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The question:

Is intermittent, logarithmically slow, dynamics,
driven by record events, typical of complex
systems?
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Complex dynamics:
Intermittent, non-stationary

Jumping through collective adaptation space: quake driven
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The models:

Tangled Nature Model of co-evolving biological
species

Restricted Occupancy Model of vortex dynamics in

type Il superconductors.

Edward-Anderson Spin Glass nearest neighbour
Gaussian couplings




The relaxation
Tangled Nature model

collective adaptation: configurations increasingly

coupled together.

ROM model

magnetic pressure

Spin Glass

thermal quench




Tangled Nature




Tangled Nature model of evolution

Definition:
*

S* =(S5/,S85,....5,)

ao=12,.,N(t)

*

® Annihilation:

P = const




® Reproduction:

vy

1
cN(?)

H(S",1) =

n(S,t) = occupancy at the location

Z J(S“,S)n(S,1) — u N(¢)

S




The coupling matrix.j(S, S’)

@ Either consider J(S,S’) to be uncorrelated

@ or to vary smoothly through type space.



H(S",1)

5 exp[H (S”,1)]
Por(57:0) = 1+ exp[H(S“,1)]

clo,1]




Asexual reproduction:
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Phenomenology

@ Long time dynamics

® The evolved networks
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Increasing complexity ?
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Figure 1: Degree distributions for the Tangled Nature model simulations. Shown are ensemble
averaged data taken from all networks with diversity, D = {19, 26,29} over 50 simulation runs
of 10% generations each. The exponential forms are highlighted by comparison with a binomial
distribution of IJ = 29 and equivalent connectance, C'~0.145 to the simulation data of the same
diversity.
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Intermittent dynamics
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Stability of the g-ESS:

Consider simple adiabatic approximation.
Stability of genotype S assuming:n(S ,¢)independent of ¢ for §' = S

Consider 0n(S,?)
ot

n(S,t)
N(?)

=[P,y (n(S,0),8) = Pt = Do}

Stationary solution  7,(.S) corresponds to p, . (7(S)) = Pyy = P =0

Fluctuation  § = n(S,7)-n,(S)

Fulfil § = 40§
NO

. | .Y
with 4=~(1- p,.)(p,,)e"™ (—N -+u)<0 i.e. stability
0




Transitions between g-ESS caused by co-evolutionary
collective fluctuations

n(S’,¢) needs to be considered

dependent of ¢ for S" = S
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S Orlgln of drift? Effect of mutation

n~/

H =J —uN, then the effect of a mutation 1s
Hvws H+3 J.

Let

= Symmetric fluctuations prob(d J) = prob(-d J)

leads to asymmetri

poﬁ”(Ho +0 j)_pkﬂl T
convex Prin _poﬁ(HO _6 J)




Poﬁ(Ho +0 7) — Prin = P _Poﬂ(Ho -0 7)

ON, >0N_

Not the whole explanation: evolution not
smooth.







Record dynamics:
the record

. stochastic signal / —

Paolo Sibani and Peter Littlewood (1992):

A
“~) exponentially distributed

tk—l

T =In(z,) —In(z,_,) = In(




Record dynamics:

=In(z,) —In(z,_,) = ln( e ) exponentially distributed

k—l

% » Poisson process in logarithmic time

» Mean and variance

(Q) xIn(r) and ((Q-(0))) e In(?)

» Rate of records constant as function of In(t)
» Rate decreases 1
)
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ROM




ROM

Monte Carlo Kawasaki dynamics on stack of coarse

grained superconducting planes

n(x,y,z,t)=n,

N/




ROM

Hamiltonian

H=EnlAUn]—EAn —EApn +<2A ,(n,—n, )

2
O<sn <N_, =B02%
0




ROM: Temperature independent creep
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Realisations of record dynamics
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Manifestation of the decelerating activity.

For stationary process
———— = const P( =x)=0(x)
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Further evidence

The cumulative distribution of the log waiting times.
Comparison with exponential distribution.

Tangled Nature
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Number of vortices in the bulk as function of time
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Quake statistics and the total number vortices
entering.
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The temperature in-dependence of the quake rate.
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The magnetic creep rate: - ddhll% ) where M(t)=|N(t)~N,,
n

comparison with experiment
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Third Model:



Spin glass

Microscopic magnetic moments — or spins — coupled
together with random coupling constants.

The Hamiltonian:

1
H = —5 ZJZJSZ y Sj where Si, Sj —

J
P(J,)

I




Spin glass

Quench from high temperature:
time <0: T = high

time > 0: T = very low




heat transfer

Protocol: Quench from high temp. at time t= 0.
Measure heat transfer, H, between spin

glass and reservoir during time interval

[z .t +8t]

w2 w

o If 0t <<t, Gaussian p(H)

*If 8z =¢, exponential tail
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Statistics of quake ftimes independent of

underlying “noise mechanism”.

same intfermittent dynamics in micro
as in macro evolution.

Decreasing transition rate.

temperature independent

Creep rate

exponential tails



Conclusion/Summary
Considered spin-glasses, superconductors and

biological evolution as typical complex systems.

Generic dynamics of complex systems:
* Non-stationary
* Intermittent record dynamics - quakes
» Rate of activity ~ 1/

 Stationary as function of log(?)
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