Record dynamics in spin glassses, superconductors and biological evolution.

Henrik Jeldtoft Jensen Institute of Mathematical Sciences and Department of Mathematics

Collaborators:

Paolo Sibani, Paul Anderson, Luis P Oliveira and Mario Nicodemi

Imperial College London

The question:

Is intermittent, logarithmically slow, dynamics, driven by record events, typical of complex systems?

List of content:

- Dynamics of complex systems
- Three models

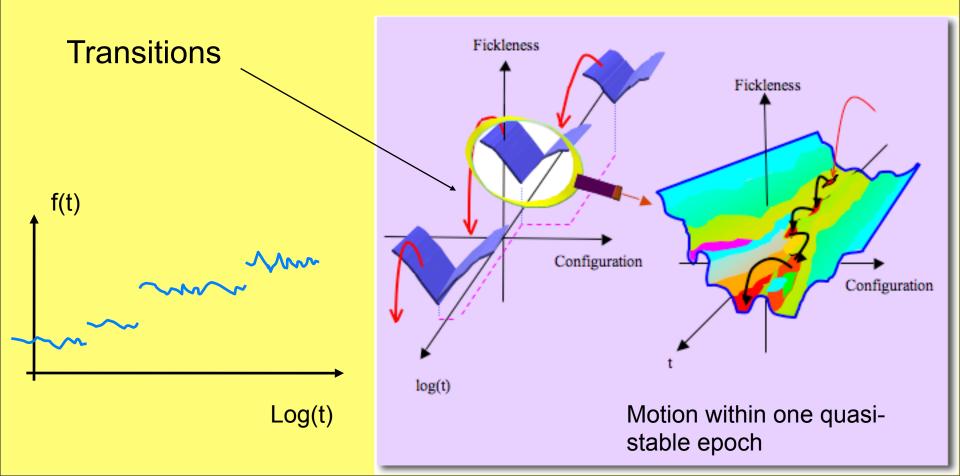
definition and dynamics

- Manifestation of record dynamics
- Consequences
- Conclusion/summary

Complex dynamics:

Intermittent, non-stationary

Jumping through collective adaptation space: quake driven



The models:

Tangled Nature Model of co-evolving biological species

Restricted Occupancy Model of vortex dynamics in type II superconductors.

Edward-Anderson Spin Glass nearest neighbour Gaussian couplings The relaxation

Tangled Nature model

collective adaptation: configurations increasingly coupled together.

ROM model

magnetic pressure

Spin Glass

thermal quench

First Model:

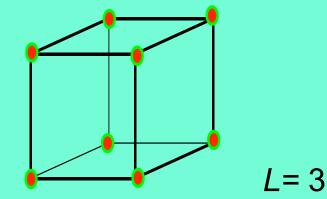
Tangled Nature

Tangled Nature model of evolution

Definition:

* Individuals $S^{\alpha} = (S_1^{\alpha}, S_2^{\alpha}, ..., S_L^{\alpha})$, where $S_i^{\alpha} = \pm 1$

and
$$\alpha = 1, 2, \dots, N(t)$$

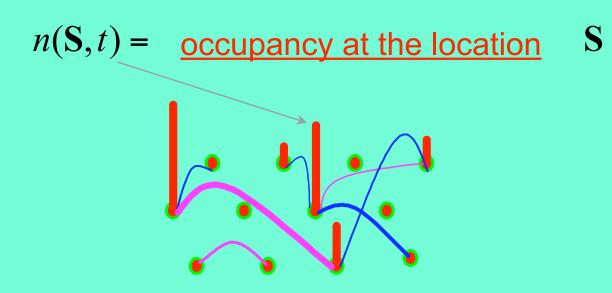


* Dynamics – a time step:

Annihilation:

Choose indiv. at random, remove with probability $p_{kill} = const$

Choose indiv. at random Determine H(S^{\alpha},t) = \frac{1}{cN(t)} \sum_S J(S^\alpha,S)n(S,t) - \mu N(t)

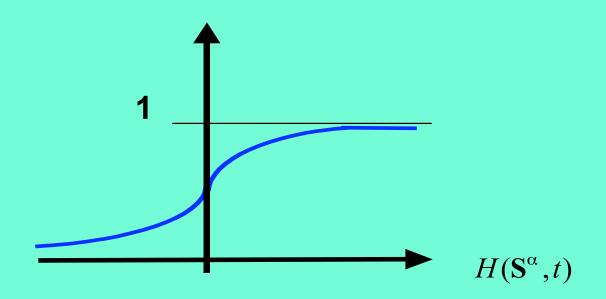


The coupling matrix J(S, S')

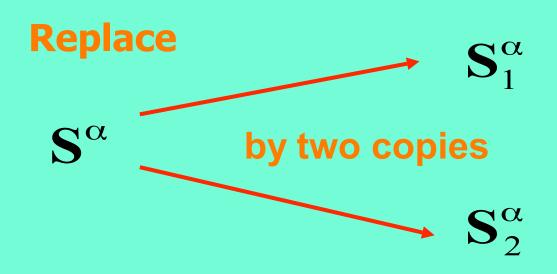
The second states J(S, S') to be uncorrelated or to vary smoothly through type space.

from $H(\mathbf{S}^{\alpha}, t)$ reproduction probability

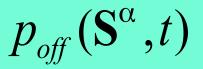
$$p_{off}(\mathbf{S}^{\alpha}, t) = \frac{\exp[H(\mathbf{S}^{\alpha}, t)]}{1 + \exp[H(\mathbf{S}^{\alpha}, t)]} \in [0, 1]$$



Asexual reproduction:



with probability



Mutations

Outations occur with probability

 p_{mut} , i.e.

 $S_i^{\gamma} \mapsto -S_i^{\gamma}$

Phenomenology

Long time dynamicsThe evolved networks

Segregation in genotype space

Non Correlated

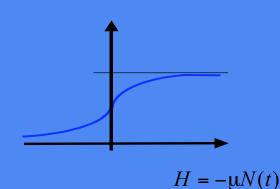
Initiation

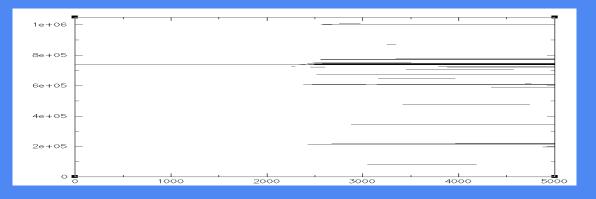
Only one genotype

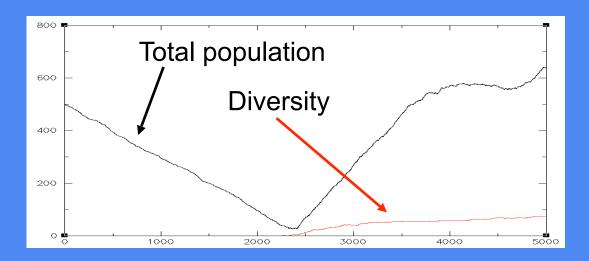
Jn term = 0

$$H = \frac{k}{N(t)} \sum_{\mathbf{S}} Jn - \mu N(t)$$

N(t) adjusts



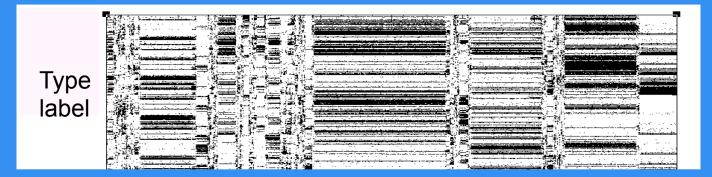




Matt Hall

Intermittency at systems level:

Non Correlated



generations

1 generation = $N(t) / p_{kill}$

Matt Hall

Intermittency at systems level:

Correlated

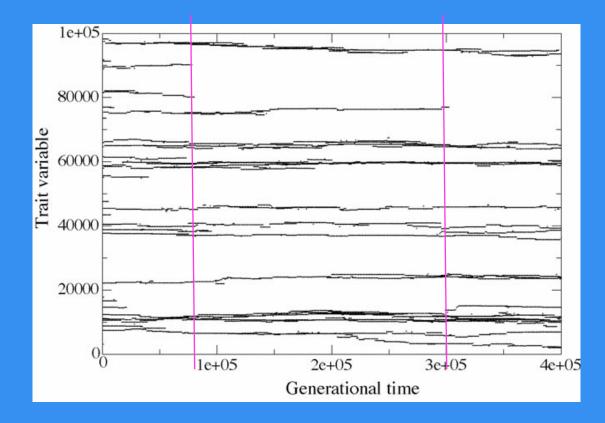
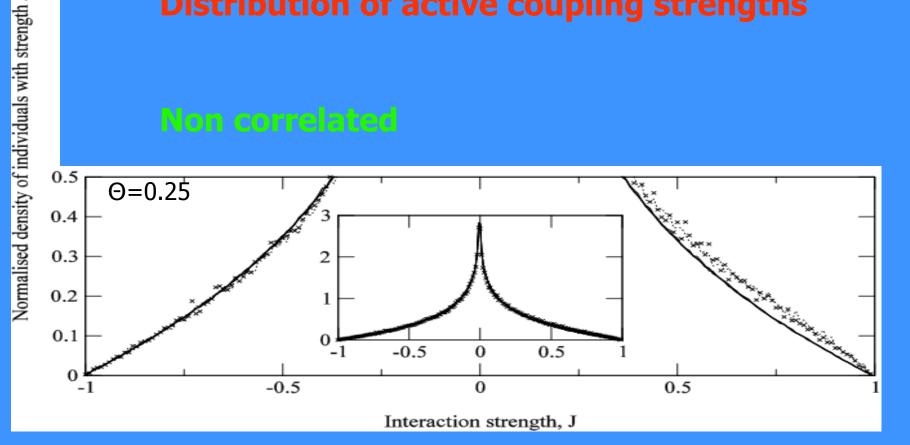


Fig. 1 – An occupation plot of a single run for a system with R = 10,000. For each timeslice a point appears where a phenotype is in existence but as the full space is in 16 dimensions a projection onto a single trait is used.

Simon Laird

Time evolution of

Distribution of active coupling strengths

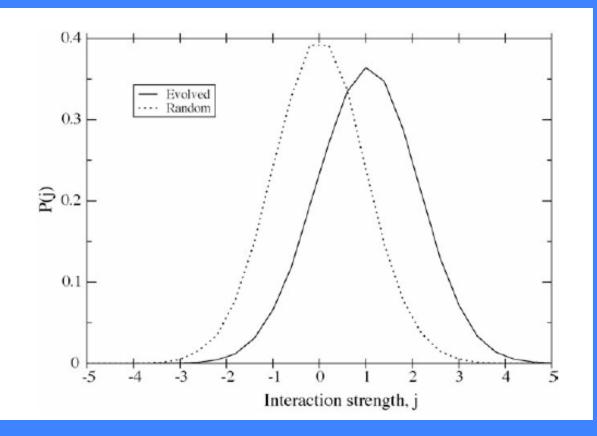


Paul Anderson

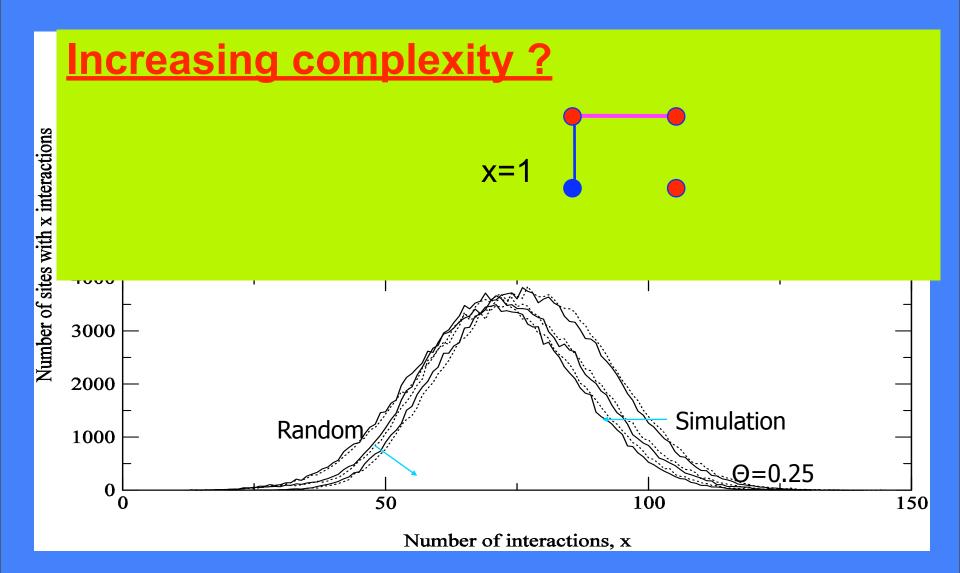
Time evolution of

Distribution of active coupling strengths

Correlated

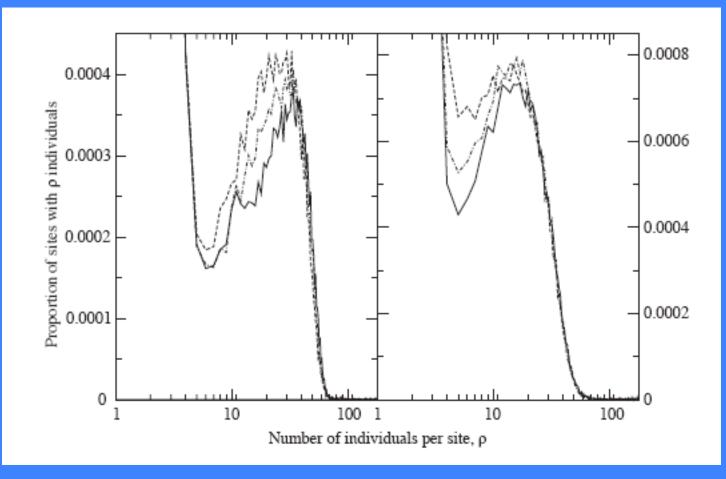


Simon Laird



Note: Effect is significant for correlated type space

Time evolution of Species abundance distribution Non Correlated



Paul Anderson

Low connectivity

High connectivity

The evolved degree distribution

Correlated

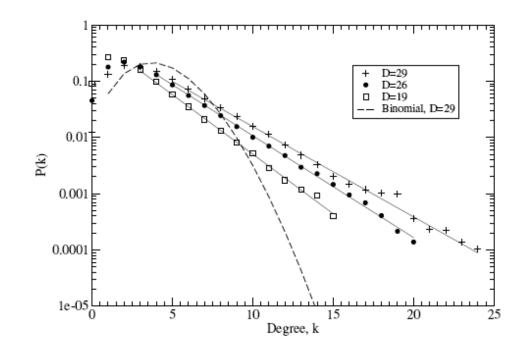


Figure 1: Degree distributions for the Tangled Nature model simulations. Shown are ensemble averaged data taken from all networks with diversity, $D = \{19, 26, 29\}$ over 50 simulation runs of 10⁶ generations each. The exponential forms are highlighted by comparison with a binomial distribution of D = 29 and equivalent connectance, $C \simeq 0.145$ to the simulation data of the same diversity.

Simon Laird

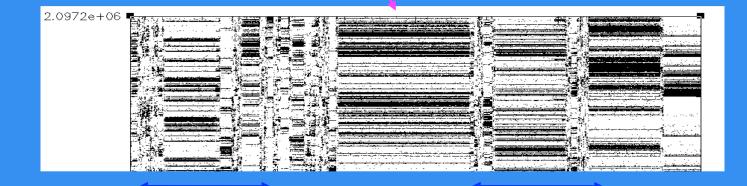
Exponential becomes 1/k in limit of vanishing mutation rate

Intermittent dynamics

Intermittency:

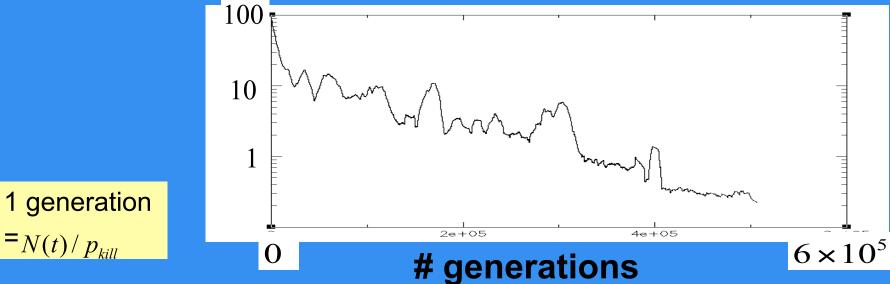
 $= N(t) / p_{kill}$

q-ESS = quasi-Evolutionary Stable Strategy



Matt Hall

of transitions in window



Stability of the q-ESS:

Consider simple adiabatic approximation.

Stability of genotype S assuming:n(S', t) independent of t for $S' \neq S$

Consider
$$\frac{\partial n(S,t)}{\partial t} = [p_{off}(n(S,t),t) - p_{kill} - p_{mut}] \frac{n(S,t)}{N(t)}$$

Stationary solution $n_0(S)$ corresponds to $p_{off}(n_0(S)) - p_{kill} - p_{mut} = 0$

Fluctuation $\delta = n(S,t) - n_0(S)$

Fulfil
$$\delta = A \frac{n_0}{N_0} \delta$$

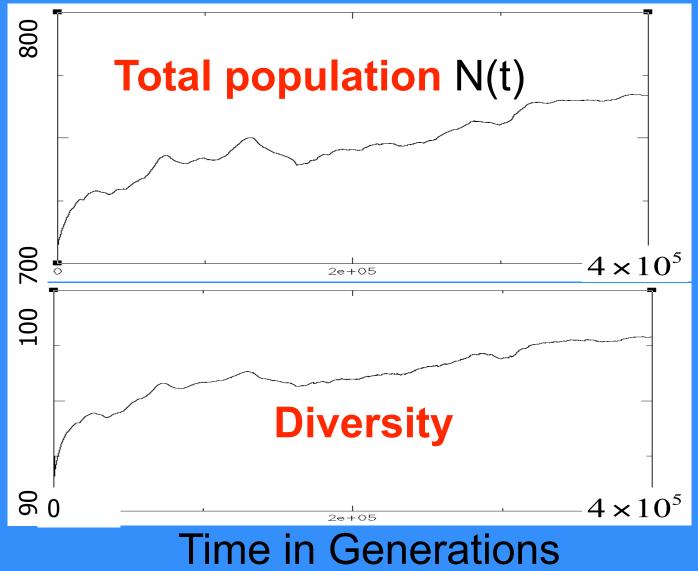
with $A = -(1 - p_{mut})(p_{off})^2 e^{-H_0} (\frac{J}{N_0^2} + \mu) < 0$

Transitions between q-ESS caused by co-evolutionary
 collective fluctuations

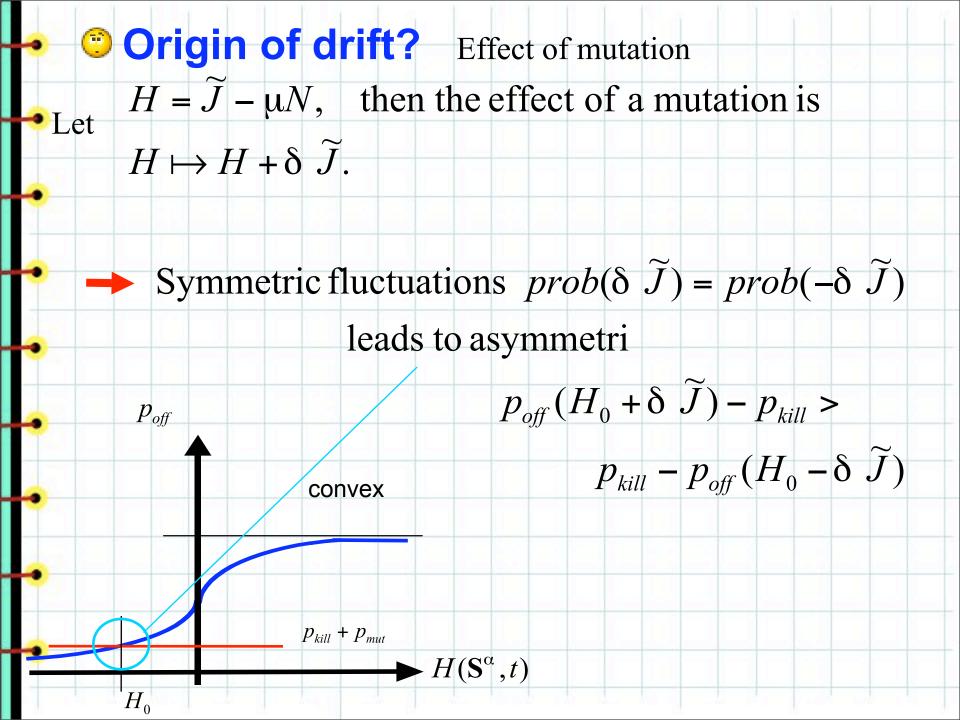
n(S',t) needs to be considered

dependent of *t* for $S' \neq S$

• Time dependence (averaged)



Matt Hall



 $p_{off}(H_0 + \delta \ \widetilde{J}) - p_{kill} > p_{kill} - p_{off}(H_0 - \delta \ \widetilde{J})$

$\delta N_{+} > \delta N_{-}$

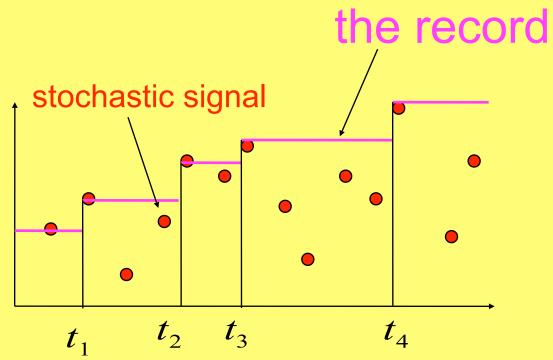
N(t)

₩

Not the whole explanation: evolution not smooth.

Record dynamics

Record dynamics:



Paolo Sibani and Peter Littlewood (1992):

$$\tau = \ln(t_k) - \ln(t_{k-1}) = \ln(\frac{t_k}{t_{k-1}})$$
 exponentially distributed

Record dynamics:

$$\tau = \ln(t_k) - \ln(t_{k-1}) = \ln(\frac{t_k}{t_{k-1}})$$
 exponentially distributed

Poisson process in logarithmic time

Mean and variance

$$\langle Q \rangle \propto \ln(t)$$
 and $\langle (Q - \langle Q \rangle)^2 \rangle \propto \ln(t)$

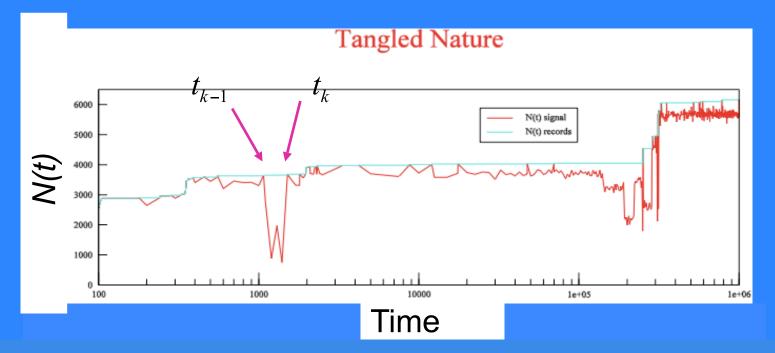
Rate of records constant as function of ln(t)

Rate decreases

$$\propto \frac{1}{t}$$

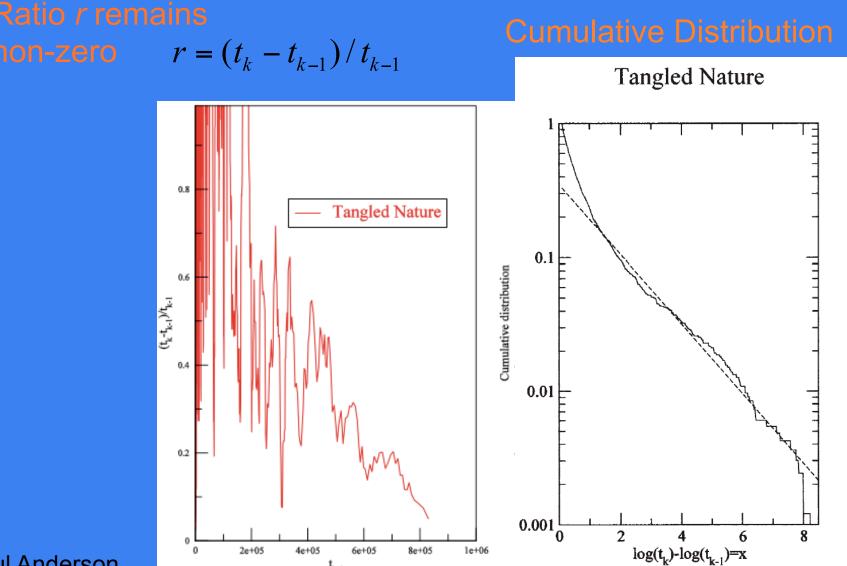
Tangled Nature model: Single realisation and record dynamics:

Extracting records from the population size



Paul Anderson

Record dynamics:



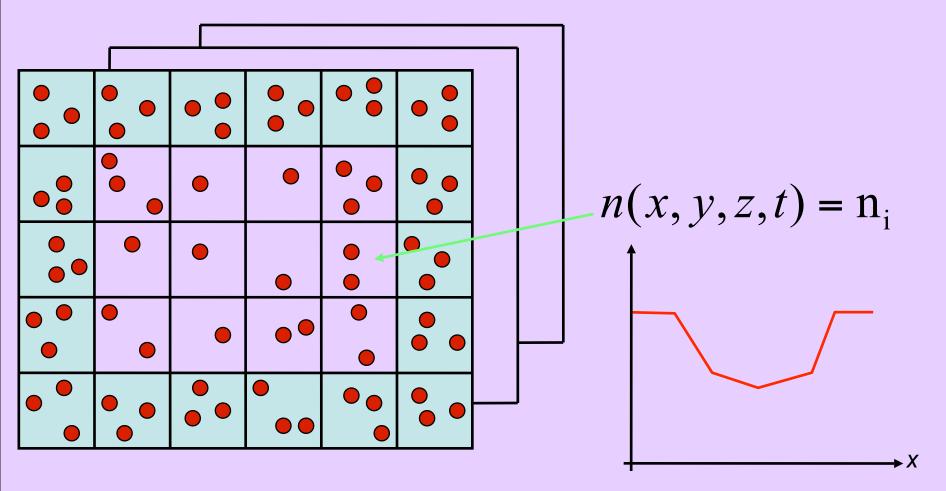
Paul Anderson

Second Model:

ROM

ROM

Monte Carlo Kawasaki dynamics on stack of coarse grained superconducting planes



ROM

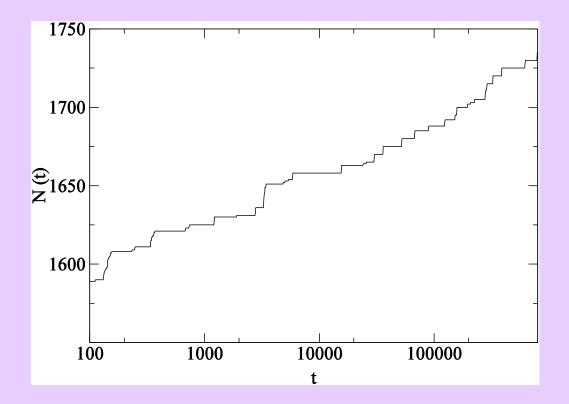
Hamiltonian

$$H = \sum_{i} n_{i} A_{ij} n_{j} - \sum_{i} A_{ii} n_{i} - \sum_{i} A_{i}^{p} n_{i} + \sum_{\langle ij \rangle_{z}} A_{2} (n_{i} - n_{j})^{2}$$

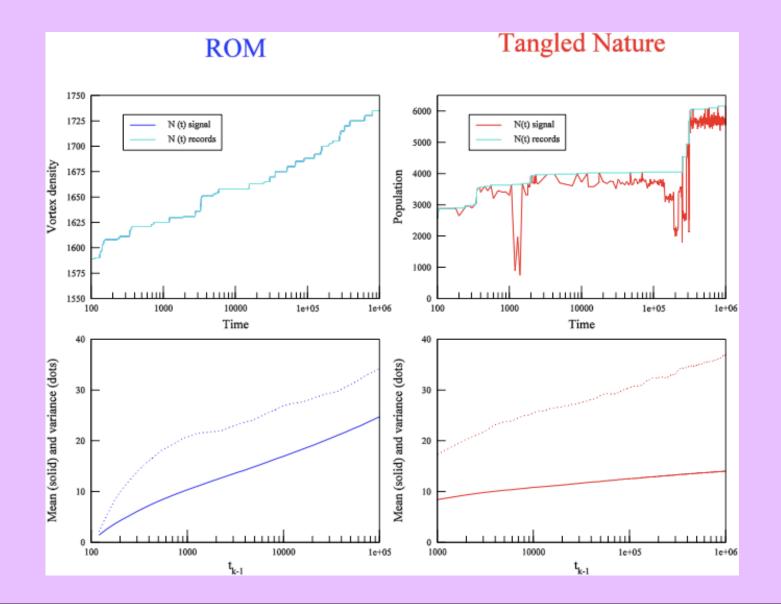
Here

$$0 \le n_i < N_{c2} = \frac{B_{c2} l_0^2}{\phi_0}$$

ROM: Temperature independent creep

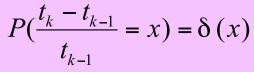


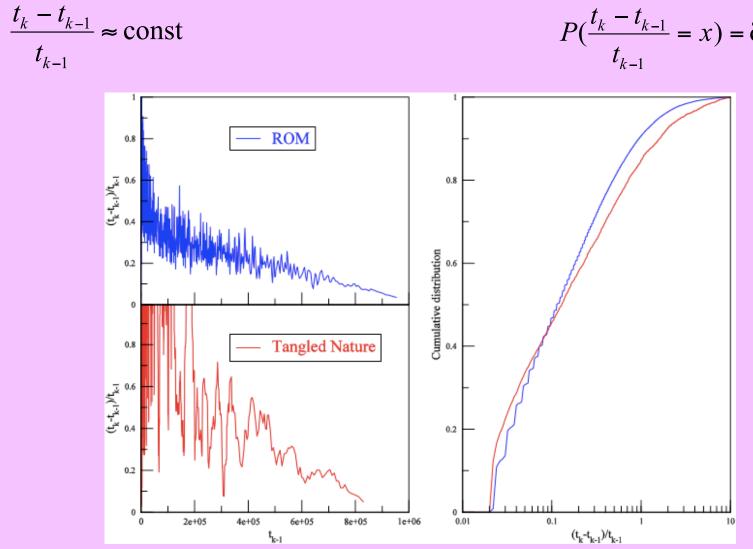
Realisations of record dynamics



Manifestation of the decelerating activity.

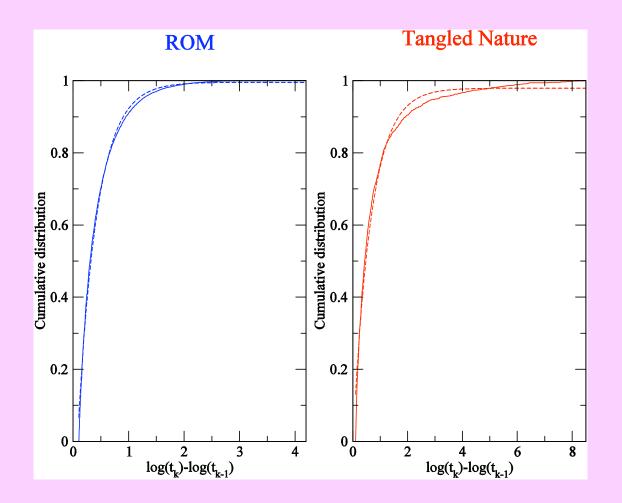
For stationary process



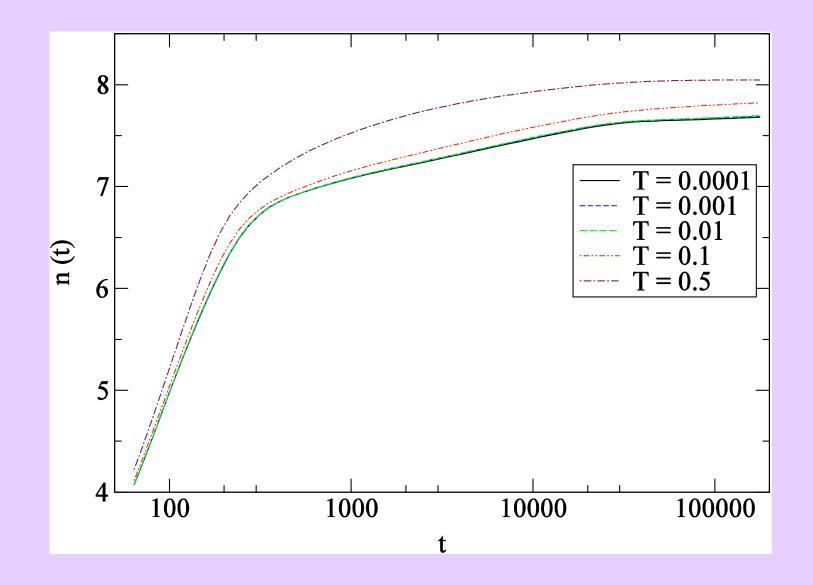


Further evidence

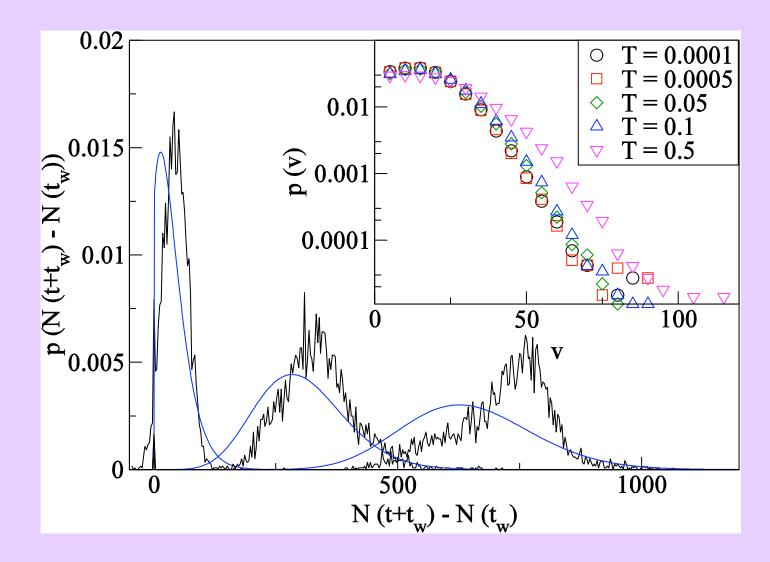
The cumulative distribution of the log waiting times. Comparison with exponential distribution.



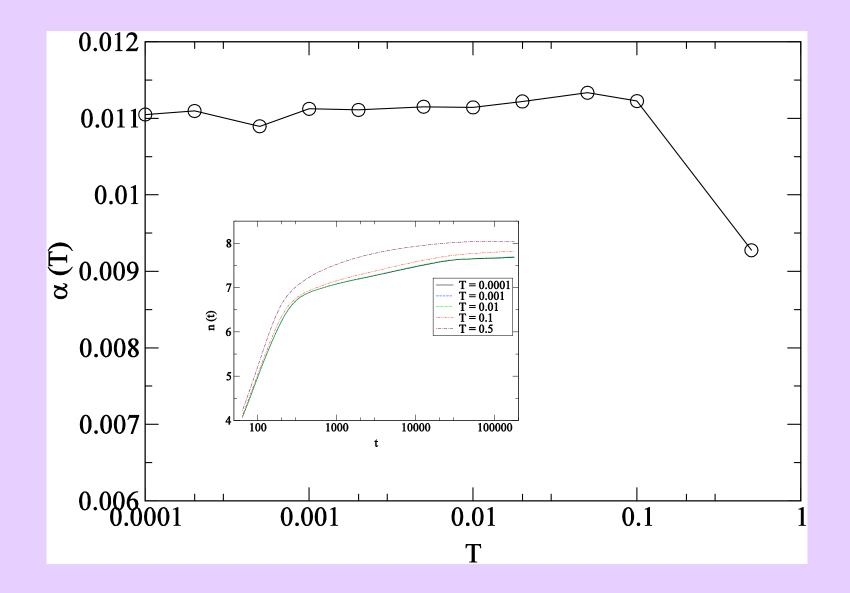
Number of vortices in the bulk as function of time



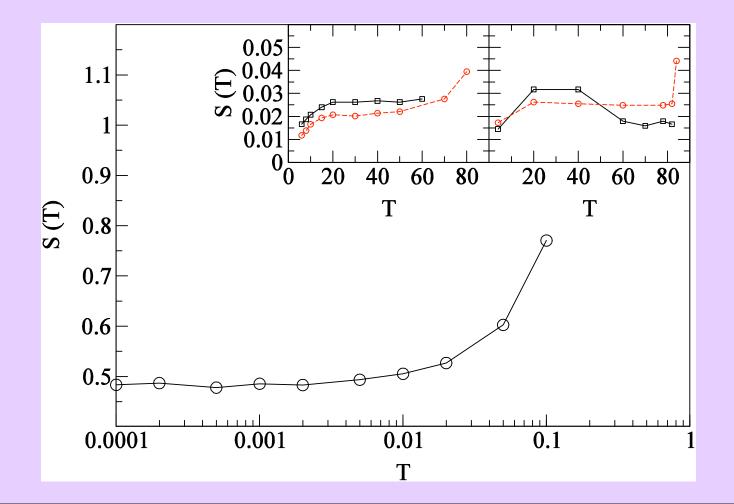
Quake statistics and the total number vortices entering.



The temperature in-dependence of the quake rate.



The magnetic creep rate: $S = \frac{d \ln(M)}{d \ln(t)}$ where $M(t) = |N(t) - N_{ext}|$ comparison with experiment



Third Model:

Spin Glass

Spin glass

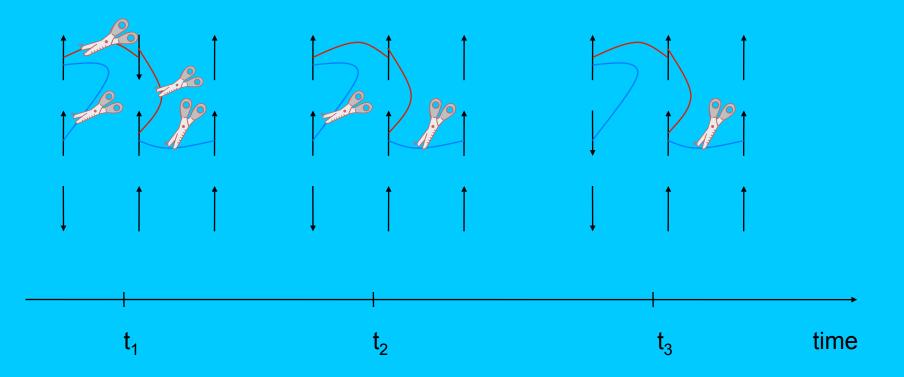
Microscopic magnetic moments – or spins – coupled together with random coupling constants.

The Hamiltonian:

$$H = -\frac{1}{2} \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \text{ where } \mathbf{S}_i, \mathbf{S}_j = \pm 1$$

Spin glass

Quench from high temperature: time < 0: T = high time > 0: T = very low



Spin glass: heat transfer

Protocol: Quench from high temp. at time t= 0. Measure heat transfer, *H*, between spin glass and reservoir during time interval

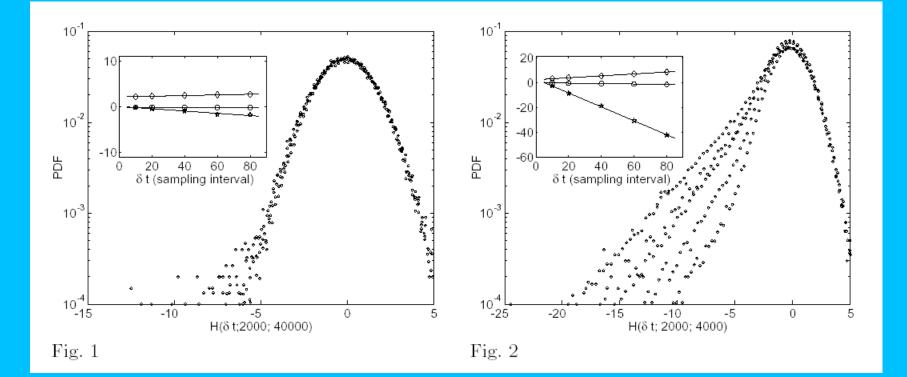
$$[t_w, t_w + \delta t]$$

- If $\delta t \ll t_w$ Gaussian p(H)
- If $\delta t \approx t_w$ exponential tail

Spin glass: heat transfer

 $\delta t \ll t_w$

 $\delta t \approx t_w$



Consequences of record dynamics.

Statistics of quake times independent of underlying "noise mechanism".

Biology: same intermittent dynamics in micro as in macro evolution. Decreasing transition rate.
Magnetic relaxation: temperature independent creep rate

Spin glass: exponential tails

Conclusion/Summary

Considered spin-glasses, superconductors and biological evolution as typical complex systems.

Generic dynamics of complex systems:

- Non-stationary
- Intermittent record dynamics quakes
- Rate of activity ~ 1/t
- Stationary as function of log(t)

Collaborators: Paolo Sibani, Paul Anderson and Luis P Oliveira

Down load papers from: www.ma.imperial.ac.uk/~hjjens

Collaborators: Paolo Sibani, Paul Anderson, Luis P Oliveira and Mario Nicodemi