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We show that any amount of anisotropy moves the Oslo model to another known universality class,
the exponents of which can be derived exactly. This amounts to an exact solution of the quenched
Edwards-Wilkinson equation with a drift term. We argue that anisotropy is likely to be experimentally
relevant and may explain why consistent exponents have not been extracted in the rice pile experiments.
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case and consequently makes a unique identification of
the critical exponents impossible.

lanche is in both versions of the model defined as the
number of times the relaxation rule was successfully
The suggestion that power-law–like distributions fre-
quently reported in experiments may be the effect of
threshold dynamics and metastability was made by
Bak, Tang, and Wiesenfeld in 1987 [1] and was called
self-organized criticality (SOC). Avalanche dynamics in
granular piles was from the onset used as a metaphor and
laboratory for SOC behavior and has inspired many mod-
els and experiments [2]. One of the most celebrated of
these efforts is the experimental study of avalanches in
one dimensional rice piles by Frette et al. [3] and the
theoretical Oslo model [4] inspired by the rice pile ex-
periment. The general interest and relevance of such
studies rely on the assumption, guided by equilibrium
critical phenomena, that the critical behavior of scale
invariant systems falls into universality classes deter-
mined solely by a few general characteristics of the
system, such as symmetry and dimension. So-called
‘‘relevant’’ parameters can decide which of the symme-
tries the system is asymptotically dominated by.

The role of anisotropy in SOC has been highlighted
very early by Hwa and Kardar [5] and Grinstein et al. [6],
who used anisotropic Langevin equations to describe
sandpiles. On the cellular automata level, Kadanoff et al.
[7] have conjectured that the net flux of particles is a
relevant parameter. In this Letter we confirm this con-
jecture for the Oslo model, which shows a clear-cut and
consistent relevant dependence on anisotropy. This is of
great importance for the interpretation of experimental
results [3] and more generally for the much studied
quenched Edwards-Wilkinson (EW) equation [8,9].
Moreover, contrary to suggestions in former studies, the
switch between different universality classes (crossover)
is not triggered by the introduction of stochasticity [10–
13] nor by multiple topplings [12,14–16].

Similar to [17], the system size at crossover, LX, de-
pends on the strength of the anisotropy v. We exemplify
two possible mechanisms causing anisotropy in experi-
ments, one of which vanishes with system size L fast
enough to keep vL constant. This represents a marginal
0031-9007=03=91(24)=244303(4)$20.00
The original Oslo model (OOM) consists, in one di-
mension, of a lattice of sites i � 1; . . . ; L. Two coupled
dynamical variables are associated with each lattice site:
the primary variable zi 2 f0; 1; 2; . . .g and the threshold
variable zci 2 f1; 2g. The initial configuration consists of
zi � 0 8i and a random configuration of the zci . The
system is driven by increasing z1 by one (a ‘‘grain’’) fol-
lowed by a relaxation of all sites 1 � i � L for which
zi > zci (‘‘overcritical’’ sites). In case a site i is over-
critical, the following updates are performed (‘‘toppling’’
or ‘‘relaxation’’): zi ! zi � 2 and zi	1 ! zi	1 
 1 and,
importantly, the existing value of the threshold zci is
afterwards replaced by 1 with probability p and by 2
with probability 1� p. The boundaries are updated the
same way except that for i � 1 (i � L) addition on site 0
(L
 1) is omitted.

We now introduce a tunable degree of anisotropy into
the dynamics. An overcritical site i is relaxed in the
following way. Only left movement: with probability
pl�1� pr� perform the updates: zi ! zi � 1 and zi�1 !
zi�1 
 1. Only right movement: with probability
pr�1� pl� perform the updates zi ! zi � 1 and zi
1 !
zi
1 
 1. Both left and right movement: with probability
plpr perform the updates zi ! zi � 2 and zi	1 ! zi	1 

1. A new zci is chosen, at random, after every successful
update, i.e., when at least one grain has been redistrib-
uted. We call this version of the model the anisotropic
Oslo model (AOM). The strength of the anisot-
ropy is described by the drift velocity v � �pr � pl�=
�pr 
 pl� which is the net flux of grains through the
system. Clearly it is only sensible to study pr 
 pl > 0.
The case pr � pl � 1 corresponds exactly to the OOM,
while pr � pl � 1 represents a stochastic variant of the
OOM. The avalanche exponents for the extreme, totally
asymmetric case pl � 0 and pr � 1 can be obtained
exactly [18] and describe, as we shall see below, the
scaling behavior for all v > 0. We are interested in the
statistics of the sizes, s, of the avalanches of relaxation
induced by the driving z1 ! z1 
 1. The size of an ava-
 2003 The American Physical Society 244303-1
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FIG. 1. Main panel: Data collapse [P �s;L; pr; pl�s
� vs s=LD]

of the normalized and binned distributions for the two ex-
treme cases (pr � 1 with pl � 0 and pl � 1) for L �
1280; 2560; 5120. The rescaling was done using � � 1:333 . . .
and D � 1:5 for the AOM and � � 1:555 . . . and D � 2:25 for
the OOM. Inset: Distributions for three choices of pr > pl,
namely �pr; pl� � �1:0; 0:95�; �1:0; 0:25�; �0:75; 0:25�, and two
choices of pr � pl (0:75 and 0:25), for L � 640; 1280; 2560.
The data collapse of each tuple �pr; pl� would form a single
line, thereby fixing � and D. By tuning a and b in Eq. (1), as
done in the inset, the result collapses with one of the extreme
cases shown in both panels.
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applied after the drive z1 ! z1 
 1 in order to make
zi < z

c
i 8i yet again. Thus s 
 0. The model remains

essentially unchanged if the case of no grain redistri-
bution is omitted, as was done in the numerical results
presented below.

In the totally anisotropic or asymmetric limit [16] the
model resembles some features of other exactly solved,
directed models [10,13,15,16,19]. In two dimensions a
very similar model has been studied numerically [14].
However, we stress that contrary to some other ‘‘exact’’
solutions, the model is solvable directly on the lattice and
without assuming any scaling behavior [18]. Also the
amplitudes of the moments can be calculated exactly.

It is a tedious, but straightforward task to show that the
AOM is ‘‘Abelian’’; i.e., the order of updates is irrelevant
for its statistical properties. Since the microdynamics
which prescribes the order of updates is irrelevant, there
is no unique way to define a microscopic time scale.
Presumably universal exponents of the duration of ava-
lanches are therefore mainly a property of the arbitrary
choice of the microdynamics. According to Hughes and
Paczuski [20], a non-Abelian variant of an Abelian model
may or may not remain in the same universality class.

Moreover, one notes that the OOM as well as the AOM
contains multiple topplings, i.e., a single site can relax
several times during a single avalanche. We now de-
scribe the avalanche statistics of the AOM. In Fig. 1
we demonstrate that the avalanche size distribution
P �s;L; pr; pl� follows simple (finite size) scaling

P �s;L;pr;pl��a�pr;pl�s
��G

�
s

b�pr;pl�LD

�
for s>sl;

(1)

where G is the universal scaling function, a�pr; pl� and
b�pr; pl� are two anisotropy and system dependent pa-
rameters, and sl is the lower cutoff independent of L. The
values for the scaling exponents are �a � 4=3 and Da �
3=2, which can be derived exactly in the asymmetric limit
v � 1 [18] and represent the known universality class of
the stochastic, directed sandpile in two dimensions
[12,13,15], which is in turn closely related to the directed
sandpile [10]. Numerically, these exponents have been
found for all v > 0 studied at sufficiently large system
sizes L� LX. The crossover that occurs around LX is
discussed in detail below. The two exponents of the AOM
are to be compared with the exponents for the OOM, of
�O � 1:556�4� and DO � 2:25�2�. Since the average ava-
lanche size scales linearly with the system size, the ex-
ponents are related by D�2� �� � 1 [4,21].

The easiest way to derive the exponents from numeri-
cal data is by analysis of the moments [22], which scale
according to (1) for n > �� 1 in leading order like

hsni �
Z 1

0
dssnP �s;L; pr; pl� � a�bLD�1
n��gn 
 . . . ;

(2)
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where gn is discussed below and . . . denotes subleading
terms, especially Wegner’s corrections to scaling [23].
In the following, the crossover is studied by means of
the rescaled second moment, hs2i=L5=2, which is shown
in Fig. 2. For nonvanishing anisotropy, v > 0, it ap-
proaches a constant as L! 1. For very small but finite
values of v and L the rescaled moment increases with L
like L0:75, corresponding to the OOM behavior, but at
L � LX�v� it crosses over and eventually converges to a
finite constant. Below, we shall relate the behavior of
LX�v� to the effective anisotropy relevant to an experi-
ment of a given size. Here we emphasize that Fig. 2 clearly
demonstrates that the universality class of the extremely
anisotropic case, pr � 1, pl � 0, contains all systems
with nonvanishing anisotropy v > 0. That renders the
OOM with v � 0 a special case; remarkably, even for
pr � pl � 1 the model still shows OOM behavior. Thus,
it is not the stochasticity itself [10–12] which induces the
change in critical behavior.

Equation (1) allows the definition of universal ampli-
tude ratios

gn � hsnihsi�n�2�=hs2i�n�1� (3)

which can easily be proven to be asymptotically indepen-
dent of a, b, and L. The two constraints on G, which fix a
and b in (1), can be chosen such that gn are the moments
of x��G�x� as used in (2), namely, by imposing that
244303-2
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FIG. 2. Scaling of hs2i=L2:5 for different anisotropies. The
solid circles are results for pr � pl as indicated and pr � 1.
Open circles show other parameters �pr; pl�. The dashed lines
are the two extreme cases OOM (pr � pl � 1) and the solvable
model (pr � 1; pl � 0). The short arrows mark the approxi-
mate crossover.
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R
1
0 x

1��G�x� �
R
1
0 x

2��G�x� � 1. The universal ampli-
tude ratio g3 as shown in Fig. 3 indicates not only the
same crossover behavior as observed in Fig. 2, but also
the universality of G.

The importance of the above result is highlighted when
we recall that the OOM in the continuum limit is de-
scribed by the quenched EW equation [9]. A similar
derivation shows that the AOM is a quenched EW equa-
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FIG. 3. Behavior of g3 [see Eq. (3)] for different anisotropies.
The solid circles are results for pr � pl in the same vertical
order as shown in Fig. 2 and pr � 1. Open circles show other
parameters �pr; pl� as indicated. The dashed lines are the two
extreme cases OOM (pr � pl � 1) and the solvable model
(pr � 1; pl � 0). The short arrows mark the crossover points
in Fig. 2.
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tion with an additional drift term

@th�x; t� � �@2xh�x; t� � v@xh�x; t� 
 ��x; h�x; t��; (4)

where � is the diffusion constant and v the anisotropy or
drift velocity as defined above. In the AOM, the quenched
noise ��x; h�x; t�� represents the randomly chosen zci and
h�x; t� is the number of charges received by site x at time t.
The quenched nature of the noise makes it difficult to
solve (4) directly. Together with the boundary conditions
[9], it prevents the drift term v@xh from being absorbed
by a Galilean transformation. However, the above results
determine the roughness exponent via D � 1
 � [21] to
be � � 1=2 for v > 0, as already suggested in another
case of anisotropic depinning [24]. For v � 0 numerics
for the OOM suggest correspondingly that � � 1:25�2�.

The crossover for small v > 0 with increasing L can
also be illuminated by a study of the individual grains in
the system, which behave like biased random walkers.
This leads again to a diffusion equation with drift term
and two absorbing boundaries [25]. The average ava-
lanche size is the average time the particles spend in the
system divided by the average number of grains redis-
tributed per toppling. The crossover is expected as soon
as the ballistic motion dominates over the diffusion,
L2=� > L=v, thus LX�v� � �=v. This has been con-
firmed numerically, based on heuristic estimation of LX,
as shown by the marks in Fig. 2.

We now discuss the relevance of anisotropy to real
experimental granular systems. We stress that the anisot-
ropy is in the amount of slope transported between sites
involved in a relaxation event. Any net flux of the slope is
eventually compensated by the toppling of the last site
and the slope is therefore asymptotically stationary.

One process leading to an anisotropic redistribution of
slope arises when the toppling grain is elongated; see
Fig. 4. Most remarkably, in the original experiment [3]
it was noted that only the elongated rice samples showed
scale invariant behavior. A reorientation of a single grain,
as shown in Fig. 4, leads to a net flux of slope to the right.
It can happen only once, and in fact it depends on how
a

b
i

i − 1

i + 1

FIG. 4. A stylized toppling of a single grain: If an elongated
grain of width b and height a topples from site i to site i
 1, it
reduces the height at i by b and increases the height at i
 1 by
a, thereby increasing the slope at site i� 1 by b, decreasing the
slope at i by a
 b and increasing the slope at i
 1 by a. The
net flux of slope is a� b to the right.
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and whether the rice enters and/or leaves the system with
a typical orientation. If that is the case, then an average
reorientation is distributed among all topplings on its way
through the system, i.e., v / 1=L. Because LX / 1=v and
v / 1=L, this represents a marginal case, because it is im-
possible to decide whether L� LX�v� or not. The depen-
dence of, say, the ratio hs2i=L2:5 on Lwould in this case be
given by an (unknown) trajectory through the diagram in
Fig. 2 since a change in L also leads to a change in v,
which allows nonuniversal quantities to enter.

We do not know if the experiment by Frette et al. [3]
involves this complication, but the exponents extracted
are not consistent [26].

Local rearrangements, such as expansions (on the site
losing a grain) and compressions (on the site receiving the
grain) lead to an anisotropy not vanishing with L: Say a
grain moves from i to i
 1, then column i expands by
��hi� and column i
 1 is compressed by ��hi
1�. Then
the changes of the slopes during toppling are 
zi�1 �
1� ��hi�, 
zi � �2
 ��hi� 
 ��hi
1�, and 
zi
1 � 1�
��hi
1�. Assuming that the columns behave elastically, �
would be an increasing function of h, resulting in a net
flow to the right, i.e., v > 0. However, it remains unclear
whether any of these effects can be seen in experimental
systems, because, for example, the boundary conditions
might be different [4]. Moreover, having shown that an-
isotropy is a relevant field, it would not be surprising to
find other relevant fields which lead to yet another uni-
versality class.

We have demonstrated that for any amount of anisot-
ropy the exponents of the original Oslo model change and
are given by simple rational numbers which can all be
obtained exactly [18]. The crossover has been studied
numerically using a moment analysis, Eq. (2), and uni-
versal amplitude ratios, Eq. (3), and the crossover length
has been determined. The generalized model described
above continuously connects the established original Oslo
model and an exactly solvable, directed variant. This
variant has, compared to the original Oslo model, an
enormous basin of attraction, so that the latter may be
regarded a special case of the former.

Moreover, we find a change in critical behavior of an
SOC model, genuinely due to anisotropy, rather than
stochasticity or the presence of multiple topplings.

The results are theoretically interesting especially be-
cause of their relation to the EW equation, the roughness
exponent of which has been obtained in case of the
presence of a drift term in one dimension to be � �
1=2. Moreover, according to our study, experiments are
seriously complicated due to a coupling between system
size and effective anisotropy. That might provide a clue as
to the apparent difficulties to find theoretically predicted
exponents in the real world.
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