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What features characterize complex system dynamics? Power laws and scale invariance of fluctuations are often
taken as the hallmarks of complexity, drawing on analogies with equilibrium critical phenomena. Here we
argue that slow, directed dynamics, during which the system’s properties change significantly, is fundamental.
The underlying dynamics is related to a slow, decelerating but spasmodic release of an intrinsic strain or tension.
Time series of a number of appropriate observables can be analyzed to confirm this effect. The strain arises from
local frustration. As the strain is released through “quakes,” some system variable undergoes record statistics
with accompanying log-Poisson statistics for the quake event times. We demonstrate these phenomena via two
very different systems: a model of magnetic relaxation in type II superconductors and the Tangled Nature model
of evolutionary ecology and show how quantitative indications of aging can be found. © 2004 Wiley Periodicals,
Inc. Complexity 10: 49 –56, 2004
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M any macroscopic systems evolve through periods of

relative quiescence separated by brief outbursts of

hectic activity. We describe the prototype complex

dynamics using two specific systems from physics and bi-

ology: the magnetic behavior of type II superconductors and

biological macroevolution. Each system is metastable when

observed on short time scales, whereas at long time scales,

each evolves towards greater stability. The models were

introduced and discussed in general terms in Refs. 1– 4. Our

aim in the present article is to focus on the nature of the

long time relaxation associated with the intermittent activ-

ity. This intermittent dynamics is in itself important and has

attracted much interest [5, 6]. Even more crucial is the often

neglected fact that the punctuated dynamics of complex

systems may lead to substantial changes in global proper-

ties, induced by the system following a distinct directed

evolutionary path [7]. Descriptions borrowed from equilib-

rium and/or stationary systems are thus of limited value

and will be unable to catch the essential time dependence

of the dynamics. The long time effect of complex dynamics

is evident in biological macroevolution, for example, in the

form of a slowly decreasing extinction rate [8]. Similar ef-

fects are one of the main characteristics of spin glasses [9],
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and has been suggested to be relevant to the long time
behavior of geological faults [10, 11] (though this nonsta-
tionary aspect of fault dynamics is often excluded in simple
models [12]) and in economics [13].

Why do the properties of a complex system change as a
result of the intrinsic system dynamics and how can this
change be described quantitatively? In general terms, this is
because complex systems consist of many components cou-
pled together through a network of interactions. Because it
is unlikely that the first, random configuration fully or even
partly optimizes all interactions, a complex system will ini-
tially be in a state of high frustration and strain, i.e., in a
state unable to locally fulfil all constraints imposed by the
mutual interactions in a many component system.

The ensuing dynamics will act to release this strain and
thus relax or optimize the system, resulting in a more stable
configuration. A many component system needs to find
combined dynamical moves that collectively improve the
distribution of interactions. Most of the dynamics of the
individual degrees of freedom will not add up in a coherent
and constructive way but will give rise to fluctuations about
some metastable configuration. However, the inbuilt strain
of the initial configuration does exert a directed push on all
the components and will once in a while lead to coherent
rearrangements of parts of the system. These essential
events will be like snow avalanches or earthquakes in a
geological fault. They induce an irreversible change in the
properties of the system. We will call these events quakes to
stress their dramatic effect on the stability of the system.

It is important to distinguish the dynamics of complex
systems presented here from the avalanche scenario out-
lined for Self-Organized Critical systems (SOC [5, 6]). SOC
systems emphasizes that the concept of scale invariance or
criticality (as encountered in equilibrium phase transitions)
are of generic relevance to complex systems. The reason for
this, as was argued in the seminal article by Bak et al. (BTW;
[14]), is that large collections of interacting over-damped
degrees of freedom that evolve according to dynamics con-
trolled by thresholds will, if they are slowly driven by exter-
nal actions, self-organize into a state that lacks any charac-
teristic scale except for the one imposed by the finite system
size. The widespread observation of power laws in nature is,
within the SOC paradigm, considered to be a consequence
of the anticipated scale invariance of the stationary self-
organized critical state. These power laws are the stationary
probability distributions describing the SOC response in
terms of (generalized) avalanche events. Let us mention a
few examples. In the BTW sandpile model [14], sand is
sprinkled on to a surface at random. After a while, a sta-
tionary state is expected to develop in which the distribu-
tion of sand avalanches is described by a power law [15]. In
the forest fire model [16], a stationary state is established by
randomly growing trees at rate p on the empty sites of a
lattice and having lightning ignite a tree at a much smaller

frequency �. The self-organized stationary state was ex-
pected to lead to a scale invariant distribution of the sizes of
fires [17].

For completeness, we mention that Boettcher and Pac-
zuski [18] have used the term aging in a less restrictive way,
than we do in this article, in their study of the Bak-Sneppen
model [19]. In this model, the return time of the activity of
an individual avalanche depends on the age of that ava-
lanche. This type of aging is unrelated to the phenomena we
discuss here because it doe snot involve any change with
time of physical properties.

Whereas the focus in SOC is on the power laws encoun-
tered in the stationary state, the dynamics of complex sys-
tems we describe here concentrates on the fact that the
quakes of complex systems gradually change both the phys-
ical and statistical properties of the system. We do not claim
that complex systems are necessarily scale invariant and
described by power laws, but we stress that the effect of a
quake is to take the complex system into a new metastable
configuration differing slightly from the previous state. Be-
cause the quake released some of the strain or improved a
collection of interactions, this new metastable state will
tend to be more stable. Hence, ever larger fluctuations are
needed to take the system out of consecutive metastable
configurations. Figure 1 illustrates the situation schemati-
cally. The system will tend to spend more and more time in
the metastable states as it searches for a sufficiently large
fluctuation that brings about a new and, on average, more
stable configuration. This leads to a slowing down of the
pace of evolution.

To make this sketch more concrete and to be able to
describe a methodology for observing and analyzing the
slow but crucial evolution of system properties, we now turn
to a discussion of two specific systems. We choose two very
different phenomena to illustrate the general nature of the
description and analysis: magnetic relaxation in type II su-
perconductors [1, 2] and biological macroevolution [3, 4]. A
similar analysis can be carried out for spin glasses [20, 21].
We emphasize that the analysis is nonintrusive and appli-
cable to any system for which the time evolution of an
appropriate observable is available.

The qualitative description of the previous paragraph
suggests that the dynamics of complex systems tends to on
average increase the stability or decrease what we call in
Figure 1, fickleness. The transition from one metastable
configuration to the next is accompanied by a drift in some
measure: flux density for the model superconductor [1, 2],
population size for the model ecosystem [3, 4] and energy in
the spin glass model [20, 21]. We call this measure the
record parameter because its temporal evolution consists of
a sequence of ever increasing record values. Each new
record is triggered by a quake. On a logarithmic time scale,
the quakes are essentially instantaneous and hence the
quake number k is well determined by a single time,
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namely, ln(tk), the logarithm of the time of the onset of the
quake. We now show how the dynamics is characterized by
the statistical properties of the logarithmic waiting time
between quakes, given by the sequence �k � ln(tk) �

ln(tk�1) � ln(tk/tk�1).
We consider two models. Both are experimentally and

observationally accessible [22–24]. First we consider the
gradual penetration of the external magnetic field into the
bulk of a type II superconductor after an initial ramping of
the external magnetic field up to a fixed value. We use the
Restricted Occupancy Model, or ROM [1, 2] to simulate this
system. The data presented here are for the more realistic
three-dimensional layered version of the ROM. We imagine
a stack of two-dimensional superconducting planes. Each
plane is divided into L � L squares. Here, L � 8 and there
are five layers, though similar behavior is seen for different
system sizes. A square can contain from zero up to a max-
imum number of Nc2 magnetic vortices. The state of the
vortex system is specified by the number of vortices on each
square. The vortices interact repulsively with the vortices in
the nearest neighbor squares of the same plane (because

parallel magnetic line segments repel each other). The only
difference between the three- and the two-dimensional ver-
sion of the ROM model is an attractive interaction between
the vortices in squares right above each other in adjacent
planes (an attraction similar to that between aligned com-
pass needles). The model is updated using Monte Carlo
dynamics [1, 2]. The density of vortices at the boundary of
the system represents the external magnetic field and is kept
at a constant level. We monitor how the number of vortices
inside the system increases with time as they enter the bulk
sites of the model.

We obtain the sequence of quake waiting times, �k, from
a time signal N(t), which denotes the number of flux quanta
inside the superconducting sample. As seen in Figure 2, N(t)
is primarily a monotonically increasing step function. The
characteristic behavior of N(t) can be identified from the
observation that N(t) is essentially equal to the record signal
derived from it. The record is simply the largest value of N(t)
obtained up to time t. The jumps in N(t) define a sequence
of quake times tk at which new flux quanta are able to
penetrate into the sample. The intervals between the quake
times are spent rearranging the internal flux in search of a
configuration that better accommodates the magnetic pres-
sure of the external applied field. The essential feature of the
logarithmic slowing down of the evolution of the complex
system’s dynamics is modeled by a Poisson (or approxi-
mately Poisson) distribution of the logarithm of the quake
times [20, 21, 25], i.e., a log-Poisson. This implies that the
dynamics of the quakes are most naturally observed on a
logarithmic time scale. Figure 2 confirms this, because the
average and variance of the number of quakes of a set of
independent realisations of N(t) increases linearly with the
logarithm of time, as expected for a log-Poisson process.
The logarithmic time dependence is equivalent to a rate of
events, �, which decays inversely with time: � � 1/t. We note
that the internal state at time t is characterized by the
highest number of flux quanta achieved up to that time.

As our second example, we use the Tangled Nature
model of evolutionary ecology [3, 4] to simulate the macro-
evolution of an ecosystem. This is an individual-based
model consisting of different interacting genotypes each
characterized by a sequence of L numbers that can be �1 or
�1. This is to be thought of as the individual’s genotype. For
the results shown here, L � 20, allowing for up to 220

different genotypes, but very similar findings have been
obtained for L � 8. Reproduction is asexual and the repro-
duction probability of an individual is determined accord-
ing to a weight function calculated from the frequency-
dependent interactions it has with other genotypes [3, 4].
During reproduction, mutations can occur with a fixed
probability. This leads to motion of the population in geno-
type space. Death consists of individuals being removed
from the system with a fixed probability independent of
time and genotype.

FIGURE 1

The dynamics of a complex system can be qualitatively summarized
by considering the relation between time, configuration, and fickle-
ness. The smaller the fickleness value (i.e., the lower it is along the
z-axis) the more stable the system becomes. The long time dynamics
consists of a slow evolution in the form of jumps, or quakes, from one
metastable configuration to the next, indicated by the sequence of
ever deeper wells, or valleys, at the left of the figure. The quakes are
only seen when the system is observed over many decades of time,
hence the logarithmic time axis. The dynamics between the quakes is
represented by the magnification shown on the right. On a linear
(short) time scale, the system undergoes smaller jumps between
sub-valleys within a single main valley. Short time dynamics slightly
improves the stability of the system as indicated by the decrease of
the system’s fickleness with time. The quakes have a similar effect on
a logarithmic time scale, as indicated by the deepening of the valleys
on the left of the figure.
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The time signal N(t) is defined as the size of the entire
population of the ecosystem. The choice of measure is not
strictly unique. It is obviously important for the experimen-
tal or observational verification of the scenario outlined
here that more than one choice exists for the signal N(t) in
general. For example, the records of the total number of
occupied genotypes follow a very similar pattern to the total
population. We see in Figure 2 that the population size
exhibits an overall increase with time, though fluctuations
can make N(t) decrease for short intervals. For a single
realisation of N(t), we derive the record signal, i.e., the
largest value of N(t) obtained up to time t. The quake times
are identified as the record times of N(t). The exact relation
between these record times and the transitions between
different metastable states of the Tangled Nature model is
not clear, but our numerical investigations give us good
reason to believe that the statistics of the record times
mirrors the statistics of the transition times between meta-

stable states. Averaged over a collection of independent
realizations, N(t) is found to increase logarithmically. Thus
the record is a good indicator of the long time behavior of
N(t). We expect the quakes occurring at these times (corre-
sponding to reorganisation through species extinction and
creation) to be responsible for the gradual collective adap-
tation observed in the model [3, 4]. The quake times in this
model are more difficult to identify compared to the ROM
because of stronger fluctuations. Figure 2 shows that the
records follow the same Poisson statistics on a logarithmic
time scale as discussed above for the magnetic flux model.
Again we see that the average and variance of the cumulated
number of quakes increase linearly with the logarithm of
time. The difference in the slopes might be attributed to a
certain degree of over-counting. This may happen when a
single quake is composed of a rapid succession of micro-
quakes, which may be counted as separate quakes, even
though strictly they are part of the same quake. The precise

FIGURE 2

Temporal evolution in the ROM and the Tangled Nature model. The top plots show the value of N(t) (and the corresponding records) for a single realization.
The bottom panels show the average behavior obtained from a set of realizations. The solid lines indicate the average number of quakes up to time t. The
variance in the number of quakes is shown by the dotted curves. Both quantities exhibit an approximately linear dependence on the logarithm of time, as
expected for a log-Poisson distribution.
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identification of quakes in Tangled Nature is a very difficult
problem.

The constant logarithmic rate of quake events implies
that the average waiting time between quakes grows linearly
with the age of the system. This implies that the variable X �

(tk � tk�1)/tk�1 should fluctuate about a constant value.
This behavior is to be distinguished from an ordinary Pois-
son process for which the average time between events is
independent of time. In this case the variable X will exhibit
a rather rapid decay proportional to 1/tk�1. However, note
that for a finite observation time tobs, the ratio X must
decrease as tk�1 approaches tobs because tk � tk�1 cannot
exceed the value tobs � tk�1.

In Figure 3, we show that for both models, X varies no
more than one order of magnitude even though tk�1 spans
six orders of magnitude. Thus, the older the system (equiv-
alent to large values of tk�1) the longer the time between
records, tk � tk�1. The correlation functions shown in Figure

4 indicate that correlations between consecutive quakes are
negligible. We see that after a fast decay of the correlation
function, a degree of negative (anti) correlation occurs be-
fore the correlations approach zero. It should also be no-
ticed that these anti-correlations become more pronounced
as the observation time tobs increases. (The largest tobs in
either case is one million: the number of time steps the
simulations ran for.) The anti-correlation is due to the fact
that, for a given observation window, a longer-than-average
quiescent period will most likely be followed by a shorter
one. This is because the activity slows down like 1/tk�1. It is
accordingly impossible to achieve an observation window
that is long compared with the longest waiting time, and the
numerically estimated correlation function is therefore al-
ways influenced by the finite duration of the observation no
matter how big this window is taken to be. The effect can be
easily mimicked in a standard Poisson process, but is not
usually observed because under usual circumstances, the

FIGURE 3

Evidence of aging. The plots on the left show the ratio of the waiting time between quakes, tk � tk�1, and the time of the (k � 1)th quake tk�1,
as a function of tk�1. For a stationary process, where the average value of the durations tk � tk�1 is a constant, �t say, this ratio will decay to
zero like �t/tk�1 with increasing tk�1. For the two models considered here, the ratio remains nearly constant over about six orders of magnitude.
The slight decay at late times is due to the finite time Tobs of the entire time sequence, which imposes the constraint tk � tk�1 � Tobs � tk�1.
The panel to the right shows the cumulative distribution for this ratio in the two models. For a stationary process, this function would be a step
function equal to one for (tk � tk�1)/tk�1 � 0.
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observation window can always be chosen to be much
longer than the average time between the events.

The rapid decay of the correlation functions does not of
course imply that the quakes are statistically independent,
though it is consistent with assuming independence. If the
quakes are independent, the logarithmic time intervals be-
tween quakes should be exponentially distributed. In Figure
5 we show that this is the case, to a good approximation. We
consider this finding as further indication that consecutive
quake waiting times are essentially statistically indepen-
dent.

It is worth mentioning that it is difficult to precisely
identify the metastable states. The transition from meta-
stable state to the next might be best described by the
change in some measure characterising the stability of
the configurations. This might be an eigenvalue of the
stability matrix associated with a set of effective evolution

equations or, as in the simulation study of spin-glass
relaxation in Ref. 21, from a very detailed analysis of the
internal energy. In general one will have to rely on the
measures that are accessible, though perhaps less than
optimal. We have demonstrated here that record dynam-
ics in complex systems can be analyzed approximately
even if all one can obtain is some simple macroscopic
measurable quantity.

Metastable systems of great complexity with huge num-
bers of interacting heterogeneous components are common
throughout nature. It is crucial to realize that they are for-
ever evolving at a decelerating pace toward configurations
of greater stability, and so concepts from equilibrium and
stationary systems will only be of relevance over relatively
short time scales. We have demonstrated above how aging
and record dynamics can be detected and described within
an analytical framework.

FIGURE 4

The plots show, as a function of m, the correlation between �k and �k�m, where �k � ln(tk) � ln(tk�1) � ln(�k/tk�1) is the difference between the logarithmic
times of occurrence of two successive quakes. The rapid decay of C(m) agrees reasonably well with the theoretical form of a log-Poisson process, i.e., a
Kronecker delta in m. The modest amount of anti-correlation seen for intermediate m values is due to observational effects; see main text. tobs is the
observation time. For example, tobs � 10,000 means that only records that occur before t � 10,000 are included in the analysis. Short range
anti-correlations are observed for all window sizes.
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