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Abstract

Models relating to the species—area curve usually assume the existence of species, and are concerned mainly with ecological timescales.
We examine an individual-based model of co-evolution on a spatial lattice based on the tangled nature model in which species are
emergent structures, and show that reproduction, mutation and dispersion by diffusion, with interaction via genotype space, produces
power-law species—area relations as observed in ecological measurements at medium scales. We find that long-lasting co-evolutionary
habitats form, allowing high diversity levels in a spatially homogenous system.
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1. Introduction

The number of species in a given region can be seen as a
product of the evolutionary history of speciation, extinc-
tion and migration to that region. Time variations in an
ecology, whether induced by population dynamics or
evolutionary dynamics, are caused by processes operating
at the level of individuals; taxonomic structures, like
species and genera, are emergent entities produced by the
unceasing action of reproduction, mutation and annihila-
tion of individuals. Hence it should be possible to derive
the stability properties, abundance and distribution of
species from a ‘microscopic’ description in terms of
dynamics at the level of individual organisms. Such a
framework must be able to act as a unified explanation of
ecological structures such as the species—area relation
(SAR) and the species abundance distribution (SAD)
together with evolutionary aspects such as the temporal
variation of the macroscopic averaged extinction rate and
intermittency in the extinction events.

The relationship between the number of species observed
in an area and the area’s size is one of the most basic
questions in ecology but it is still the subject of much
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debate. The number of species found in an area could
increase with area size simply because more individuals are
counted, and the form of this relation may be very different
depending on the counting method used and details of the
area (Scheiner, 2003; Tjerve, 2003). For most measurement
scales on non-island systems it seems that a power-law—
(diversity) o (area)®—may be an accurate description, for
the majority of fauna and flora types. However, for other
scales and for some data, other forms have been success-
fully fit (Rosenzweig, 1995). Here, we consider those
systems for which a power-law provides a good fit—we
will comment below on possible effects not included in our
model which may be responsible for observed non-power-
law forms.

Dynamical models typically assume the existence of a set
of species as given structures classifying individuals. The
dynamics at the individual level then determines how the
assumed species are, say, populated and spatially distrib-
uted. Particularly impressive examples of this type of
models are Hubbell’s (2001) ‘unified neutral theory’ and
Durrett and Levin’s (1996) spatial voter model. In the
neutral models (Hubbell, 2001; Durrett and Levin, 1996;
Volkov et al., 2003; Chave, 2004) all individuals have the
same birth, death and migration rate independent of which
species they belong to. Sol¢ et al. (2002) have introduced a
more general set of models in which an interaction matrix
allow the assumed set of species to vary in their properties.
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Choosing specific forms for the interaction matrix reduces
this model to a number of previously considered models—
among these is Hubbell’s neutral model. Realistic SAD and
SAR are obtained from these models even in the case of
neutrality between species. The SAD and the SAR has in
addition been explained by an attractive geometric
approach by Harte et al. (2001), who replaced dynamics
by the assumption that the spatial distribution of species is
self-similar and fractal; a prediction which has been
confirmed from field data on birds in the Czech Republic
(Sizling and Storch, 2004). They concluded that a power-
law SAR was equivalent to a community level fractal
distribution of species.

The tangled nature model (TaNa for short) is an attempt
of developing a logically simple approach to evolutionary
ecology. From a few fundamental and generally accepted
microscopic assumptions, macroscopic phenomenon such
as macroevolution and ecological structures emerge.
The model is individual based with fluctuating population
size, and the mutation prone reproduction occurs with
probabilities determined by the interaction between co-
evolving organisms. The long-time macroevolution in the
model is consistent with observed temporal characteristics
(Christensen et al., 2002), the SAD compares well with
observation (Anderson and Jensen, 2005) and most
recently the model has been used to understand micro-
biological experiments on the relation between diversifica-
tion and interaction (Lawson et al., 2005). In the present
paper, we demonstrate how the TaNa approach can be
used to understand the SAR from an evolutionary
individual-based view point.

We will be introducing spatial aspects into the non-
spatial TaNa model, in order to measure the SAR.
Essentially all good dispersion models produce reasonable
fit with data (usually a power-law)—e.g. the spatial models
discussed above. Power-laws are often observed in field
data, but not universally (Connor and McCoy, 1979),
and we hope to eliminate two of the possible causes of
the deviation—interactions and localization (i.e. deme
structure). The interaction permitted in our model pro-
vides approximate power-law SAR regardless of strength,
so inhomogeneity in migration or resource is a more
likely source of observed deviations from power-law in
real systems, as such inhomogeneities are not considered
here.

Here, we consider species as dynamical quantities that
emerge in genotype space. We allow for spatial extension in
a homogeneous physical environment, breaking the popu-
lation into a number of spatial locations (with each species
type forming separate demes) which in our model permits
the construction of co-evolutionary habitats' of interacting
species within each lattice point. Individuals move by

'We use the term co-evolution in the weak sense of species that have
adapted due to interactions with other species. We will also refer to these
‘co-evolutionary habitats’ as simply ‘habitats’ for brevity, as they are the
only kind of habitat possible in our model.

random dispersion as in the models mentioned in the
previous paragraph. The co-evolutionary habitats survive
for very long-time periods, during which local species
abundances fluctuate around some average level. Inside
these habitats equivalence of individuals is observed, as a
result of adaptation. The offspring probability of an
individual depends on its genotype and on the composition
of the local community in the local genotype space. All
individuals are subject to the same annihilation rate and
only individuals that have evolved genotypes with an
offspring probability that matches the killing probability
are able to constitute species with a degree of temporal
stability. This leads to a certain degree of equivalence or
neutrality to emerge amongst the dynamically generated
species. Since the offspring probability of an individual
depends on the local occupation of genotype space, when
individuals disperse to other habitats they usually do not
have the same offspring probability as the members of the
habitat they enter. If species composition begins to change
locally, then the entire habitat is usually affected, disrupt-
ing the local species composition.

Interaction allows for the extinction of well-established
species on ecological timescales in the right invasion
circumstances, giving realistic species abundance curves
(approximately log-normal Christensen et al., 2002).
Although species in the TaNa model are dynamical and
emergent, properties associated with random dispersal such
as power-law SAR are observed. The interaction allows
distinct species to be separated in genotype space, in
contrast with neutral models. In hypercubic genotype space
and in the absence of interaction, species are clustered
around a mean with separation occurring only by
fluctuation and persisting for short timescales (Rechtsteiner
and Bebau, 1999) (this was also tested for the non-
interacting version of our model, where the population
essentially moves stochastically as one coherent cluster
through genotype space).

The original TaNa model defined by Christensen et al.
(2002) has no spatial component, which we introduce by
running copies of the model concurrently on a square
lattice, allowing for interaction between lattice points by
migration. The interaction between individuals at adjacent
sites is therefore indirect, acting through genotype space
only via the distribution of migrants, and the spatial aspect
is discrete. However, we can easily compare our results to
that of the original model which has stability properties
known to be close to observed systems (Hall et al., 2002; di
Collobiano et al., 2003; Anderson and Jensen, 2005). The
motivation for our approach is that genera that can move
(animals and bacteria), or whose offspring can compete
over distance for space (most plants) are modelled as
locally well mixed, with spatial aspects considered on larger
scales.

We begin with a recap on the non-spatial TaNa model
and its major features. Then we detail our simple extension
to the model introducing spatial dimensions using a square
lattice of models.
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2. Definition of the model

We now define the TaNa model. We will be constructing
the model on a periodic square lattice of length X. Specific
points on the lattice are referred to by their co-ordinates
(x,y). Each point on the lattice may contain any number of
individuals who, on any given time step, may migrate with
probability p;ope to a neighbouring lattice point (our
neighbourhood includes diagonals, and therefore is 8
lattice points). On each lattice point, we run a TaNa
summarized below and described in Christensen et al.
(2002), di Collobiano et al. (2003), with interaction between
lattice points via migration. Each lattice point contains a
number of species, made up of explicitly modelled
individuals. Similar approaches have been used many
times, e.g. with each lattice point containing a local food
web (Stauffer et al., 2005), or being used as the basic unit
instead of individuals for models in which the two scales
can be well separated (Gavrilets book (2004) considers this
and many other situations). Such separation of scales is not
possible in our model, as the specifics of individuals control
the invadability and stability of the local population.

The TaNa model represents individuals as a vector S* =
(S%,S%,...,S87) in genotype space. The S? take the values
+1, and we use L =20 throughout. Each S* string
represents an entire species with unique, uncorrelated
interactions, i.e. genotype space is coarse-grained. The
small value of L is necessary for computational reasons as
all genotypes exist in potentia and have a designated
interaction with all other possible organisms. It is also
possible to define the model slightly differently in terms of
smooth traits, and correlate interactions over the trait
space (Laird and Jensen, 2005).

We refer to individuals by Greek letters o, f,... =
1,2,...,N(¢) for a specific lattice point (x,y). Points in
genotype space are referred to as S%SP,..., and many
individuals (from any real-space location) may belong to a
point in genotype space S“.

In the TaNa model, all individuals are considered to die
with equal probability pj;;, so it is most appropriate to
systems where competition is for offspring space or
resources (plants or bacteria, for example). Only the
probability to produce offspring is controlled by their
interactions; however, the model is qualitatively the same
regardless of whether varying killing or reproduction rates
are used (Christensen et al., 2002). Reproduction occurs
asexually, and on a successful reproduction attempt a
daughter organism is produced which will be mutated with
probability pj,;- When an individual « is chosen for
processing, it will reproduce with probability:

exp[H (S*, )]
S )= —— """ —
Poff S0 1 + exp[H (S, 1)]
Pofr 1s defined in this way as it is the simplest way to
translate H(S*, ) into a reproduction probability. H(S*,1)

is defined in Eq. (2) and contains the bulk of the model,
consisting of interaction and competition. It is the average

€ (0,1), (1)

interaction (first term) and resource competition (second
term) with all other individuals in the same spatial location.
Interactions are considered as an average (hence dividing
by the population size N(¢)) and we write it as a sum over
all species rather than individuals, as individuals of the
same species are identical.

1

H(Sa, t) == m

> IS, S)n(S, 1) — pN (), 2)

SeS

where c¢ is a parameter controlling the interaction strength,
N(1) is the total number of individuals at time ¢ and n(S, 1)
is the number of individuals with genotype S at that point.
w controls the carrying capacity of the system, preventing
population growth when N is of the order 1/u. The
interaction matrix J(S*,S) represents all possible couplings
between all genotypes, each generated randomly in the
range (—1, 1), being non-zero with probability @. Since the
functional form of J(S S”) does not affect the dynamics,
provided that it is non-symmetric with mean 0, we choose a
form of the interaction matrix that speeds computation
(Christensen et al., 2002). In the spatial version, we use
the same S but allow the individuals to be located at a
point in space, such that o = a(x,y), N = N(x,y,t) and
n=n(xy,S,1).

Since the elements of J are generated randomly, the
pairwise interactions can be of the following types:
mutualism (both positive), competition (both negative)
and predator/prey (or parasitic) relations (one positive and
one negative). We do not allow for one-way interactions
such as amensalism, apart from in the case where one
interaction is randomly generated to be very small. Also
note that even in the case of extreme mutualism, resource is
limited and competition will occur as the population
increases, and so the negative term uN(¢) in Eq. (2) is large.

The interactions modelled here are very general, though
must occur through some medium which is not modelled
explicitly. For bacterial systems, this would be in the form
of chemicals, meaning that the resource is modelled to
some degree, but for plants it is more likely to be direct
competition for offspring space. The limiting resource,
controlled by p is different to any interaction facilitating
resource, and might be space or a food source depending
on the system under comparison. There is only one ‘type’
of resource, however, and as such we are only really
modelling within a single trophic level, amongst individuals
concerned with the same basic resource. Thus, our model
can be compared with data for herbivorous birds, or
bacteria, or crop plants, but only for a predator—prey
system when individuals on different trophic levels still
compete for space. This is not a problem for this papers’
purposes, as most SAR data are drawn from a single family
of species. We are trying to model both the obvious
food—web interactions as well as the multitude of perhaps
weaker, hidden interactions. It would be simple to add a
number of additional resource types, with species drawing
variously from different resources, but this adds a level of
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complexity unnecessary for the current questions. This is
instead considered as an extension to the model (Laird and
Jensen, 2005).

In an offspring individual, each S} is mutated (flipped
from 1 to —1, or from —1 to 1) with probability p;;;,; from
the parental S}. Thus, mutations are equivalent to moving
to an adjacent corner of the L-dimensional hypercube in
genotype space, as discussed in (Christensen et al., 2002).

A time step consists of choosing a spatial lattice point
with probability proportional to the population of the
lattice point N(x,y,7). Then an individual® o is chosen
randomly from that lattice point.

e o is allowed to reproduce with probability Poff-

® o is killed with probability py ;7.

e If the killing attempt was unsuccessful, o is moved to an
adjacent lattice point with probability p;;ope- Thus, the

effective p%ve = (1 = pritDPmove-

We define a generation as the amount of time for all
individuals to have been killed, on average, once. For a
stable population size, this is also the time for all
individuals to have reproduced once, on average. Genera-
tions therefore are overlapping, and individuals have an
exponential lifetime. The choice of constant py;;; does not
appear to affect the general results—if we reversed the

situation and allowed constant Poff whilst varying fitness

via py.;yj» the same behaviour is observed (as the equilibria
has Poff ™ Pkill for all species). We should, therefore, not
observe results that are specific to either high infant
mortality or high adult competition mortality, but we
should observe features common to both competition
types.

Although our model is asexual, we are operating on a
sufficiently course-grained level that sexual reproduction
can be considered as only possible between two individuals
of the same genotype, and therefore is identical to the
asexual case in our model, apart from when the abundance
of a species is so low it would not be able to find a mate.
Whilst this permits comparison with data from both
sexually and asexually reproducing species, this approx-
imation will be invalid for many cases; we do not consider
cross-over effects, for example. One can think of our
genotype space as modelling the genes that effect fitness,
with ‘neutral’ variation permitted in a type without being
explicity modelled. Some of the effects of sex could be
incorporated into the mutation probability—others must
simply be ignored. We have not yet found any population
level data that significantly contradicts our model,
although clearly we miss a lot of the fine detail. A
discrepancy between our model and observed data which

?In previous versions a different individual was chosen for reproduction
and killing actions. Here, we select only one individual and process it for
reproduction, killing and movement for code efficiency reasons—above
the level of fluctuations the two methods are equivalent.

is only present for sexual species could shed light on the
population level effects of sexual reproduction.

3. Behaviour of the model

We will first review the behaviour of an isolated system,
and then use this to help interpret the results on an X by X
square lattice with periodic boundary conditions.

Unless otherwise stated, the parameters used will be:
© =0.25, ¢ =0.05, = 0.05, pppyyr = 0.01 and py;y; = 0.1;
see Christensen et al. (2002) for more details. These are
chosen to keep the population of the entire system from
exceeding about 30000, keeping computation to reasonable
levels and allowing for averaging. The population of a specific
lattice point is low compared with previous studies (around
300 in this study), increasing the strength of stochastic
effects—hence the other parameters are chosen to cancel out
this effect to some degree. Although the mutation rate is
unrealistically high, it still reproduces the correct qualitative
effects found in real systems (di Collobiano et al., 2003), and
simply gives a higher turnover of quasi-evolutionary stable
strategies (q-ESSs) as defined in Section 3.1. It should be
stressed that the qualitative behaviour observed here is seen at
mutation rates down to 1075,

3.1. The isolated TaNa model

We briefly review the behaviour of a single TaNa model
as given by Christensen et al. (2002), Hall et al. (2002). The
model exhibits a number of q-ESSs in which the frequency
distribution in genotype space remains constant (with some
small fluctuations); these q-ESSs are also observed in
differential equation style models (van Nes and Scheffer,
2004; Tokita and Yasutomi, 2003). The q-ESSs are named
after the evolutionary stable strategies (ESSs) (Smith,
1982), found in game theory. If we think of competing
individuals which may adopt a strategy for survival, then
an ESS is a strategy which, if adopted by the entire
population, will not be invadable by any other strategy.
The strategy of an individual defines its actions in all
circumstances; in our model the strategy is the list of
interactions with all other types. It is the strategy of the
population as a whole that is important here, given by the
proportion of individuals having each individual strategy.
A stable strategy is thus a set of individuals who cannot be
invaded by an increase in any of the other types (that is, if
one type gains population, it looses interactions and
therefore will loose population). However, because we
include mutation, the strategy must also be stable to an
influx of all local types. This list of local types is only a
subset of all possible invader strategies, and so a population
may be quasi-stable; that is, stable to all local mutations
but not to distant genotypes which can only be reached by
stochastic fluctuations (as they are separated from the
population by a fitness minima). These distant genotypes
can do well in the q-ESS population, and therefore
destabilize it as their population grows.
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Fig. 1. (a) Species abundance, or relative occupancy of points in genotype space, averaged over all 50000 generations and 380 runs. There is a distinct
difference between those genotypes with occupancy less than about 6 and those with an occupancy greater than 16, with only a very small amount in
between, most of which come from transition period species. (b) An example occupancy plot showing all species with occupancy n,>8 at time ¢ as a dot.
Species are not meaningfully ordered. q-ESS periods are shown as horizontal lines, with most transition periods (apart from the very slow one from

around time 11000 to 20 000) too short to see on this scale.

We operate with parameters that give a reasonable
number of q-ESS switches within the first 50 000 genera-
tions—most of the work analysing this region was done in
di Collobiano et al. (2003). During these q-ESSs (shown in
Fig. 1(b)), a number of genotypes (the ‘wildtypes’) are
highly occupied—other genotypes are only present due to
mutation from the wildtypes, and are frequently eliminated
by stochastic events (see Fig. 1(a)). As our genotype space
is coarse-grained, these ‘sub-species’ do not inherit inter-
action properties from a wildtype—despite this, a natural
species-concept emerges as a simple result of interaction in
a genotype space. Thus, our diversity measure is the
‘wildtype diversity’: simply the number of wildtypes in the
system. Wildtypes are defined as genotypes with occupancy
of eight or greater (a definition which is valid only for these
parameter ranges). We have tested other diversity measures
such as the Shannon—Wiener Index and our results are
qualitatively the same regardless of measure used, but these
are primarily designed to avoid sampling problems
(Magurran, 2004) and so are less relevant to computer
simulations.

In Hall et al. (2002), it is shown that the average q-ESS
length increases with time, due to increasing stability in the
network of active interactions, increased population size
and hence increased diversity (as larger populations are
more likely to be stable to stochastic fluctuations, and g-
ESS interactions tend to be positive). Note that these
effects occur only on average—it is possible for the system
to move to a less stable, smaller population after a
disordered phase, and it is also not always true that higher
populations are more stable (or more diverse), just that
they are on average.

During the q-ESS, wildtype occupation fluctuates
around some constant level, and sub-species appear and
disappear by mutation, without affecting the stability of
the g-ESS state. Biologically, a q-ESS has all species in
a g-ESS occupying a fitness maxima (that is, all muta-
tions have lower fitness—fitness meaning offspring prob-
ability in this case), which the system has found during
a transition. Each species in the q-ESS must have reached

a population equilibrium, so that Poff ™ Pkill> and all
mutants from each species must have Poff <Pkill when
their own population is low. This is easier to achieve
for a low diversity, but when a stable state is found at
higher diversities, the chance that an invader will destabi-
lize the q-ESS is lower as invaders will be at significantly
lower fitness on average (due to the increase in the average
population N from those positive interactions). It is,
therefore, of interest to analyse the transition more closely,
in order to understand why the q-ESS forms in the way
it does.

Transitions appear in many forms, depending on the
configuration of the genotype space surrounding the
wildtypes. There are two events that can force a q-ESS to
end:

e If a genotype with Poff >Pkil] €an be reached, then
there will be a period Where the mutant population is
still vulnerable to accidental extinction, followed by an
exponential growth period if the mutant population
grows large enough. This will usually quickly upset the
configuration of the local population, leading to
transition.

If one of the wildtype species had low-average popula-
tion then it can become accidentally extinct. In some
cases, other species will not depend on this species and
the system enters a similar g-ESS with reduced diversity;
in other cases, the stability of the q-ESS is upset and a
transition occurs.

Once the system enters a transition, one of the following
may happen:

® The disruption is minor and the system remains stable
with a new q-ESS configuration. The transition period is
not well defined in this case.

o Wildtype species no longer all have Poff = Pkill- The
populations will change in order to regain this relation.
It is possible that a species may become extinct, leading
to stage 2 above.
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® One of the low population mutant species in the system
will gain Poff >Pkill and so will enter phase 1 above.

Clearly, this is an iterative process and can last for a very
long time—forever if ¢ or py,,,; are very large, so pushing
the system past the ‘error threshold’ (di Collobiano et al.,
2003). It is additionally complicated because these pro-
cesses are all really running simultaneously, and respond-
ing to each other. What is clear, though, is that there is
always favoured species in the system, and from simula-
tions we see that the number of favoured species does not
change significantly from g-ESS periods. In Christensen
et al. (2002) it is shown that transition periods retain
the distinction between (short lived in this case) wild-
types and mutants, resulting in a very similar (possibly
identical) SAD. Since the transition periods are very
short, any deviation from the q-ESS SAD is negligible
and for an instantaneous observation they are indistin-
guishable (as stochastic noise is high). Transitions also
provide a way for a species to mutate to a distantly related
genotype quickly. Because there is a high interaction
between all types, and the number of types is often quite
high, most configurations are not g-ESS. It is therefore
unlikely that the initial invaders of a g-ESS will be
successful in the long term—they instead will be in turn
invaded by a second set of mutants. This process continues
until a q-ESS is found, and so there is an effective selection
gradient away from the wildtypes during this time, leading
to very large and fast changes in genotype acting for short
periods of time.

The species abundances are of log-normal form as
observed in many real systems (Anderson and Jensen,
2005) provided that the interaction probability @ is high, as
in the cases we consider, and the lifetime distribution for
species is wide-tailed as in real data (Christensen et al.,
2002) (following a power-law). More details on the
network properties of the TaNa model are available from
(Anderson and Jensen, 2005), and an in-depth analysis of
the time dependence of many of the observables such as
diversity and total population is presented in Hall et al.
(2002). Similar work by Rikvold and Zia (2003), Zia and
Rikvold (2004) deals with a simplification of the non-
spatial case. In both models the q-ESS wildtypes are
characterized as different to transition period wildtypes
because their mutants do not interact favourably with the
g-ESS population, and so are suppressed.

3.2. The tangled nature model on a spatial lattice

We now introduce a square spatial grid of length X, each
containing a TaNa model, and allow the lattice points to
interact by migration; migration probability refers to the
chance of moving to any neighbouring site, chosen
randomly from the ecight nearest neighbours, and we
assume a periodic boundary. Just this simple addition to
the basic TaNa model gives rise to naturally occurring
SARs.

Unlike the non-spatial version of the model, initial
conditions are relevant. All possible starting configurations
reduce to one of the following two initial conditions:

(1) Individuals are generated with a random genotype and
placed on a random lattice point until the total starting
population is reached.

(2) A single lattice point is allowed to evolve as a separate
system until a g-ESS is formed. This q-ESS is copied to
all other lattice points to give a quasi-stable, identical
initial starting condition at all points.

Procedure 2 represents the biological case where a small
species set is exposed to a larger spatial range, and so
colonizes it. The initial q-ESS used in procedure 2 has
stability properties that can differ greatly—see Fig. 2. It
can vary in absolute stability (how long it will last for), but
spatial duplication means that the number of stable q-ESSs
that can be found from the initial transition is relevant, as
this controls how quickly diversity will increase when a
transition does occur in the system. Procedure 2, therefore,
introduces a high stochastic variation resulting in a
(sometimes sharp, sometimes smooth) diversity increase
after an initial (possibly very long) wait.

Procedure 1 bears some resemblance to the colonization
of a new area of land by many species simultancously. It
results in an initially high diversity as different g-ESS states
form at all points. This decreases quickly to a similar level
found from procedure 2. However, after this time, the two
procedures are equivalent; hence, in our analysis we shall
consider only initial random seeding, i.e. procedure 1, in
order to standardize the initial diversity level. We then
allow the system to evolve for a long time (40000
generations) before observation to allow an ecology to
form.
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Fig. 2. Wildtype diversity against time for two initial systems consisting of
the same stable q-ESS at all lattice points (initial condition type 2).
Diversity remains constant for around 20 generations, after which an
increase is seen. In one run (solid line), the increase occurs very rapidly but
in the other (dashed line) the increase is more gradual yet reaches higher
levels. Once a stable level (on ecological time-scales) of high diversity is
found, the evolutionary dynamics occurs in the same manner as initial
condition type 2, random seeding.
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plot (p;0ve = 0.025) evolved for 40 000 generations. (b) Simulated, evolved SAR plotted for varying py;,ope from 0.001 to 0.009 (in steps of 0.002); the

shape and start point remains the same, with only the exponent changing.

The introduction of space has many implications for the
model. In the non-spatial case, there were two timescales:
the average lifetime of an individual, and the average
lifetime of a q-ESS, which increased slowly with time. In
the spatial case, we have a third timescale: the time taken
for information of a transition to be transmitted to the
other side of the system. As this occurs only through
transitions at all intermediate lattice points, this can be
very long, much longer than the simulation time. Another
complication is that average q-ESS lifetime now depends
strongly on the state of neighbouring lattice points, as
migrants from different q-ESSs are disruptive but migrants
from similar q-ESSs can actually stabilize a possible
transition. Thus, time averaging is not possible in large
systems, and collecting data on the SAD becomes very
difficult. We therefore focus on calculating the SAR: that
is, the relationship between the number of species found in
an area and the size of the area. We distinguish between the
two size measures: the scale as the sub-area measurement
of a system with size X.

SARs come in many forms, depending on the measuring
system used. Specifically, quoting Scheiner, 2003, there are
three main properties: ‘(1) the pattern of quadrats or
areas sampled (nested, contiguous, non-contiguous, or
island); (2) whether successively larger areas are con-
structed in a spatially explicit fashion or not; and (3)
whether the curve is constructed from single values or
mean values’. We obtain nested, successive, mean-value
data. Thus, for all scales, measurement squares are
contained within a larger scales’ measurement square, no
shapes other than square are considered and we are
averaging over all possible measuring squares from a
specific scale. Scheiner (2003) and Tjerve (2003) discuss the
implications for this.

Approximate SAR power-laws are often encountered in
real systems at ‘medium’ scales: that is, for areas that are
smaller than the continent/land-mass that they are found
on, but large enough to obtain a reasonable sample. Good
examples are plant species in Surrey, UK (Rosenzweig,
1995, p. 9) or bird species in the Czech Republic (Sizling
and Storch, 2004). When looking at other scales different

SARSs can be obtained; the distinction between scales is one
that varies with environment and habitat types, and many
functional forms of SAR can be found somewhere. A
general rule (Rosenzweig, 1995, p. 277) is that inter-
provincial relations follow power-law SARs with exponent
larger than intra-provincially; islands inside a province will
also have a larger exponent than the whole province itself
(thus having smaller diversities). A single run in our model
corresponds to a single isolated province as it is spatially
homogenous and self-contained.

A specific instance of our model will not have any real
world equivalent, as we have selected genotype space
interactions and our initial position in it randomly.
However, averages over our model should correspond to
(large and thus self-averaging) real systems for which our
assumptions are approximately valid, as we are effectively
averaging over the possible realizations of genotype space.
Any real world system that does not conform to this
average will be affected by an effect not modelled here—for
example, the geography or resource distribution may be an
important factor.

Real systems have z-values between 0.15 and 0.4
depending on the details of the system (Rosenzweig,
1995). Fig. 3 illustrates real SAR data from Hertfordshire
plants and shows a sample simulation SAR. Both describe
a power-law as are they are linear in log—log space,
log S = zlog A + loga, hence the slope of this line (the z-
value) is the major controlling factor in how quickly
diversity grows with area. For example purposes, we have
chosen the area of a lattice point arbitrarily as 0.4 ha.
However, the true size of a lattice point in our model is not
well defined as the TaNa model implicitly assumes all
species are of equal spatial extension. Hence, we are now
concerned only with the scaling relation: the form of the
SAR being close to a power-law and the value of the
exponent in that power-law.

As each run is a separate instance with its own
evolutionary history, the diversity and z-value variation
between runs is high unless the size is much larger than the
species range; however, the power-law rule holds for all
instances.
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Fig. 4. (a) z-value calculated from the wildtype diversity evaluated between 40000 and 50 000 generations, showing individual z-values from runs (on a
10 x 10 lattice). Note the two distinct regions—py;ope <0.01 where species do not spread large enough distances for finite size effects to matter, and
Pmove>0.01 where in some runs, species can span the entire system. (b) log-log plot of diversity as a function of time for a 20 x 20 system with

Pmove = 0.005.

The simulated data in Fig. 3 has a slightly reduced tail
from the expected power-law values, due to the finite areca
of the simulation. By holding a fixed system size (X = 10 is
chosen as be the maximum we can simulate with sufficient
averaging ability) and varying pyope (Fig. 4(a)) we can
understand these cutoffs more fully.

Fig. 4(a) shows the individual values of z for varying
values of pyope together with the average. The values
are distributed about some mean, which decreases
approximately linearly with increasing pjope for
Pmove <0.01. However, above py;ope = 0.01 we observe
that some of the runs give a near-zero z-value, i.e. a
constant SAR curve, meaning that species are spanning
the system. The correlation length of the system has
reached the system size and boundary affects will
irrevocably effect the results. With increasing pj;ope the
average patch size of each q-ESS increases, and thus the
probability of finding a patch the size of the system
increases. In non-evolutionary models, one can avoid this
problem by considering migration from a ‘pool’ of
constant species makeup (MacArthur and Wilson, 1967)
but in evolving systems the pool must be modelled
explicitly.

Fig. 4(b) shows the time dependence of diversity.
Although new species are produced at all times, and new
g-ESS states can be formed, they do not seem to do so at a
rate that matches diversity loss. The time taken to reach a
single q-ESS state diverges with area, taking of the order
10'2 generations for a single g-ESS to be reached for a
20 x 20 system, or 10° generations for a 10 x 10 system. As
diversity can increase drastically at any time if a single
species can destabilize the dominant q-ESS, it is unlikely
this would continue forever. Instead, we would effectively
be restarting the system with a procedure 2 initial
condition; however, the stability of this highly evolved
g-ESS is much higher than a random g-ESS taken from
initial conditions, and so the time taken to see a restarted
system may be very long (as q-ESS lengths are power-law
distributed, this time has mean infinity—however, it does
occur eventually, as there is no truly stable state in this
model).

enotypes not
full member
of a group.

o

Group q-ESS
members
(more than 3
genotypes)

Fig. 5. Spatial distribution of species on a small (5 x 5) periodic lattice
after 50000 generations, with background shading for each point
representing the basic q-ESS members and symbols representing all
genotypes that do not completely fit into a q-ESS category. Some of these
genotypes are active in more than one q-ESS state (e.g. black circle) and
others operate in subsets of a specific q-ESS state (e.g. grey triangle). All
species are located in contiguous lattice points, and it is possible for some
patches to span the entire area.

In the Spatial TaNa model, illustrated in Fig. 5, the
spatial distribution of species is confined to a contiguous
patch. Non-contiguous patches seem to be rare as patches
are more easily invaded at patch corners due to the positive
self-reinforcement of a g-ESS type in the centre. Species
will generally coexist with a specific set of other species,
forming fairly distinct q-ESS states of 3-8 species (shaded
regions). However, there are many cases where the
majority of g-ESS members remain constant but one
species is swapped out for another. Thus, in some cases
there is a smooth transition spatially between one gq-ESS
type and a completely different q-ESS type, with many
transients along the way containing subsets of ecach (e.g.
dense forest fading to woodlands then to grassland). In
other cases, the coexistence is more essential and there will
be a distinct line between one species set and another.

In toroid geometry, any observations of greater than half
the total size are affected unaccountably by the periodic
boundary so we restrict conclusions from scales less than
X /2, which do appear to be truly power-law related (tested
for up to X = 20). Unfortunately, this size restriction does



598 D. Lawson, H.J. Jensen | Journal of Theoretical Biology 241 (2006) 590-600

not permit the testing of self-similarity by any other means
than the power-law relation, and we cannot tell if non-
contiguous patches might form in larger simulations. It is
possible that species distribution is truly self-similar in our
model, whether the patches are or not, as species may
survive in several different patches.

We can also consider this system in the absence of
mutation, so considering a ‘population dynamics’ version
of the model. Here, initial conditions are very important as
no new species can ever be added. The quasi-stability
observed previously will also change nature as the only
possible disturbance is migrant species. If we consider (for
the moment) a single lattice site with randomly chosen
species, the behaviour is similar to the usual case with
mutation in that the number of species condenses down to
a small number which are mutually stable. As there can be
no invasion, the only pressure is accidental death. This
occurs with very low probability for moderate population
numbers as the form of p,s ensures that there is a
restoring pressure to the equilibrium. The system will
always find a steady state (which, rarely, may have only
one species in if the species that survived the low
population stage happen to all have non-mutualistic
interactions).

However, on a spatial lattice things are different. If we
choose to evolve a q-ESS to copy to all points then clearly
the system will contain only this g-ESS forever, as there is
no source of change. If we start the system with random
individuals, however, then the initial states found in each
lattice point will be very different and so migrants may
have significant impact. In this case, we see a relaxation in
diversity of similar form (power-law) to the mutation case.
However, the rate of decay (the exponent for the decrease
of diversity with time) is smaller compared to the evolving
case. A species—area relation of the same form as in the
evolving case is still seen, complete with slight S shape
form. If we start with an evolved system with a reasonable
SAR, and then turn off evolution, we see that the decay
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Fig. 6. Time dependence of diversity: for the first 5000 generations,
mutations are permitted (py;,; = 0.001), and are then stopped (averaged
over 20 runs). The system decay rate decreases markedly, but still follows a
power-law.

with time of the diversity decreases drastically, as the
system almost ‘freezes’ (Fig. 6). The SAR form will not
change drastically, but the exponent will continue to
decrease very slowly as the number of species, and the
number of distinct q-ESS decreases.

This behaviour shows that it is population dynamics that
give the SAR power-law form, and that our formalism does
not permit mutations to spread through the system with
sufficient speed to offset extinctions. Instead, evolution
permits the generation of ‘better’ q-ESS that can spread
through the system more quickly, accelerating the rate of
species loss. However, evolution is required to produce
diversity in the first place, and allows it to spread very
quickly throughout the system as seen in Fig. 2. In our
model, environmental factors (changing in space and/or
evolutionary time) are necessary for preventing the collapse
of the SAR once it is formed.

4. Discussion

Our SAR results bear striking similarity with those of a
neutral ‘voting’ model of Durrett and Levin (1996). The
form of the SAR in both is almost power-law, with a slight
s-shape produced by boundary effects. They find that the z-
value decreases with decreasing speciation rate (which is
equivalent to immigration rate, if new species are
introduced from another land mass, for example). In our
model with interactions and explicit genotype space, we
find that z-value decreases with increasing migration rate
inside the system. Mutation occurs at constant speed, so
increasing migration rate, e.g. Fig. 4(a), decreases the
relative spread of a new species, instead causing transitions
to an already existing q-ESS and so reinforcing currently
existing species.

Essentially, internal migration rate reduces the relative
effect of mutations, and so produces the inverse effect of
the immigration rate of new species from outside the
system (which is equivalent to mutation in a point-
mutation representation without consideration of genetics).
High mobility (i.e. migration and immigration rates) for a
family of species mean better mixing and so less chance for
spatial segregation of species within a single family—the
standard explanation for why birds generally have lower
z-values than land species. Conversely, e.g. on islands, it
allows species from elsewhere to arrive, so possibly
increasing diversity (as argued in Durrett and Levin,
1996). Which effect dominates will depend on the
geography in question—i.e. the size of the local groups of
individuals, and the separation between them. A more
detailed model is required to probe this more fully.

Magurran and Henderson (2003), noted that permanent
fish species have log-normal SAD whilst transient species
have a log-series distribution. Our local q-ESS has the same
distribution, with a log-normal like distribution for the
wildtypes and a log-series like for mutants and migrants.
For low mutation rates and high migration rates, clearly
migrants will outnumber local mutants and we will observe
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the exact same distribution near the q-ESS patch borders.
Here, the distinction between the two types is of fitness—
the wildtypes with a log-normal like SAD are all equally fit
in that they have a reproduction rate exactly balancing the
death rate; the migrants with a log-series like SAD are all
less fit and rely on repopulation from an external pool.

The TaNa model on a spatial lattice reproduces many of
the observed features in real systems without making any a
priori assumptions about the existence of species. Instead,
species and their spatial distributions are allowed to form
naturally by co-evolution from simple rules applied only to
individuals. Unfortunately, the model is currently too
computer intensive to allow simulation of the very large
scales (and higher migration rates) expected in real systems.
However, a near power-law is clearly produced as a simple
result of species forming patches of many sizes, themselves
the product of diffusive dispersion with reproduction and
mutation when local interaction is permitted. Mutation is
necessary to give ‘raw material’ for new species to be
formed.

Co-evolutionary forces are sufficient to allow (co-
evolutionary) habitat differentiation (as shown in the co-
habitation of competing Escherichia coli strains in Kashi-
wagi et al., 2001), and the number of different habitats
increases with area as a power-law. Thus, power-law SARs
are observed, as the number of habitats can drive the
diversity increase with area (Rosenzweig, 1995), and these
persist over long timescales and in the absence of
geographical differences. The evolutionary history there-
fore relates to the production, and z-value, of power-law
like SARs and may be important in many cases (Rosenz-
weig, 1995).

The habitat differentiation produced by co-evolution
allows species to be locally equivalent whilst interacting
strongly, and maintains differences in offspring probabil-
ities when removed from its favoured habitat. Thus, we
find equivalence whenever individuals have had time to
adapt to the homogeneous killing probability, which
corresponds to a situation where individuals die mainly
due to some more our less species independent stochastic
killing mechanism. An example of such a system might be
‘climax’ stage of forest succession (Cambell, 1996; Pianka,
2000), where species makeup is approximately constant
(over a sufficiently large area and time average) and the
ratio of births to deaths are close to unity for all species.
Species measured in the field that were found to be non-
equivalent (Chave, 2004) may be considered in the context
of tangled nature to be transitionary, or may simply be out
of the habitat they were originally adapted to—the
equivalence predicted in our system is very local, but can
be formed over distances by the correct migration
composition of species.

Individuals from species not found locally are generally
poorly adapted to the local environment and go quickly
extinct. Rarely, however, species with p, if >Pkill ©an
invade and their increased chance of survival over the
general population allows the species to flourish initially—

providing a method for fast speciation from an initial
mutant. In addition, during transitions, intermediate
genotypes are successful which may be replaced by other
genotypes before a q-ESS is established, overcoming the
“fitness barrier’ to distant genotypes, with all intermediates
occupying fitness maxima. Thus, speciation can occur
quickly, and to species distantly related. This contrasts
the ‘fitness landscape’ viewpoint (for a review, see e.g.
Drossel, 2001), in which speciation requires passing
through a fitness minima. It also solves a problem seen in
neutral theories, which require external pressure such as
allopatric speciation (i.e. isolating a whole community for
mutation by ‘random fission” Hubbell, 2003; Ricklefs,
2003, instead of using the traditional point mutation used
here and in much of the literature) if realistically fast
speciation and extinctions are to occur (Chave, 2004).

We have identified the stability of species, fast extinc-
tions and separation in genotype space as the main
differences between our interacting model and neutral
models. The wildtypes in our system are locally equivalent,
and it is the patches of these wildtypes that are producing
the power-law SARs observed. Wildtypes are thus equiva-
lent most of the time but not when found outside their own
habitat, where they suffer a reproductive disadvantage.
This is consistent with the non-neutrality observed in
nature and may explain why neutral dynamics do so well at
predicting SARs and SADs. The non-neutrality is only
important during transitions (which, in the spatial model
are usually local events), but the number and distribution
of species does not change, only the specific type of species.
These effects cannot be observed in instantaneous mea-
sures, or in time averages.

The spatial TaNa model provides a simple general
framework containing the basic properties of diffusive
dispersion, reproduction and mutation on the level of
individuals, it allows taxonomic structures to emerge and
produces a large number of observed macroscopic ecolo-
gical phenomenon—species abundance, long-lived species,
fast extinctions, power-law lifetimes, intermittent dy-
namics, and, as demonstrated in the present paper,
species—area relations.
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