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The Tangled Nature model with inheritance and constraint:
Evolutionary ecology restricted by a conserved resource

Simon Laird, Henrik Jeldtoft Jensen *

Department of Mathematics, Imperial College London, South Kensington campus, London SW7 2AZ, UK

1. Introduction

A functioning ecosystem relies on various environmental

resources to sustain its component species with some of these

resources being universally required for survival. The limita-

tion of supply rate or overall quantity of such a resource, acts

as a restriction to the development of an ecosystem and

systematic properties are expected to depend on the level at

which this occurs (Loeuille and Loreau, 2003). It is known from

field data that the diversity of species changes across energy

and water gradients such as is found in latitudinal variations

(Hawkins et al., 2003; Bonn et al., 2004). In general, large scale

heterogeneous environments will support greater species

numbers at higher resource availabilities with the relationship

taking a monotonically increasing form (Currie, 1991; Waide

et al., 1999; Bonn et al., 2004). At smaller scales this relation-

ship takes a uni-modal form as competition effects between

species elevate with increasing productivity.

Any changes in diversity combined with knock-on effects

of competition could conceivably lead to a change in the

topology and dynamics of the species interaction network.

These networks and their associated interaction matrices

have been studied and are considered to be significant in

adjudging the stability and permanence of ecosystems (May,

1974; Tregonning and Roberts, 1979).

There has been a great deal of research investigating the

short term effects of resource variation on ecosystems

(Tilman, 1982; Hulot et al., 2000), but very little on the impact

of resource levels over evolutionary timescales. Also, recent

work has focused on the dynamical coevolution of species
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populations (Tokita and Yasutomi, 2003; Drossel et al., 2004;

McKane, 2004; Coppex et al., 2004) but these approaches use

continuum descriptions whilst evolution occurs via dynamics

associated with discrete individuals. To address these issues

accordingly we present a model of evolutionary ecology that

functions at the level of the individual whilst incorporating

species scale competitive constraints and a system scale

resource constraint.

In the uncorrelated version of the Tangled Nature model a

spatially distributed system was investigated and diversity

scaling was found to occur with the variation of system size

(Lawson and Jensen, 2005). The present model though is

intended to represent ecosystem dynamics where members

are localised and in reasonable proximity to one another. As a

result spatial aspects are not considered when determining

the functional form of the interactions. No specific scale is set

here and we define an ecosystem simply through localisation.

If two system members have phenotype descriptions such

that they are deemed able to interact then they will interact.

One property though is imposed upon the system by virtue of

the inclusion of intraspecific competition effects. We assume

that the system is heterogeneous thus allowing diversity to

occur through implied specialisations. Niches are not expli-

citly considered but the system can be perceived as being

environmentally diverse so permitting multiple phenotypes to

occur concurrently without continual competitive exclusion.

The conserved resource limits the system as a whole but

identical or sufficiently similar phenotypes will also be limited

by intraspecific competition.

Our work follows from the Tangled Nature model of

evolutionary ecology (Christensen et al., 2002; Hall et al., 2002;

Collobiano et al., 2003; Anderson and Jensen, 2005), which

demonstrated species formation as a result of individual-

based dynamics. These species were then studied in terms of

their interaction networks and other more dynamical features

such as extinctions, lifetimes and stabilities. Recently, the

model was simplified by restricting the reproductive process

to non-overlapping generations (Rikvold and Zia, 2003; Zia and

Rikvold, 2004). This allowed both longer timescales to be

simulated and a deeper analytical treatment to be made

available. Modifications made to the description of individuals

have now allowed us to include a gradual species evolution

within a significantly larger phenotype space. Correlations

introduced into the structure of this space mean that

inheritance from parent to mutated offspring is available

and also mathematically quantifiable which was not the case

in the previous model. Attempts have been made to impose

correlations onto the hypercubic genotype structure of the

earlier model (Sevim and Rikvold, 2005) but with only limited

effect. Here we use a different procedure to construct a

correlated phenotype space which allows us to consider much

larger spaces. We find that correlations in these huge

phenotype spaces have a significant effect.

Our paper is arranged as follows. In the first part of Section

2, we describe how the system members are represented in

terms of a hypothetical phenotype space. This representation

is used to provide a fully determined, correlated interaction-

space. As the processes involved in this are somewhat

laborious we have consigned the wider details to

Appendix A, whilst giving an overview in the main text. In

the second part of Section 2, we describe the update rules for

the system and how the reproductive probabilities are

determined from the species interaction network. We

approach the dynamical evolution in a stochastic discrete

manner as we see it as appropriate for a discrete-entity system

such as this. Statistical fluctuations are important as popula-

tion numbers may become low and coupled dynamics across

an interaction network could be heavily dependent upon

them.

Results regarding the issues of diversity, lifetime distribu-

tions and network properties are presented in Section 3, and a

discussion of these along with future directions are set out in

Section 4.

2. Model

2.1. Interactions

Individuals are represented by vectors, Ta ¼ ðTa
1 ;T

a
2 ; . . . ;Ta

L Þ, in

a phenotype space of dimension L = 16, with specific indivi-

duals denoted by Greek lettering a, b, . . . = 1, 2, . . .N(t), where

N(t) is the population at time, t. Each trait Ta
i may take an

integer coordinate in the range [0; 99,999] that is periodically

bounded allowing the points Ta
i ¼ 0 and Ta

i ¼ 99;999 to be

contiguous. The phenotype coordinates themselves are

arbitrary and are not intended to represent any kind of

quantitative scale so the periodic boundary is introduced to

maintain their arbitrariness. Traits are not assigned any

qualities nor properties; they are simply descriptions used for

determining distinct phenotypes and therefore distinct pair-

wise interactions. The periodic boundary prevents any

occurrence of bias due to edge effects as the evolution shifts

the distribution in phenotype space. As the space is large the

possibility of circumnavigating this periodicity is very small.

The large integer range is used to emulate the continuous

nature of many real organism traits and as a result the extant

phenotypes are capable of gradual adaptation during the

evolutionary process.

The co-evolution of the extant phenotypes is primarily

controlled by the interactions they have with one another.

These are represented by J(Ta, Tb), the interaction strength

effected upon a by b, which is independent of J(Tb, Ta). As the

phenotype space is a closed set of 10000016 = 1080 possible

states the interaction space is a closed set of 1080 � 1080 = 10160

possible pairwise interactions that exist in potentia. This set of

all possible phenotype interactions is constructed with the

property that only a subset of them are non-zero quantities.

This proportion or connectance, u0 is defined at the outset and

represents the fact that a specified phenotype will interact

only with a subset of all other conceivable phenotypes. The

resulting set of non-zero interactions are assigned strength

values that are normally distributed.

A system created with a random group of phenotypes will,

on average, conform to the above properties (i.e. connectance,

u = u0, plus interaction strengths that are normally distributed).

But, once the evolutionary process is underway the pheno-

types existing at later times may have interaction properties

that deviate from those of the random null system. The fact

that we pre-define the properties of the closed interaction
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Aut
ho

r's
   

pe
rs

on
al

   
co

py

space means that the evolving system properties can be

compared quantitatively to the null system.

The phenotype space is constructed in a manner that gives

a quantifiable correlation, C(Ta, Tb) = C(J(Ta, Tg), J(Tb, Tg))

between two phenotypes, alpha and beta, when interacting

with a third, gamma. This correlation measure decays

approximately exponentially with separation in the pheno-

type space and has an effect on the inheritance of both the

interaction set distribution (the subset of non-zero interac-

tions) and the strength measures themselves. The conse-

quence is that any mutated offspring will have a similar

interaction set and strengths to those of the parent, with the

level of similarity being dependent upon the mutation length.

An exponentially decaying correlation is used for its short

range properties. The correlation is intended to apply to the

interaction sets rather than biological features so similar

phenotypes are required to be correlated whilst dissimilar

ones exhibit no correlation at all.

The requirement of a large, correlated, pre-defined inter-

action space means using a deterministic procedure for

producing the interaction strengths. Any interaction between

defined phenotypes must be time-invariant so as there are

many more possible interactions than can be stored compu-

tationally we used a deterministic method for acquiring the

values from any given pair of phenotype vectors. The exact

method, whilst not difficult, is somewhat convoluted so is

explained separately in Appendix A along with the details of

how the correlations are imposed.

Intra-specific competition is deemed a necessary part of

the dynamics to allow diversity and is incorporated by setting

all self-interactions to a negative value that is constant and

independent of the phenotype vector. This property extends

via the imposed correlations to phenotypes of similar but

distinct vectors thus allowing for the localised but distributed

nature of a species description.

2.2. Dynamical update

We initiate the system with a set of individuals which are

assigned random phenotype vectors. At each subsequent

timestep an individual is selected for annihilation with

probability Pkill = 0.2 whereby it is removed from the system

and the single resource unit associated with it is returned to

the resource bath, R(t). During the same timestep, another

individual is randomly selected to reproduce with prob-

ability Prepro. This value is determined via use of the weight

function,

HðTa; tÞ ¼ a1

PNðtÞ
b¼1 JðT

a;TbÞPNðtÞ
b¼1 CðT

a;TbÞ
� a2

XNðtÞ
b¼1

CðTa;TbÞ � a3
NðtÞ
RðtÞ : (1)

This sum is monotonically mapped to the interval [0, 1],

appropriate for a probability measure, through use of the

function,

Prepro ¼
exp½HðTa; tÞ�

1þ exp½HðTa; tÞ� : (2)

The first term in Eq. (1), represents the summed effect of

interactions with other system members. Although it is

made over all individuals at time, t, many of the contribu-

tions will be zero as the two phenotypes in question may

not interact. This is an inherent feature of the complete

interaction set which permits only a prescribed proportion,

u0, of all possible phenotype couplings to exist (as evolution

occurs though, the connectance of the extant system, u may

deviate from, u0).

The denominator represents the number of individuals

that can be described as belonging to the same species group

as Ta. This damping effect is used to prevent divergence, but

can be seen as realistic if we consider the sharing of the

interaction effects amongst members of the same species. An

example would be the predatory effect of a single lion amongst

a herd of wildebeest. As the lion feeds up to a maximum rate

the effect of the lion on an individual in a small herd is more

pronounced than the effect in a large herd. Essentially, the

probability of a specific lion consuming a specific wildebeest

decreases in relation to the size of the herd. This damping

effect is by no means ubiquitous but it is nevertheless a feature

of many interactions.

Phenotypes that are in close proximity in the phenotype

space are distinct but correlated in a manner that can be

described as a species set, so this must be accounted for here.

This is achieved by using C(Ta, Tb) 2 [0, 1], which is a measure

of correlation between a and b. A more detailed explanation is

given in Appendix A.

The second term of Eq. (1), represents conspecific competi-

tion so utilises the same correlation measure as the

denominator in the first term. This negative contribution is

essential to allow diversity in the system and generalises the

multitude of factors other than the conserved resource that

members of the same species compete over.

The third term of Eq. (1), represents the general system

competition for the conserved resource. It represents the

number of individuals, N(t), that are competing per unit of

available resource, R(t). As the condition for conservation,

R(t) + N(t) = constant must hold, the numerator and denomi-

nator are dependent. The resource range investigated here

spans from 1000 to 30,000 units.

The parameters, a1 = 0.5, a2 = 0.01, a3 = 0.2 are the selection,

conspecific competition and resource competition para-

meters, respectively. These values were subjectively selected

to allow significant diversities to be achieved whilst incurring

the dynamics to be strongly dependent upon inter-specific

interactions.

Upon successful reproduction, the individual produces a

single offspring that assumes one unit of resource from the

resource bath. As the bath depletes the probability of

reproduction for any phenotype is reduced due to the third

term in Eq. (1). The offspring phenotype is identical to that of

the parent (clonal) unless, with probability Pmut = 0.0002, a

mutation occurs. This is effected by shifting a randomly

selected trait value by a random amount c, that is gaussian

distributed with m = 0 and s = j, where j = 250 is the correlation

length of the phenotype space. Any mutated offspring will

have an interaction set that is similar but not identical to its

parent in accordance with the correlation. We have elected to

use a low mutation rate with a relatively high mutation

distance to allow the evolution to occur efficiently enough for

tractable simulation times.
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3. Results

3.1. Diversity

By initialising the system with u0 = 0 we can generate a neutral

evolution in which the population increases whilst diffusing

uniformly through the phenotype space. The intra-specific

competition term causes this diffusion by forcing the system

members to be as little correlated as possible. As a result, the

diversity grows to large values whilst localised phenotype

populations remain low. The incorporation of a non-zero u0

breaks this symmetry allowing phenotypes to counteract the

competitive constraint with positive interactions and so

accumulate localised populations. These phenotypes are

distributed as highly populated single sites surrounded by a

sparse cloud of mutants that derive primarily from the central

‘wild type’.

Fig. 1 shows a section of the time evolution of the extant

species in a single run of one million generations. The visual

representation of this is as a projection of the populated points

of the 16 dimensional phenotype space onto a single trait. It is

clear to see that the evolutionary process creates a system that

is far from diffuse with a small setof phenotypes interacting in a

manner that precludes easy invasion by mutants. Of course,

there are successful invasions that amount to gradual evolution

of a species, or even speciations, but the relative permanance of

species is seen as significant. This is because a new mutant

phenotype will have an advantage over the parent due to the

relative weakness of its intra-specific competition term, so a

continual invasion of species could easily be expected. The

phenotype distribution localises at points rather than following

a diffusive process and does so to quite an extreme. There is

nothing to prevent the diversity from expanding with species

achieving smaller populations but this state might struggle to

persist. It is likely that the stochasticity of the dynamics would

incur a greater extinction rate for species of such sparse

numbers thus reducing the diversity. This is one reason

proposed to explain why productivity–diversity relationships

have increasing functional forms at low productivity ranges

(Preston, 1962; Abrams, 1995).

The diversity varies considerably both in time and across

actualisations. This is most apparent for higher resource levels

where the standard deviations of the diversity become

comparable to the means. Regardless of this spread, for the

range investigated here the mean species diversity increases

with respect to total resource availability in a monotonic

fashion (Fig. 2).

This relationship has been produced in a species level

trophic network model (McKane, 2004) and is empirically

found in large scale systems with heterogeneous environ-

ments (Currie, 1991; Waide et al., 1999; Bonn et al., 2004).

Although unimodal relationships are expected for localised

ecosystems where diversity is more dependent upon fewer

limiting factors this model is constructed to represent a

localised system with extensive heterogeneity. With this

feature a monotonically increasing diversity can be ascribed

to the effects of intra-specific density dependence (Abrams,

1983) (Vance, 1984; Abrams, 1995). Resource increases allow

species to grow in population but other factors more unique

to that species niche restrict this growth prior to the

resource depletion becoming a limiting factor. The conse-

quence is that resource is more freely available for species

holding dissimilar niches that would be excluded at low

resource due to their inferior ability to procure it. This model

represents such systems as the intra-specific competition is

the dominant restrictive term in Eq. (1), for a high species

population.

3.2. Lifetimes and extinction rates

Statistical analyses of fossil record data have often alluded to

power law forms, P(s) � s�a, in the distributions of the various

quantities involved with species extinctions. When s repre-

sents species lifetimes or extinction event sizes an exponent

of a’2 has been suggested but the analyses have been

criticised and power law forms are not readily accepted

(Newman and Palmer, 1999; Drossel, 2001). The lifetime

distributions produced in this model are clearly not of this

form although they do loosely follow a power law with a

comparable exponent (Fig. 3).
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Fig. 1 – An occupation plot of a single run for a system with

R = 10,000. For each timeslice a point appears where a

phenotype is in existence but as the full space is in 16

dimensions a projection onto a single trait is used.

Fig. 2 – Plot of mean species diversity in relation to resource

availability. Error bars represent the standard error.
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Other models have displayed similar near-power law or

non-power law behaviour (Standish, 1996; Christensen et al.,

2002; Chowdhury et al., 2003; Chowdhury and Stauffer,

2003a,b) in reference to (Sole and Manrubia, 1996) giving

credibility to the notion that these distributions may not

actually be scale free in the real system. The power law form

seen in real macroecological data is tenuous as a result of the

difficulty in appropriating quality data sets, but it may be the

case that the actual distributions are really deviations from

this form. It is hard to draw conclusions from models such as

these as they are obviously simplifications of a highly

complex, spatially-extended, multiscaled system but there

is no a priori reason why power law behaviour should be

expected anyhow.

Although the structural form of the distributions for

different resource levels are similar there is a gradual

decrease in the level of species permanence as resource

increases. This effect can be seen in Fig. 3, as an increase in

mid logarithmic-range lifetime probability accompanied by

a sharper declining tail. It is a minimal but consistent trend,

as can be observed in the relationship between mean

lifetime and resource level in Fig. 4. We can attribute this

behaviour to the difference in mutant offspring production

rates incurred at different resource levels. As the mean

population increases with increasing resource availability

there is a higher magnitude of successful reproduction

events in each generational time step. So, given a constant

mutation probability, the number of mutated offspring

produced in this period increases in proportion to the

population. The permanence of individual species and the

stability of the interaction network are affected by this

elevated mutant production rate leading to a greater rate of

extinction and speciation.

If we plot the mean lifetime of a given resource level against

the mean population of that level (Fig. 5) a linear dependence

can be seen that supports the explanation above. To justify

this further we have run simulations with variable mutation

probabilities that force the absolute mutant production rate to

remain constant. The lifetime distributions produced from

these runs show no dependence on resource availability

which is consistent with our reasoning.

3.3. Network properties

An important feature of a coevolving ecosystem is the species

interaction network, particularly as it is thought to have

implications for the stability of the ecosystem and the

permanence of its members. Low diameter networks with

scale invariant degree distributions have often been expected

as many abiotic networks display such properties and there

are theoretical reasons why they may augment stability

(Albert and Barabasi, 2002; Dorogovtsev and Mendes, 2002).

In reality, field data has shown the existence of a variety of

distributions including power law, truncated power law and

exponential (Dunne et al., 2002) (Jordano et al., 2003), but these

still differ from the binomial distributions found in finite

random networks.
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Fig. 3 – Plot of the lifetime distributions over all resource

availability levels. In the approximate range s = [102, 103]

the probability of a given lifetime increases with resource

availability, whilst the reverse is true for the approximate

range s = [104, 105]. This indicates longer lived species at

lower resources. The dotted line represents the often

proposed power law relationship with exponent, a = 2.

Fig. 4 – Plot of mean lifetime against resource availability.

Fig. 5 – Plot of mean lifetime against mean population for

each resource level.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

The degree distributions produced by our model take an

exponential form which is similar, at low degrees, to the

binomial distribution of the same connectance. The difference

becomes apparent at higher degrees where the binomial

decays much more rapidly than the exponential.

Fig. 6 shows the degree distribution for the realisations

with diversity of 29 (R = 30,000) along with a binomial

distributed plot using the same connectance. It is clear that

the evolved system has a distribution with a much longer tail

than the binomial.

The deviation of the degree distribution away from the

binomial can be attributed to the inheritance-based develop-

ment of the network structure. Simulating the evolution using

uncorrelated mutation leads to binomial distributions, albeit

with enhanced connectance. The incorporation of correlated

inheritance has the effect of producing a longer tailed

distribution that conforms closely to an exponential.

A notable effect of the evolution is the dramatic increase in

the mean degree compared to that of a random species set of

the same diversity. There are a great deal more connections

between the extant species than is found in the null case. This

is demonstrated in Fig. 6, where the evolved distribution can

be compared to the binomial distribution that would be found

for a random set of 29 species. The connectance values for all

diversities are very much higher than general connectance of

the interaction space u0 (see Fig. 8) and they easily exceed the

percolation thresholds that would be assigned to networks of

these node/diversity numbers (Albert and Barabasi, 2002). It is

unclear whether greater stability is achieved through either

lower than threshold connectance values or higher values

(May, 1974; McCann, 2000; Haydon, 2000; Dunne et al., 2002),

but here the system naturally evolves towards the latter. It

appears that the system has a strong tendency to evolve

towards configurations that are highly mutualistic by assum-

ing greater numbers of positive interactions. This is high-

lighted by the interaction strength distribution that has clearly

shifted from the null system normal with zero mean to a

Gaussian form with a positive mean (Fig. 7).

When increasing the resource, and therefore the diversity,

the mean connectance decreases as the system becomes

progressively less likely to achieve large deviations from the

null system expectation values (Fig. 8). In the limit of large

diversity the connectance would of course conform to that of

the interaction space, u0.

4. Discussion

The concepts used in this model have been developed from

original ideas presented in the Tangled Nature model

(Christensen et al., 2002; Hall et al., 2002; Collobiano et al.,

2003; Anderson and Jensen, 2005), where species interaction

networks were constructed from dynamics instigated at the

level of individuals as opposed to higher level groupings such

e c o l o g i c a l c o m p l e x i t y 3 ( 2 0 0 6 ) 2 5 3 – 2 6 2258

Fig. 6 – Plot of degree distribution for the 30,000 unit

resource system. Compared are the binomial distribution

of the same connectance, C, and the binomial distribution

expected for the null case with the space connectance

C = uo = 0.05.

Fig. 7 – Plot of the interaction strength distribution for the

30,000 unit resource system. The evolved distribution

deviates from the null normal towards positive strengths.

Fig. 8 – Plot of mean connectance, hui against diversity. Each

resource level is treated separately so multiple data points

often occur for the same diversity value. Error bars

represent the standard error. The lower dotted line marks

the null system connectance, u0 = 0.05.
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as species. Also, the use of a predefined, closed set of possible

interactions between species allowed statistical comparisons

to be made between evolved systems and null species sets.

These principles have been incorporated in the new model

along with modifications to improve the reality of the

dynamics.

The main modification is in the creation of the phenotype

space. This has permitted a much larger set of distinct entity

types to be available, 1080 as opposed to 1020, and allowed us to

introduce mathematically quantifiable correlations in the

inheritance of interaction properties between parent and

mutated offspring. Along with a more continuous phenotype

description, these attributes make the model more represen-

tative of a real biological system.

The new model includes a generalised niche property in the

form of an intra-specific competition term in the weight

function. It was realised that this was necessary to allow a

diversity to flourish without competitive exclusion reducing

the system to a pair of highly mutualistic species. We make no

attempt to describe any niche properties nor numbers of

niches but the inclusion of this concept can be justified as a

simplistic representation of a heterogeneous environment.

With the above qualities in effect the primary aim of the

research here is to investigate how the constraint of a

conserved resource effects the dynamics and interaction

properties of the species evolution. The mean species diversity

exhibits a monotonic increase with respect to system resource

availability which is expected for a real system with a

heterogeneous environment. This increase is also accompa-

nied by a greater level of fluctuation which is consistent with a

reduction in the degree of species permanence, as implicated

by the lifetime distributions. Although the effect is small due

to the inclusion of all mutant phenotypes in the distribution

statistics, there is a clear decrease in mean lifetimes as we

increase the resource level. To ensure this decline is not

simply an artefact of the higher diversity systems producing

more short-lived mutants, which are included in the statistics

here, we repeated the analyses omitting contributions below

various threshold lifetime values. In each case the decline was

observed. We can infer from this that the decrease in mean

lifetime is applicable to the more permanent members which

is more representative of a real system. Species considered in

the collection of field data would not be random mutants, but

recognisable community members. If there exists a higher

species turnover rate at higher resource levels then it is

conceivable that the evolutionary rate is enhanced as well.

There is evidence of a positive relationship between evolu-

tionary rate and energy supply but the mechanisms suggested

for its existence are not related to the concepts here (Pawar,

2005). It has recently been discovered though that higher

diversity systems may incur a greater turnover rate of species

and so a smaller duration probability (Emerson and Kolm,

2005). Our work certainly points to the same conclusion.

The realised species interaction networks universally

conform to exponential degree distributions which have also

been reported in some real ecosystems. The long tails of these

exponential distributions indicate the existence of small

numbers of massively connected species which is highly

unlikely to occur in the random binomial distributions.

Simulations performed with random mutations exhibit

binomial degree distributions, which implies that the correla-

tions involved in inheritance are at the root of the exponential

degree distributions. It is conceivable that the non-binomial

distributions found in real ecological networks appear for

similar reasons. The component species of these networks,

whilst not necessarily speciations of one and other, are likely

to have traits or properties that could be considered as

correlated. Invasive forms of community assembly would lead

to systems with lower levels of correlation and so may exhibit

less pronounced deviations from the binomial as a result.

The high connectivity of the hub species contributes to the

overall connectance of the network which evolves to

statistically large values. It is unclear whether this level of

connectance affects the stability and permanence of the

networks as the system is continually attracted to achieving

connections. It is interesting though that the mean connec-

tance drops to a near constant level as higher resources/

diversities are approached. This type of behaviour has been

alluded to in field studies (Martinez, 1992; Drossel and

McKane, 2003; Montoya and Sole, 2003) with a power law

functional form suggested for the connectance–diversity

relationship. A hyperbolic form has been suggested (McKane

et al., 2000) for reasons of stability with deviations from the

inverse power law being attributed to fluctuations via species

invasions. Our model, due its inclusion of mutualistic

interactions, gives an alternative explanation to this phenom-

enon. Our systems evolve in a manner that intrinsically

construct networks with greater numbers of interactions. As

diversities grow, the probability of achieving such high

connectances diminishes leading to the observed relationship

between the two properties.

Making comparisons between food webs and the more

encompassing species interaction networks of our model is

problematic though. The mutualistic interaction is an impor-

tant feature here and is vital to the proposition that

connectance is an evolutionarily favoured global property.

Most field data is predator-prey based and so precludes those

types of interaction. The studied networks may well be

embedded within larger species interaction networks that

involve mutualists and commensalists though so our reason-

ing still has validity.
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Appendix A

In order to create a predetermined and correlated interac-

tion space the following process is used. We consider the

interaction strength of a due to b, J(Ta, Tb), to be determined
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additively through contributions associated with each of the L

traits,

JðTa;TbÞ ¼ 1

L1=2

XL
i¼1

JiðTa;TbÞ: (3)

The contributions Ji(T
a, Tb) will take values that are normally

distributed so the prefactor 1/L1/2 is used to ensure the final

strengths are similarly distributed.

To acquire these separate contributions we first couple

each trait Ta
i to all others, from both a and b sets, to provide L

modified trait variables, Tab

i . This is achieved through the sum,

Tab

i ¼
XL
j¼1

bi jT
a
j þ

XL
k¼1

cikT
b
k modð100000Þ; (4)

where bij, cik 2 {�1, 1} are independent, randomly assigned

with equal probability and held constant throughout. This

coupling format allows any shift (mutation) in a single trait

variable to lead to a shift of the same magnitude in all

modified trait variables. The coefficients, bij, cik ensure that

the resultant shifts in the modified trait variables are dif-

ferent for each initially mutated trait. The intention here is

to map these modified trait variables to values that will

represent the separate contributions to the interaction

strength of Eq. (3). As will be demonstrated, the couplings

assist in producing a quantifiable correlation, but they may

also be justified as representing real interactions. The effi-

cacy of a trait is dependent upon both its own, and the other

interacting species, trait sets. For example, in pursuit of

prey, the cheetah’s high speed would facilitate its success

but be dependent upon its stealthiness and the prey’s cap-

ability of flight. The traits are interdependent and so lead to

an interaction strength (or similarly, fitness) in a coupled

manner.

The separate contributions to the interaction strength of

Eq. (3), are now determined by mapping each modified trait

variable to a strength value,

Li : Tab

i 7! JiðTa;TbÞ; i2 ½1; 16�: (5)

For this we use L = 16 independent series indexed from 0 to

99,999 to allow a one to one mapping between the modified

trait variable and the strength measure (see Fig. 9). To incur

correlations we use first-order auto-regression series (Hamil-

ton, 1994) that are created using the stochastic iterative Mar-

kov process,

xnþ1 ¼ rxn þ f (6)

where f is a normally distributed random variable, r deter-

mines the correlation length of the series and n 2 [0, 99,999].

This form of series has the overall property that its values

conform to a normal distribution (once normalised) so provid-

ing trait-specific interaction strengths Ji(T
a, Tb) that are dis-

tributed in the same manner.

The correlation function of the series has an exponential

decay,

CL ¼ exp � jn�mj
j

� �
; (7)

where n, m are the indices of the series values. The correlation

length, j = 250 is a metric of the index separation of the series

values that is definable through the parameter, r from Eq. (6).

With the use of full coupling of all traits to give a modified trait

this function extends to separations in the phenotype space

where the differences in trait coordinates sum to give an

approximate two-point correlation function,

CðTa;TbÞ’ exp
ð�1=LÞ

PL
i¼1 DTab

i

j

" #
(8)

where,

DTab

i ¼ jbi1ðT
a
1 � Tb

1Þ þ bi2ðTa
2 � Tb

2Þ þ . . .þ biLðTa
L � Tb

L Þj; (9)

and bij are the parameters used in Eq. (4).

If a mutation is imposed by the shift of a single trait variable

then the numerator of Eq. (8) simply reduces to the length of

that shift. Thus, a mutated phenotype has a quantifiable

correlation with the parent, with an exponential decay

determined by the size of the trait shift. This is where the

trait couplings of Eq. (4) facilitate the quantification of the

correlation.

In a real ecological system, not all phenotypes interact

directly with one another so only a certain proportion of the

set of all interactions is allowed in the model. This is achieved

by using the same process used to determine the interaction

strengths except with some important modifications. Using a

further set of autoregression series the process is repeated and

the interaction is deemed to exist if, and only if, the two

phenotypes have mapped values above a certain threshold

(Fig. 9). As these values are normally distributed the error

function can be used to determine this threshold so as to set

the connectance of the interaction space u0. For a particular

phenotype, the proportion of all possible interactions it has

e c o l o g i c a l c o m p l e x i t y 3 ( 2 0 0 6 ) 2 5 3 – 2 6 2260

Fig. 9 – A section of a first order autoregression series. The

values can be seen to have a degree of correlation. The

series values are globally normally distributed so by use of

the error function we can impose a threshold mark

(straight line) which is a requirement for a coupling to be

deemed to exist.
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across the phenotype space will be equal to this value, barring

statistical fluctuation. The distribution of this set throughout

the space is quite diverse with patches of varying size due to

the random but correlated nature of the autoregression series

and the interdependency of the traits.

Phenotypic self-interaction is excluded in this model (intra-

specific competition is considered separately Eq. (1)) so the

interaction set is manipulated to achieve this. When deter-

mining the existence of an interaction we use Eq. (4) as in the

procedure used to determine the interaction strengths. But

there is a small but important modification. We can randomly

set the parameter bij 2 {�1, 1}, and set the second parameter

cij = bik so that a pair of identical phenotypes will incur all

modified trait coordinates to be zero. If we set our zeroth

autoregression value low in comparison to the interaction

threshold then self-interaction is entirely excluded. This effect

extends beyond the phenotypic self-interaction to the species

description as the correlations ensure that the exclusion

occurs, with high probability at least, for phenotypes that are

similar but distinct. The autoregression series are created with

correlations running from the zero index point in both

directions (i.e. 0; 1; 2; . . . and 0; 99,999; 99,998; . . .), thus

conforming to the periodic boundary of the trait variables. So,

this species level negation of self-interaction is isotropic with

regard to a mutation in either direction of a trait.
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