the composition of robust effi-
cient portfolios when we use the percentiles given in Table 2 as the uncertainty bounds.
Efficient portfolios are very similar to those we found with the previous set of bounds,
except that some of the low-risk efficient portfolios of the previous set are inefficient
for the problem with the current bounds.
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Figure 3: The efficient frontier and the composition of the efficient portfolios found using the robust
asset allocation approach. 5 and 95 percentiles of 4-year moving averages means and covariances
were used to describe the uncertainty intervals for these inputs.

We conclude this experiment by comparing the (σ, µ) frontiers for classical and ro-
bust efficient portfolios under two scenarios. Since robust efficient portfolios generated
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with two different sets of bounds were very similar, we just focus on the first set and
ignore the other in this comparison. First, we plot the standard deviation-expected
return profiles of the generated portfolios assuming that the expected returns and co-
variances were actually equal to the point estimates used for the classical mean-variance
optimization approach. Under this scenario, portfolios coming from the classical MVO
approach only slightly outperform the portfolios generated with the worst-case in mind.
Next, on the same graph we plot the standard deviation-expected return profiles of the
portfolios generated assuming that actual expected returns and covariances were the
worst-case values within the lower and upper bounds used for robust optimization.
Figure 4 shows these plots.

Compared to the nominal case, the difference in the worst-case performances of
the two sets of efficient portfolios is greater. We observe that the performance of
classical efficient portfolios deteriorate significantly at the high-return end with worst-
case inputs. Furthermore, Figure 4 suggests that one of the most significant benefits of
the robust approach is in risk reduction for worst-case scenarios. This is a consequence
of the (σ, µ) frontiers being relatively flat with worst-case inputs. For example, the
robust efficient portfolio achieving a 7.5% worst-case annualized expected return has
an 8% standard deviation, while the classical efficient portfolio with a 7.5% worst-case
annualized expected return has approximately 12% standard deviation indicating that
it is significantly riskier.
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Figure 4: (σ, µ)-profiles of classical and robust efficient portfolios when actual moments are (i)
equal to their point estimates, (ii) equal to their worst possible values within given bounds.

In our second experiment, we used a wider set of asset classes: growth and value
stocks in large-cap, mid-cap, and small-cap categories, intermediate term fixed-income
securities, international stocks, real estate securities, and high-yield corporate bonds.
To represent the domestic equity classes, we used the log-return time series for Wilshire
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Target indices corresponding to each category. We use the Lehman Brothers Interme-
diate Government/Credit index, MSCI EAFE (Europe, Australasia, Far East) index,
Wilshire Real Estate Securities index, and Lehman Brothers High-Yield Bond index
for the remaining categories. Our time series data spans the period July 1983 to July
2002, a total of n = 229 months.

Using this data, we computed the historical means and covariances of the log-
returns of the ten indices mentioned above. Further, we computed lower and upper
bound vectors and matrices on means and covariances using the 4-year moving averages
as was done in the first experiment. Table 3 lists the 5, 50, and 95 quantiles for means
of monthly log-returns and covariances of these returns.

10−2× Ws LC Gr Ws LC Va Ws MC Gr Ws MC Va Ws SC Gr Ws SC Va LB IT G/C MS EAFE Ws RE Sec LB Hi-Yld
5 % 0.5711 0.2586 0.0314 0.3622 0.0352 0.2076 0.4534 -0.2109 -0.3670 0.0644

50 % 1.2486 1.0909 1.0480 1.1863 0.8681 1.1460 0.6251 0.7180 0.6537 0.8603
95 % 2.3590 1.8205 1.5684 1.6851 1.5460 1.7965 0.9702 2.9500 1.2550 1.2857

10−3× Ws LC Gr Ws LC Va Ws MC Gr Ws MC Va Ws SC Gr Ws SC Va LB IT G/C MS EAFE Ws RE Sec LB Hi-Yld

Ws LC Gr
0.7633
2.2616
4.2952

Ws LC Va
0.4118
1.5653
2.7668

0.6743
1.5586
2.5193

Ws MC Gr
0.8451
2.4285
4.3482

0.5159
1.8221
3.0201

1.5223
3.1778
5.4658

Ws MC Va
0.3776
1.3810
2.7408

0.5221
1.4195
2.4136

0.5781
1.9812
3.3073

0.5698
1.5851
3.1725

Ws SC Gr
0.8666
2.6279
4.7417

0.5180
1.7503
3.2677

1.6709
3.5112
5.9247

0.5966
2.0355
3.6341

1.9342
4.0516
6.6948

Ws SC Va
0.3554
1.2184
2.5611

0.4364
1.2428
1.9703

0.5842
1.8745
3.1768

0.4969
1.4211
2.3507

0.6284
2.0104
3.5407

0.4784
1.3795
2.2155

LB IT G/C
-0.0680
0.1180
0.2240

-0.0616
0.1525
0.2006

-0.0902
0.0623
0.1925

-0.0250
0.1250
0.1801

-0.0584
0.0336
0.1761

-0.0070
0.0977
0.1516

0.0577
0.0924
0.1618

MS EAFE
0.1637
1.3035
2.5973

0.3085
1.0202
1.4259

0.4374
1.5154
2.7885

0.2542
0.9073
1.3379

0.5027
1.5756
2.6630

0.2275
0.8434
1.3036

-0.0856
0.0585
0.2000

1.2500
2.3682
4.0717

Ws RE Sec
0.1861
0.7061
2.3900

0.3166
1.0485
1.8004

0.4188
1.3376
3.0029

0.3598
1.2646
2.0014

0.5484
1.3905
3.4410

0.3975
1.1763
1.9695

-0.0213
0.0672
0.0979

0.2433
0.5687
1.3112

0.9526
1.6691
2.3312

LB Hi-Yield
0.1131
0.5910
0.9148

0.1520
0.4289
0.7006

0.1566
0.6901
1.1368

0.1376
0.4658
0.7611

0.1641
0.7478
1.2796

0.1336
0.4635
0.7498

0.0062
0.0633
0.1519

0.1315
0.3022
0.5425

0.1185
0.3264
0.8800

0.1345
0.3088
0.8082

Table 3: 5, 50, and 95 percentiles of 4-year moving averages of monthly log-returns and covariances
of monthly log-returns.

In Figures 5 and 6 we illustrate the efficient frontiers and the composition of the
efficient portfolios found using the classical and robust asset allocation approaches1.
The composition graphs illustrate the similarities as well as the stark differences be-
tween the choices made by the two approaches: Both approaches invest a substantial
proportion of their portfolios in fixed income securities at the low-risk end of their
spectrum and gradually phase them out of the portfolios as one moves toward the high

150 percentile values of the covariances results in a matrix with a negative eigenvalue. Since this eigenvalue
is very small in absolute value, we simply modified the 50 percentile matrix with a small multiple of the
identity to obtain a legitimate (positive semidefinite) covariance matrix. This modified matrix was used to
determine the classical efficient portfolios.
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return end of the frontier. High yield bonds that constitute more than 60% of the
mid-range portfolios in the nominal case are too risky for the robust approach and are
replaced by government bonds. For the equity portion of the portfolios, the classical
approach chooses a mixture of large cap growth stocks as well as mid and small-cap
value stocks. In contrast, the robust approach focuses on the large-cap growth stocks
and includes small amounts of real estate securities at the low-risk end of the frontier.
Once again, we observe that the robust portfolios are less inclusive.
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Figure 5: The classical efficient frontier found using nominal data and the robust efficient fron-
tier found using worst-case data. 5 and 95 percentiles of 4-year moving averages for means and
covariances were used to describe the “worst-case inputs”.

Next, we examine the effect of the length of the moving window used for the compu-
tation of lower and upper bounds describing uncertainty intervals. Instead of a 4-year
window, we use 2-year windows and compute the corresponding percentiles. Using 5
and 95 percentiles as the lower and upper bounds leads to uncertainty sets that are
too wide to be of practical interest. In fact, with such bounds, the robust efficient
frontier degenerates into a very small set centered at the pure fixed-income portfolio.
When 10 and 90 percentiles of 2-year moving averages are used, we obtain bounds
that are similar to those found with 5 and 95 percentiles of 4-year moving averages
and virtually identical robust efficient portfolios. We also used 25 and 75 percentiles
of the 2-year moving averages to describe our uncertainty sets. This choice leads to
intervals that are often, but not always, tighter than those we found with 5 and 95
percentiles of 4-year moving averages. We list the lower and upper bounds obtained
in this manner in Table 4 and illustrate the corresponding robust efficient frontier as
well as the composition of robust portfolios in Figure 7. As opposed to the previous
experiments, the upper bound matrix QU obtained in this manner is not a positive
semidefinite matrix, and therefore the robust efficient portfolios were generated using
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Figure 6: The composition of the classical and robust efficient portfolios. 5 and 95 percentiles of
4-year moving averages for means and covariances were used to describe the uncertainty intervals
for robust portfolios.

the algorithm presented in Section 3.3. The resulting efficient portfolios are different
from the previous two sets, and mostly focus on large-cap value stocks for their equity
allocations.

10−2× Ws LC Gr Ws LC Va Ws MC Gr Ws MC Va Ws SC Gr Ws SC Va LB IT G/C MS EAFE Ws RE Sec LB Hi-Yld
25 % 0.5952 0.6220 0.3428 0.5809 0.2408 0.4752 0.5063 0.3186 0.2384 0.3880
75 % 2.0878 1.6486 1.5027 1.7666 1.4305 1.8257 0.8516 1.4490 1.3859 1.1550

10−3× Ws LC Gr Ws LC Va Ws MC Gr Ws MC Va Ws SC Gr Ws SC Va LB IT G/C MS EAFE Ws RE Sec LB Hi-Yld

Ws LC Gr
1.4421
3.5834

Ws LC Va
0.6879
2.1060

0.8653
2.5030

Ws MC Gr
1.4091
3.5458

0.7722
2.6544

1.8239
4.7440

Ws MC Va
0.6233
2.0468

0.6748
2.3619

0.8672
3.0221

0.6672
2.6682

Ws SC Gr
1.3957
3.7728

0.6547
2.8021

1.9984
5.0969

0.6913
3.0908

2.3277
5.8410

Ws SC Va
0.5588
1.8277

0.5527
1.7764

0.8355
2.7839

0.5982
2.1986

0.7996
2.9850

0.5763
2.0594

LB IT G/C
0.0238
0.1935

0.0465
0.1876

-0.0300
0.1595

0.0514
0.1700

-0.0414
0.1540

0.0389
0.1286

0.0642
0.1203

MS EAFE
0.3602
2.1599

0.3490
1.5159

0.5775
2.5945

0.3265
1.4203

0.6313
2.5283

0.2883
1.2517

-0.0285
0.1702

1.8514
2.8549

Ws RE Sec
0.2420
1.3167

0.4558
1.5972

0.5471
1.9951

0.5378
1.8447

0.6385
2.2476

0.4930
1.5504

-0.0025
0.0932

0.2662
1.0387

0.8211
2.0566

LB Hi-Yield
0.2444
0.7214

0.1786
0.5904

0.2498
0.8910

0.1597
0.5887

0.2525
0.9822

0.1570
0.5634

0.0224
0.0933

0.1147
0.4623

0.1467
0.4919

0.1793
0.4389

Table 4: 25 and 75 percentiles of 2-year moving averages of monthly log-returns and covariances
of monthly log-returns.

We now compare the performance of the portfolios generated by the classical and
robust asset allocation approaches under three scenarios. In Figures 8 and 9 we plot the
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Figure 7: The efficient frontier and the composition of the efficient portfolios found using the
robust asset allocation approach. 25 and 75 percentiles of 2-year moving averages for means and
covariances were used to describe the uncertainty intervals for these inputs.

standard deviation-expected return profiles of the generated portfolios assuming that
the realized returns and covariances were actually equal to the point estimates used
for the classical mean-variance optimization approach. Under this scenario, portfolios
coming from the classical MVO approach outperform the portfolios generated with the
worst-case in mind.

In Figures 8 and 9, we also plot the standard deviation-expected return profiles of
the generated portfolios assuming that the realized returns and covariances were among
the worst possible from the uncertainty sets described in Tables 3 and 4, respectively.
Note that the worst-case realization of the data depends on the particular portfolio one
has (except when QU is positive semidefinite, see Proposition 2) and therefore, there is
no unique realization of the uncertain parameters that is uniformly bad for all portfolios
that we could use for these graphs. For the graphs in Figures 8 and 9, we used the
worst case realization of the data for the robust minimum variance portfolio. As is clear
from the graph, portfolios generated to perform optimally in the worst-case scenario,
significantly outperform the portfolios generated using the classical MVO approach
without considering data uncertainty. Portfolios generated using bounds derived from
4-year moving windows perform reasonably well under the two scenarios favoring the
other portfolio sets and they perform much better than other portfolio sets under the
scenario it was chosen to optimize over. As such, these portfolios provide a sensible
alternative to classical efficient portfolios that suffer greatly when the input estimates
are inaccurate.

As a final exercise, we test the stability of the efficient portfolios generated by the
classical and robust approaches through time. For this purpose, we first consider the
portion of our data that was available at the end of 1997. With this data, using the
approaches outlined above, we generate mean and covariance estimates for classical
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Figure 8: (σ, µ)-profiles of classical and robust efficient portfolios when actual moments are (i)
equal to their point estimates, (ii) equal to their worst possible values within bounds found using
4-year moving windows.

2 4 6 8 10 12 14 16 18 20 22
4

6

8

10

12

14

16

18
(σ, µ) frontiers realized with nominal and worst−case inputs from 2−year moving averages

Standard deviation of efficient portfolios (annualized percentages)

E
xp

ec
te

d 
re

tu
rn

 o
f e

ffi
ci

en
t p

or
tfo

lio
s 

(a
nn

ua
liz

ed
 p

er
ce

nt
ag

es
)

Classical efficient portfolios
Robust efficient portfolios (4 yr.)
Robust efficient portfolios (2 yr.)

Figure 9: (σ, µ)-profiles of classical and robust efficient portfolios when actual moments are (i)
equal to their point estimates, (ii) equal to their worst possible values within bounds found using
2-year moving windows.

mean-variance optimization and use 4-year moving averages to generate lower and
upper bounds for robust optimization. In addition to identifying the classical and
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robust efficient frontiers, we also compute the portfolios that maximize the Sharpe ratio
in the classical and robust senses. Then, we repeat this process with data available
through the end of each year between 1998 and 2001. Each additional year of data
changes the mean and covariance estimates, and we track the effects of these changes on
efficient portfolio compositions. While the compositions of classical efficient portfolios
vary significantly from year to year, robust efficient portfolios have remarkably small
turnover ratios indicating that investors following such strategies will incur minimal
trading costs at rebalancing dates. Figures 10 and 11 illustrate our arguments. The
first pair of figures show how the composition of the portfolios that maximize the
Sharpe ratio using classical and robust approaches change over the course of 5 years.
The second pair of figures depict the composition of the classical and robust efficient
portfolios that are at the “middle” of the efficient frontier (representing, approximately
13.5% annual return in the nominal case and 7.7% annual return in the worst-case).

1997 1998 1999 2000 2001
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
s 

in
 d

iff
er

en
t a

ss
et

 c
la

ss
es

Composition of portfolios maximizing Sharpe ratio (nominal input)

Wilshire LC Growth
Wilshire SC Value
MSCI EAFE
LB Hi−Yld
LB IT Gov/Cre

1997 1998 1999 2000 2001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

um
ul

at
iv

e 
pe

rc
en

ta
ge

s 
in

 d
iff

er
en

t a
ss

et
 c

la
ss

es
Composition of robust portfolios maximizing Sharpe ratio

Wilshire LC Growth
Wilshire LC Value
LB IT Gov/Cre

Figure 10: The composition of robust portfolios maximizing the Sharpe ratio remains relatively
constant through a 5 year period.

5 Comments and Conclusion

Building on recent research in robust optimization, this article presents a novel ap-
proach to asset allocation problems under data uncertainty. As opposed to the clas-
sical approach, where one estimates the inputs (returns and covariances) to the asset
allocation problem and then treats them as certain and accurate, the approach pre-
sented here advocates the description of input estimates in the form of uncertainty sets.
Robust asset allocation refers to finding an asset allocation strategy whose behavior
under the worst possible realizations of the uncertain inputs is optimized. The article
presents an algorithm for generating robust efficient portfolios using a variant of an
interior-point method for saddle-point problems, and discusses an implementation of
this algorithm.
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Figure 11: The composition of mid-range robust efficient portfolios remain relatively constant
while corresponding classical efficient portfolios experience large turnovers through a 5 year period.

Our analysis demonstrates some key properties of asset mixes formed using robust
optimization techniques: (i) significantly better worst-case behavior, (ii) stability over
time, and (iii) concentration on a small set of asset classes. While the first two prop-
erties are expected, the third one appears surprising. We now comment on all three
properties.

The numerical experiments with the algorithm presented in Section 4 suggest that
the worst-case behavior of portfolios of different asset classes can be improved signifi-
cantly using the robust asset allocation approach, often with small performance losses
on more likely scenarios. As the size of uncertainty sets increases, both the benefits of
robust portfolios under worst-case scenarios and their under-performance under most
likely-scenarios appear to increase as well. This trade-off suggests that a cost-benefit
analysis of the size of uncertainty sets needs to be performed and the right size will
depend on the risk-attitudes of individual investors.

Another property of robust efficient portfolios demonstrated by our results is that
they remain relatively unchanged over long periods of time. As illustrated in Figures 10
and 11, recomputing robust efficient portfolios as new data becomes available generates
remarkably small turnover ratios and, therefore, such portfolios would experience only
modest trading costs if they are rebalanced regularly. Moreover, since robust optimal
portfolios computed at the beginning of a long investment horizon appear to remain
optimal or near optimal throughout this horizon, they represent attractive alternatives
for buy-and-hold investors.

An observation (and sometimes, complaint) expressed by users of the classical asset
allocation methods/software is that the portfolios generated often concentrate on a
small number (say, 2 or 3) of the asset classes available for investment. This appears
contradictory to the well-known benefits of diversification. We now give a heuristic
explanation of this phenomenon that also helps us interpret the behavior of robust asset
allocation methods. Trying to negotiate the two competing objectives of maximizing
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returns and minimizing risk, the MVO algorithm, in a way, generates two rankings
of the assets (or asset classes)–one for high return potentials and one for low risk
potentials. Highest return portfolios are obtained by picking one or a few of the assets
topping the high-return list. As the algorithm moves from the high return end of the
efficient frontier toward the low risk end, these assets are gradually replaced by those
that top the low-risk list. Assets dominated by another asset in both lists almost never
find a place in an efficient portfolio.

While one may expect the robust efficient portfolios to be “more diversified” or
more inclusive than their classical counterparts–this comparison may be hard to make
without an appropriate metric–we observed a similar phenomenon to the one described
in the previous paragraph in our computational experiments with the robust asset
allocation approach. This time, it appears, the method ranks the worst-case return
potentials of the assets as well as their worst-case riskiness, and then proceeds in a
similar manner as before, from the assets with highest worst-case returns to those with
lowest worst-case variance. This behavior is apparent from Table 3 and Figures 5,
6. Instead of the small-cap value stocks (whose 50 percentile returns are the highest)
that we see at the high-return end of the classical efficient portfolios, large-cap growth
stocks, whose worst-case returns are highest, are seen at the high-return end of the
robust efficient portfolio.

Overall, we conclude that by directly addressing some of the weaknesses of classical
MVO, robust optimization provides a valuable asset allocation vehicle to conservative
investors.
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6 Appendix

Robust Efficient Frontier Algorithm we presented in Section 3.3 uses a saddle-point
algorithm in each intermediate step. This saddle-point algorithm, originally developed
in Halldórsson and Tütüncü (2003), is from the class of interior-point path-following
algorithms. Such methods are based on the concept of a central path in the relative
interior of the feasible set of points that converges to a saddle-point of the given function
within this set (or, to an optimal point in the case of optimization problems). Iterates
are generated in close proximity to this path (hence the name path-following) so that
they can be guaranteed to converge to a saddle-point, just like the central path.

Let us describe the central path in more detail. First, we define the following
saddle-barrier function:

φt(x,Q) := tφ(x,Q) + F (x)−G(Q),

where F (x) and G(Q) are self-concordant barrier functions (see, Nesterov and Ne-
mirovskii (1994)) for the relative interiors X 0

R and U0
Q of the sets XR and UQ:

F (x) := −
n∑

j=1

log(xj)− log(µT
Lx−R), x ∈ X 0

R

G(Q) := −
∑

1≤i≤j≤n

log(QU
ij −Qij)−

∑
1≤i≤j≤n

log(Qij −QL
ij)− log det(Q), Q ∈ U0

Q.

As long as X 0
R and U0

Q are nonempty, there is a unique saddle-point of the function φt

for each t ≥ 0. These saddle-points form a continuous trajectory in the interior of the
set of feasible points called the central path of the saddle-point problem (24). As t tends
to ∞, saddle-points of the functions φt, and therefore, the central path converge to a
saddle-point of the problem (24). Our algorithm generates iterates that are in close
proximity to the saddle-points of functions φt for increasing values of t and converge
to a solution using this strategy.
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The algorithm we present below starts from a trial point (x0, Q0) close to a point
on the central path corresponding t = t0 and using updates generated by Newton’s
method, determines iterates that are close to points on the central path corresponding
to exponentially increasing values of t. Proximity of points to the central path is
measured by the following function, called the Newton decrement:

η(φt, x,Q) :=
√
η2(φt

Q, x) + η2(−φt
x, Q), with,

η(ψ, z) :=
√
∇ψT (z)[∇2ψ(z)]−1∇ψ(z),

φt
Q(x) := tφ(x,Q) + F (x), and

φt
x(Q) := tφ(x,Q)−G(Q).

The measure η(φt, x,Q) is always nonnegative and is zero only on central points. Fur-
thermore, a small value of the Newton decrement function implies close proximity to
the central path. By a judicious choice of the parameters, the algorithm makes sure
that the Newton decrement is small for all iterates generated, guaranteeing eventual
convergence. We are now ready to present the saddle-point algorithm formally:

Saddle-Point Algorithm (SP Algorithm)

1. Initialization:
Choose α > 0 and β > 0. Find a t0 > 0 and (x0, Q0) ∈ X 0

R × U0
Q that satisfies

η(φt0 , x0, Q0) ≤ β. Set k = 0.

2. Iteration:
while tk < M
Set

tk+1 = (1 + α)tk. (27)

Take a full Newton step:

(xk+1, Qk+1) = (xk, Qk)−
[
∇2φtk+1

(xk, Qk)
]−1

∇φtk+1
(xk, Qk). (28)

Set k = k + 1.
end

The parameters α and β need to satisfy certain conditions as prescribed in Halldórsson
and Tütüncü (2003) to ensure that

η(φtk , xk, Qk) ≤ β

for all k. This implies that all iterates are close to the central path. The equation (27)
indicates that tk is growing exponentially. Therefore, it eventually exceeds M , which is
a large positive number chosen in a way to ensure that the final iterate is close enough
to the actual saddle-point. We leave out the remainder of the implementation details
for the sake of brevity. The analysis presented in Halldórsson and Tütüncü (2003) can
be adapted to problem (24) to show the polynomiality of this saddle-point algorithm.

26


