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Abstract

We study the evolution of the network properties of a populated network embedded in a genotype space characterized by either a
low or a high number of potential links, with particular emphasis on the connectivity and clustering. Evolution produces two distinct
types of network. When a specific genotype is only able to influence a few other genotypes, the ecosystem consists of separate non-
interacting clusters (i.e. isolated compartments) in genotype space. When different types may influence a large number of other sites,
the network becomes one large interconnected cluster. The distribution of interaction strengths—but not the number of
connections—changes significantly with time. We find that the species abundance is only realistic for a high level of species
connectivity. This suggests that real ecosystems form one interconnected whole in which selection leads to stronger interactions

between the different types. Analogies with niche and neutral theory and assembly models are also considered.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An important characteristic of an ecosystem is the
total set of interactions between the various individuals.
Organisms may influence each other in many ways and
it is difficult to monitor and quantify all possible
interactions except the most direct, such as simple
trophic relationships. Despite this, some recent work has
made good progress towards measuring interaction
strengths in real ecosystems (Ives et al., 2003; Krause
et al., 2003). The development of the set of interactions
over evolutionary time scales is even more difficult to
measure because of random mutations and the resulting
adaptations. Gaining an understanding from observa-
tions is also problematic since /aws may very well only
be recognizable at the level of averages, see (Loreau and
author. Tel.:
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Hector, 2001; Yedid and Bell, 2002). Here, we approach
these issues within the framework of a simple individual-
based model of ecosystem assembly and evolution
(Christensen et al., 2002; Hall et al., 2002; diCollobiano
et al., 2003).

We compare the early and late time connectivity and
cluster properties of ecosystems evolving in two differently
connected spaces such that genotypes interact with either a
small or a large number of other genotypes. Note that the
connectivity simply refers to whether any two organisms
can influence each other or not. Clusters of genotypes are
defined as being completely isolated from each other. This
is similar to the ecological concept of compartmentaliza-
tion usually used in the context of food webs (Begon et al.,
1996; Pimm and Lawton, 1980; Krause et al., 2003).
However, whilst interactions within compartments are
strong, the interactions between compartments are weak
but not necessarily non-existent. In this sense, clusters can
be seen as isolated compartments.

Clearly, the number of interactions experienced by a
site depends on which of all the possible mutations and
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adaptations have actually occurred, i.e. the network is
dependent on its history. It turns out that the strengths
of the interactions change significantly with time, whilst
the degree distribution (number of active interactions)
remains close to what would be expected if genotypes
were occupied at random. The species abundance curve
takes a log-normal form only for spaces where the
genotypes are linked to many others, suggesting that a
high connectedness leads to a more realistic ecology. As
discussed later, our model is neutral in some cases, but is
unrelated to niche theory in its current form.

How organisms interact and the consequences of
connectivity and complexity in real ecologies has long
been an important question for mathematical modelling
(May, 1974). It is still a very active area of research:
Haydon recently showed that the theoretically ‘stablest
possible systems are characterized by heightened con-
nectance’ (Haydon, 2000), provided that the species with
strong self-interactions are connected to those with weak
self-interactions.

In this paper, we are not directly concerned with the
question of the stability of an ecosystem, but more in the
assembly and structure of a realistic set of interactions.
The idea of stability and resistance to invasion by
mutants is implicit in this discussion, but the ultimate
goal is to examine the sort of structures that appear in
the network over evolutionary timescales. This work is
related conceptually to models of community assembly
(Drake, 1990; Law and Morton, 1996; Morton et al.,
1996). The analogies are drawn in the next section when
the nature of mutation and the interactions have been
introduced. The main aim of this paper is to study
directly the effect of altering the level of potential
connectivity on an ecosystem model and its subsequent
evolution.

2. Methods
2.1. Definition of the model

Here, we briefly describe the structure and dynamics
of the Tangled Nature model (Christensen et al., 2002;
Hall et al., 2002). An individual is represented by a
vector S* = (S7,5%,...,S7) in the genotype space &,
where the “genes” S} may take the values £1, i.e. S*
denotes a corner of the L-dimensional hypercube. In the
present paper we take L = 20 as this gives a generously
sized space to explore (over a million genotypes) whilst
not being computationally prohibitive. We think of the
genotype space & as containing all possible ways of
combining the genes into genome sequences. Many
sequences may not correspond to viable organisms. The
viability of a genotype is determined by the evolutionary
dynamics. All possible sequences are made available for
evolution to select from. The number of occupied sites is

referred to as the diversity, here analogous to the
number of species or species richness (Krebs, 1999). As
explained later, genotype, species, site and node are
synonymous throughout.

For simplicity, an individual is removed from the
system with a constant probability p,,;; per time step. A
time step consists of one annihilation attempt followed
by one reproduction attempt. One generation consists of
N(t)/pyy; time steps, which is the average time taken to
kill all currently living individuals. All references to time
will be in units of generational time.

The ability of an individual to reproduce is controlled
by a weight function H(S%, ¢):

o _ 1 o
H(S%, 1) = N (S; J(S%, S)n(S, z)) — uN(?), (1)

where ¢ is a control parameter, N(¢) is the total number
of individuals at time 7, the sum is over the 2% locations
in &, and n(S,f) is the number of individuals (or
occupancy) at position S. Two positions S* and S” in
genotype space are coupled with the fixed random
strength J* = J(S*,SP) which can be either positive,
negative or zero. This link is non-zero with probability
0, i.e. 0 is simply the probability that any two sites are
interacting. In order to study the effects of interactions
between species, there is no self-interaction, so that J** =
0. The present paper compares the three cases 6 = ﬁ’
0 =55 and 0 = (see Fig. 1). The non-zero values of
J* £ JP* are determined by a deterministic but rapidly
varying function of the two positions S* and S”.

The method for computing J* at ¢ = 0 is similar to
multiplying two random numbers, each drawn from a
normal distribution with mean zero. This would give a
modified Bessel function of the second kind. The actual
shape of the J distribution can be seen in the inset of
Fig. 3 and it is indeed very close, but not identical, to a

O unoccupied site.
Links are deactivated

® -@

positive interaction

Fig. 1. Two types of network. Left: low 6. Most sites are in two-
clusters. There is no tendency to form larger clusters at later times.
Right: high 0. All species are connected in one giant cluster. In both
cases, not all sites are occupied.

negative interaction
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Bessel function. The exact procedure used (Hall et al.,
2002) was slightly different and chosen for computa-
tional convenience.

The conditions of the physical environment are
simplistically described by the term uN(f) in Eq. (1),
where u determines the average sustainable total
population size. An increase in u corresponds to harsher
physical conditions. Note that we cannot identify u with
the carrying capacity, since the maximum population
size that can be supported for a given u is not a fixed
limit and can indeed be increased by different config-
urations of the J couplings. Thus, u can be tuned to
obtain a particular average population size but cannot
set a fixed cap on N(7). Genotypes adapt to each other
and the physical environment represented by p.

We use asexual reproduction consisting of one
individual being replaced by two copies mimicking the
process of binary fission seen in bacteria. Successful
reproduction occurs with a probability per unit time
given by

exp[H(S*, 1)]
1 + exp[H (S, 1)]

This function is chosen for convenience. We simply need
a smoothly varying function that maps H(S% ¢) to the
interval [0, 1] and it is otherwise arbitrary. We allow for
mutations in the following way: with probability p,,,,
per gene we perform a change of sign S7 — —S7? during
reproduction.

Since the interaction between a new species, its parent
and the other extant species is random, Tangled Nature
is very similar to assembly models where an immigrant
species is drawn at random from a pool of species
(Drake, 1990; Law and Morton, 1996; Morton et al.,
1996). In both cases, a species needs to be able to
succeed when rare in order to become established within
the community. However, in Tangled Nature a new
mutant can be produced, potentially, in every time step.
This means that although the species are introduced one
at a time, there is no guarantee that the system will settle
into an equilibrium before the next new species is
inserted. This is in contrast to assembly models where
the resident community has a chance to respond to the
newcomer and in some sense settle down before another
immigrant is introduced (Drake, 1990; Law and
Morton, 1996). Morton et al. highlight this neglect of
‘simultaneous invasions on the transient trajectories of
resident communities’ (Morton et al., 1996).

Furthermore, our pool has no explicit trophic
structure unlike the model in Drake (1990) where the
source pool is divided into omnivores, predators,
herbivores and producers. Despite this, it is very useful
to consider new species in Tangled Nature as randomly
drawn from a pool. After all, the one-step mutant
genotypes of highly populated sites are likely to be born
(and possibly go extinct) regularly. This is analogous to

poj_‘f(sas Z‘) = € [Os 1] (2)

members of the pool having several chances to invade
(Drake, 1990), and emphasizes that the order in which
species are drawn from the pool matters. The Tangled
Nature model relates this idea of community assembly
to evolution.

Initially, we place N(0) = 500 individuals at randomly
chosen positions. Their initial location in genotype space
does not affect the dynamics. A two-phase switching
dynamic is seen consisting of long periods of relatively
stable configurations (quasi-Evolutionary Stable Strate-
gies or q-ESSs) interrupted by brief spells of reorganiza-
tion of occupancy which are terminated when a new g-
ESS is found, as discussed in Christensen et al. (2002).

2.2. Parameters

As mentioned previously, the only parameter that is
changed in this paper is the connectivity, 6. The values
used throughout are L = 20, ¢ = 0.005, u = 0.01, py =
0.2 and p,,, = 0.015. This selection provides several
transitions between different q-ESSs for each run, see
(Hall et al., 2002; diCollobiano et al., 2003). We consider
three 6 values: 0.001, 0.005 and 0.25, which we will refer
to as very low, low and high 6, respectively. These
correspond to below, near and above the percolation
threshold. That is, the point where there is a non-zero
probability that all living sites are connected in one
dominant cluster (see Albert and Barabasi (2002) for a
review of network models and terminology). A realistic
species abundance curve was only obtained above the
threshold. We will be contrasting results at 7= 500
(primal time), ¢ = 5000 (early time) and = 500,000
(late time). Early time is well outside the system’s initial
transient search for a quasi-stable configuration in
genotype space. The low and high 6 ensembles consist
of 500 realizations. Each run uses a different random
number seed but, for any given run, only 0 is changed
between the two ensembles. Such large ensembles were
obtained using a Super Computer At Night (SCAN)
cluster of undergraduate machines running in parallel
(with the FreeBSD operating system) overnight and
during weekends and holidays.

Figs. 2-4 show two sets of data: one labelled
simulation (which are the results generated by the
dynamics of the model) and the other random. In the
random case, rather than evolving the network, for any
specified time we read in the diversity and number of
individuals alive from the simulated run. The individuals
are then thrown on to the network of 2°° genotypes at
random with the constraint that the diversity is the same
as the simulation. That is, the species are simply selected
at random and then the various properties are mea-
sured. There is no dynamics. Thus random data is not
dependent on the history of the network, but has the
same global properties (diversity and population size) as
the simulations. This provides a very useful null model.
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Fig. 2. Degree histograms. Top: Degree histogram for 6 = 0.005.
Bottom: 6 = 0.25. Solid lines, random; dotted lines, simulation. From
the left, the pairs of curves are for £ = 500, 5000 and 500,000. At later
times, the number of active links increases for both the simulation and
random data.
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Fig. 3. Interaction distributions. Top: Distribution of interaction
strengths between individuals for 0 = 0.005. Bottom: 0 = 0.25. Inset:
Entire distribution. Solid lines, random; crosses, simulation at t = 500;
dotted lines, simulation at 7 = 500,000. All plots are normalized so
that their area is one. For high 6, a significant increase in positive
interactions is seen. For low 0, a change is seen but for trivial reasons.

Comparisons with this will reveal whether the network is
really evolving, or the results are just by-products of
increasing diversity. Simulated data is always shown as a
dotted line and random data as a continuous line.

3. Results
3.1. Connectivity
We study the temporal evolution of the network

connectivity in the space of occupied positions for
different 0 values. Note that the hard-wired configura-
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Fig. 4. Maximum cluster size. Maximum cluster size across all
realisations for 6 = 0.005. Solid line, random; dotted line, simulation.
Clusters produced by the simulation are larger than those produced in
a history-independent network.

tion of couplings J(S?,SP) between all 2% positions in
genotype space is determined at z=0 and remains
constant. The network of occupied sites will nevertheless
change with time and so the network properties at any
given time depend on which genotypes are inhabited.
Interactions between other sites can be explored by
mutations away from the occupied sites. The degree
distributions in Fig. 2 show the number of genotypes
having x active interactions.

The leftmost pair of curves represents primal time, the
next, early time and the rightmost late time. Considering
only the simulation data for now, a clear shift to a
greater number of active links is seen in the high 0 case,
whilst a slight change occurs for low 6. The difference
between early and late time is bigger than that between
early and primal time. The degree of a site is equal to the
number of direct interactions it has with all other
occupied sites. This explains why any particular site in
the low 6 runs only has at most nine and usually only
one or two direct interactions. The data is summed up
over the entire ensemble.

How much of this shift is due to a genuine change in
network connectivity? For high 6, the null model data
shows that there is very little difference between evolving
the network and throwing individuals down randomly.
Low 6 appears to show a change. However, any site that
does not interact with any others will die very quickly
in a simulation. If for any instant in time geno-
type positions are chosen by chance, such a low
connectivity will give a disproportionate number of
isolated genomes that would be forbidden by the
dynamics. There is no fair way to simulate this effect,
but it can be seen that the differences between the time
curves in the random and simulated runs is similar and
thus the network connectivity does not evolve for either
value of 6.
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3.2. Interaction strength

For both 0 values, the diversity gradually increases
with time. What is causing this? It turns out that the
strength of the interaction between sites is crucial to the
ability of the network to support larger numbers of
individuals. Fig. 3 shows the distribution of interaction
strengths between each living site and all other living
sites at a given time. Interaction strengths are assigned
at random and are not necessarily symmetric (Hall et al.,
2002). For example, J(S'*,S%%) = 0.3, but J(S¥,S"¥) =
—0.2. For all times and both values of 0, the distribution
for the random data approximately follows a modified
Bessel function of the second kind as described earlier. It
is a symmetrical curve peaking at J = 0. This makes
sense because there is no bias in the ratio of positive to
negative links when the links are assigned to the “bare”
network at t = 0.

For reasons of clarity, the simulation results are only
shown for primal and late time. Clearly, a significant
change takes place for high 0 between ¢ = 0 and primal
time. Some weight is taken in the fall of the peak at
J =0 and the drop in negative J values, and redis-
tributed into positive strengths, that is the curve moves
right. This comprises a significant shift in the probability
density. The change from primal to late time is smaller—
but still noticeable—since the large number of reorga-
nizations of genotype space in the early generations
drops to occasional punctuation of q-ESSs later in the
run. (Typically, there are only one or two transitions
from early time onwards.) Despite this, the curve
continues to drift to the right. On first inspection, the
low 0 runs seem to have changed dramatically from the
initial configuration. However, nothing particularly
interesting is happening here: it is simply an effect of
the structure of clusters in the low 6 space and is
explained below.

3.3. Clustering

The clustering (how sites are linked to each other
through other sites) is another useful network measure.
For high 0 we find that at any given time, all occupied
sites in genotype space belong to one and the same
cluster. Thus the cluster size for high 6 simply follows
the diversity. In contrast, we observe the formation of
distinct clusters (or compartments) for low 6. The rest of
this section will deal solely with low 6.

The overall structure of the clusters does not seem to
change much with time. This is the first indication that
the clustering is not an evolving property of the
network. As would be expected, one-clusters are
transient. They are born on a new site as mutants from
a parent but are isolated from other sites and so are
extremely unlikely to reproduce. (Since ¢ = 0.01 and the
average total population is about 2700, p,, ~

1072 <pyin = 0.2 s0 an isolated site is much more likely
to be killed than multiply when chosen.) These sites are
simply flashing in and out of existence.

Simulations indicate that the building blocks of larger
groups are two-clusters. These tend to be two very old
sites that have mutually positive links. Large clusters are
formed mainly from very old two-clusters joined
together by a mutant. The continual background of
mutants flitting in and out of the network plugs these
building blocks together. However, the entire cluster is
rarely long lived whereas the two-clusters are formed
early in any particular run, quickly build up their
population and are very persistent since their occupation
is high.

Clusters do indeed generally increase in size with time.
There are, however, large fluctuations in the record size
which gives an indication of how unstable these large
clusters are, see Fig. 4. The largest recorded cluster in
any run at any time contained 281 sites. It is revealing to
compare the results obtained from the null model, where
the maximum cluster size is much smaller but just as
variable. When individuals are thrown down at random,
two-clusters are no longer the building blocks of the
large clusters and any long string of connected sites is
determined purely by chance. Hence, the biggest cluster
will always be smaller than that produced by the
dynamics. The temporary nature of the large clusters
is further borne out by time and ensemble averaging the
cluster sizes. The number of clusters of a particular size
S is stored at intervals of 5000 generations from early to
late time for each of the 500 runs and the time and
ensemble average is then calculated. As expected, there
are many one-clusters and fewer large clusters.

The distribution follows the functional form n, ~
5~5/2e=(=Pe’s anticipated for the cluster size distribution
on a random graph of D (& 195) nodes. (See Eq. (36) in
Albert and Barabasi (2002).) The percolation threshold
1_1) is very close to the considered connectivity 0 = 0.005.
A comparison with the random data shows that this
scale-independent distribution is not due to the
dynamics of the system, the only difference being the
appearance of larger record clusters in the simulation, as
shown in Fig. 4. This is perhaps the most compelling
piece of evidence that the low 0 regime does not show
any emergent structure. We also ran simulations for
very low 0 (0.001) and found that the cluster sizes were
exponentially distributed as would be expected below
the percolation threshold.

Fig. 3 (low 0) can now be easily explained. Un-
connected sites die extremely quickly in the first few
generations leaving behind two-clusters and other sites
with positive interactions. The slight increase in sites
with J>0 for late time is caused by well established
positive—positive two-clusters. So what looked like an
interesting result initially proves to be due to the fairly
constant microscopic structure of the network.
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Until recently (Krause et al., 2003), there has been
little evidence of this clustering or compartmentalization
in nature (Pimm and Lawton, 1980). Krause et al.
indicate that compartments may have been overlooked
in several well-known food webs, and may well play an
important role. In the Tangled Nature model, whilst
clustering is inevitable at t =0 when individuals are
randomly thrown down due to the low underlying
connectivity, it could have been the case that the
dynamics found a large, interconnected cluster that
existed in the bare network. Clearly this does not
happen and compartments remain. This further adds to
the evidence that the low 6 case is ecologically
unrealistic. Even the Krause et al. study finds only two
compartments in a 45 taxa ecosystem, as opposed to the
mass of isolated, tiny compartments seen in Tangled
Nature.

3.4. Species abundance

The Species Abundance Distribution or SAD is
important in characterizing ecosystems. It is the
proportion of species that contain p individuals. We
define a species as one site in genotype space. Ideally, we
would like to use a coarse-grained definition more likely
to reflect real ecologies, where species are defined as
groups of points in genotype space echoing the
genotypic cluster species definition introduced by Mallet
(1995). Since the maximum number of genotypes in our
model is only around 10® anyway, the single site species
approach is more appropriate. This is perhaps not so
unreasonable since any two gene sequences differ by at
least 5%, since L = 20. We have been able to extend the
initial results obtained in Hall et al. (2002) and can
consider the evolution of the SAD for high and low 6
integrated across all 500 runs, as seen in Fig. 5. The
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Fig. 5. Species abundance distributions. Species abundance distribu-
tions for the simulations only. Dashed line, ¢t = 500; dashed—dotted
line, # = 5000; solid line, # = 500,000. Low 6 on the left, high 0 on the
right. The ecologically realistic log-normal form is only seen for high 0.

larger ensembles allow enough statistics for illuminating
conclusions to be drawn. Note that the null model is
absent since when individuals are sprinkled randomly
across the living sites, there is no tendency for
accumulation on any particular site, so the individuals
follow a multinomial distribution.

The key result of this paper is that only high 6 leads to
a SAD similar to those observed in nature. Low 6 is
skewed by its heavily populated two-clusters. The plots
for high 6 show the log-normal form observed in many
real ecosystems and in other ecological models (McKane
et al., 2000; Hubbell, 2001). They appear to become
more log-normal as time increases with the dip between
four and eight individuals falling, even though the
diversity is rising. Hence, the SAD is evolving. From
this, it seems that the high 0 case structures itself more
like a real ecosystem than low 0, whose SAD develops a
sharper peak as the two-clusters become densely
occupied. The single cluster of highly interdependent
genotypes produces a reasonable SAD that cannot be
formed by patches of isolated clusters.

Thus the abstract parameter 0, which cannot be
measured in a simple way in real systems, is directly
linked to the easily observed SAD. We recall that low
values of 0 correspond to a world in which different
species, or types, are able to influence only a small
number of other species. High values of 0 correspond to
the situation where different types may have an impact
on the vitality of a large number of other species.

The initial descent in both curves from the global
peak at p =1 is due to the large number of sites with
only one occupant. In nature, sampling difficulties
would mean that these sites would not be detected so
this first aspect is not seen or is at least much smaller in
observed SADs. (It is particularly marked for our model
since we use each site as one species and do not coarse-
grain.) But the second peak does correspond well to
results from the field, though it should be pointed out
that the proportion of all sites with more than two
individuals is only about 30% in each case. However,
this is sufficient to detect the evolution of the SAD. It
should also be remembered that whilst stochasticity is an
important effect when the number of individuals is small
(as it is in any one run), we integrate across 500 runs and
so the second peak is a real effect and not just due to
fluctuations.

We note that recent studies of a simplified version of
the Tangled Nature model described in Rikvold and
Zia (2003a,b); Zia and Rikvold (2004) found no
temporal evolution of the statistics of the model. The
reason for this may be that they use a relatively short
genome length L = 13 together with a very substantial
simulation time of order 107 generations. We have
observed previously that the time to reach a stationary
state explodes with genome length (Christensen et al.,
2002).
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4. Discussion

Before discussing how these results relate to ecology
in practice, we shall pause to consider the relation-
ship between the Tangled Nature model and the
neutral/niche theory debate. There has lately been much
interest in the neutral theory of biodiversity (Hubbell,
2001; Bell, 2001). Despite making assumptions that are
anathema to traditional niche models (all individuals are
the same and adaptations to specific environmental
niches are essentially unimportant) it has been successful
in making predictions about real world ecology—
although its effectiveness in modelling the species
abundance has recently been called into question
(McGill, 2003).

If all individuals are on the same genotype at ¢t = 0,
the Tangled Nature model is neutral since all individuals
are identical. However, the dynamics immediately
breaks this neutrality as configurations are sponta-
neously generated. Once individuals become differen-
tiated, interactions matter and the model is no longer
neutral—although p and p,;; remain independent of the
individual and thus neutral. Technically, Tangled
Nature is also neutral if J = 0 for all time, but this is
obviously not the case in this paper. Further, unlike the
models in Hubbell (2001), we have no spatial aspect: we
deal with only one large metacommunity as opposed to
aggregating many local communities to form the
metacommunity.

Niche models use a small number of limiting factors
to model phenotypic evolution. Typical examples
include food size (May, 1974), plant biomass (Jansen
and Mulder, 1999) and body size (Kisdi, 1999). In
Tangled Nature, no trade offs are specified so the
number of limiting factors is infinite. As it stands, the
model is not related to niche theory but it could be
developed into a niche model by changing the nature of
interactions and adding a resource that the species
compete for. This line of work is currently being
pursued. A spatial aspect would also bring it in to line
with the existing models of migration between patches
of species.

In summary, although the Tangled Nature model is
not directly related to either class of model, perhaps in
the future, simulation and individual-based approaches
could be used to investigate the relative importance of
niche and neutral effects.

Our most important results are that temporal evolu-
tion of the network properties of an ecosystem and a
realistic form for the species abundance are only seen if
the genotype space is well connected. This is interpreted
here as meaning that an occupied genotype is likely to
interact with many other (potentially occupied) geno-
types. No evolution at the level of ecosystems can occur
in a world where most possible genotypes are inert, i.e.
whether they are present or not will have very little

influence on other organisms. It is easy to overlook the
importance of the entire network of interactions when
dealing with small communities of organisms on a
macroscopic scale, but easier to visualize with colonies
of billions of bacteria.

We suggest that this observation can be used to gain
insight into the potential underlying connectivity be-
tween biota. Imagine two microbial evolution experi-
ments. In one case, the microbial ecosystem evolves
towards an interwoven or entangled ecology. In the
other, little evolution is observed in the structure of the
ecological properties of the microbial community. One
might, according to the result from our model,
anticipate that the first system consists of microbes
from a part of genotype space in which types influence
each other, whereas the second system consists of
genotypes from a region of space consisting of mainly
inert organisms.

The immediate ecological implication of this work, is
that macroscopic properties that can be easily measured
can give indications of the nature of microscopic
properties that cannot be directly obtained. More
specifically, the functional form of the SAD—a large
scale, comparatively simple quantity—is important in
giving an insight into the connectivity of the ecosys-
tem—a notoriously slippery and complicated unknown.
More generally, this work agrees with the idea that
species are highly dependent on each other in ways that
are not necessarily immediately obvious, so ecosystems
should be treated as an interconnected whole rather
than a set of isolated species dealt with on a case-by-case
basis.

From our results, it is tempting to speculate that the
observed degree of diversity, complexity and adaptation
of living matter may be directly related to a high level of
interdependence between organisms. Thus Darwin’s
entangled bank may be a useful image to keep in mind
when studying the evolution of large collections of
individuals.
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