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Catalunya, E-08034 Barcelona, Spain; e-mail: �conrado,molinero�@lsi.upc.es

Received 15 January 2001; accepted 01 August 2001

ABSTRACT: In this article, we design and analyze algorithms that solve the unranking prob-
lem (i.e., generating a combinatorial structure of size, n given its rank) for a large collection
of labeled combinatorial classes, those that can be built using operators like unions (+),
products (�), sequences, sets, cycles, and substitutions. We also analyze the performance of
these algorithms and show that the worst-case is ��n2� (��n log n� if the so-called boustro-
phedonic order is used), and provide an algebra for the analysis of the average performance
and higher-order moments together with a few examples of its application. © 2001 John Wiley
& Sons, Inc. Random Struct. Alg., 00, 1–26, 2001

1. INTRODUCTION

This article draws upon the seminal work of Flajolet, Zimmerman, and Van Cutsem
[6] on the random generation of labeled combinatorial structures. By unranking, we
mean the generation of a combinatorial object given its rank, its size, and a finite
description (specification) of the combinatorial class to which the object belongs.
The rank of an object is the number of objects of the same size in the class that are
smaller than the object, according to some fixed ordering. While there exist ad hoc
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efficient algorithms to generate permutations, strings, binary trees, and many other
combinatorial structures (see for instance [2, 10]), there have been few attempts
to devise more general algorithms, where a specification of the combinatorial class
is a parameter itself. This is the approach successfully applied to counting and
random generation by Flajolet, Zimmerman, and Van Cutsem. One of the main
contributions of this work is to show the feasibility of this approach to cope with
the unranking problem.
Actually, there are three distinct but closely related problems which we collec-

tively call as ordered generation: (1) Iteration: given a specification of a combinatorial
class and a size, build an iterator, that is, a 3-tuple of functions �first, is last?,
next� that allows for a sequential traversal of all the objects of the given class with
the given size; (2) Ranking: given a specification of a combinatorial class and an
object from that class, compute the rank of the given object, that is, the number
of objects of the same size and smaller than the given object; and (3) Unranking:
given a combinatorial class, a size, and a rank, generate the object whose rank is
given.
In this article, we consider the last of the above three problems. Though the

first problem is the one that finds more applications, there are also applications
where we need efficient solutions to the problem of unranking (for example, if we
want to produce m distinct random objects, then it is more efficient to generate m
distinct ranks and then the corresponding objects than to use the classical rejection
method). Moreover, efficient solutions for the problem of unranking can provide
insight to find better solutions to the problem of iteration.
We reported our previous preliminary work on the unranking of labeled combi-

natorial structures in [11].
The rest of this article is organized as follows. In Section 2, we review some

basic definitions and formalize the problem investigated in this work. Afterwards, in
Section 3, we describe the algorithms which we propose for the unranking problem.
The following section is devoted to the analysis of the performance of the unranking
algorithms. After a general treatment of the subject and a few basic results on
the worst-case complexity of unranking, the following two sections provide the so-
called ϒ- and ϒ̂-algebras for the average and probability distribution of the cost of
unranking labeled classes with lexicographic ordering (see Section 2.2). Examples
of its use are given in Section 7. In particular, we consider the average cost and
variance of unranking simply generated families of (non)ordered trees. Section 8
explores the use of alternative isomorphisms and the effects on the performance of
unranking.
In Section 9, we report on our implementation of the algorithms for the computer

algebra system Maple and on some of the experiments we have conducted to study
the empirical performance of the algorithms. Finally, in Section 10, we discuss some
related issues and our plans for future research on this subject.

2. PRELIMINARIES

Most of the material in the first part of this section is standard and can be found
elsewhere, see for instance [5, 13, 17]. However, to make this work more self-
contained, we briefly introduce some basic definitions and concepts.
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We use uppercase script letters (������ � � �) to denote combinatorial classes.
Also, we use subscripts under a class’ name to denote the subset of objects of that
class with a given size, for example, �n. The convention of using the corresponding
Roman uppercase letters for counting exponential generating functions (see below)
will be also used throughout this article.
Typically, complex objects in a given class are composed of smaller units, called

atoms. Atoms are objects of size 1 and the size of an object is the number of atoms it
contains. For instance, a string is composed of the concatenation of symbols, where
each of these is an atom, and the size of the string is its length or the number of
symbols it is composed of. Similarly, a tree is built out of nodes—its atoms—and the
size of the tree is the number of nodes. Objects of size 0 are generically denoted by
ε. Here, we consider only labeled classes, that is, those whose objects are made up
of distinguishable atoms. Examples of labeled classes include permutations, Cayley
trees, functional graphs, and a lot of other important combinatorial classes. A valid
labeling of an object of size n is a bijection from the object’s atoms to �1� � � � � n�,
or equivalently, a permutation of size n.
As it will become apparent, an efficient solution to the problem of counting,

that is, given a specification of a class and a size, compute the number of objects
with the given size, is fundamental to solve the unranking problem. Hence, we will
only deal with the so-called admissible combinatorial classes. These are constructed
from admissible constructors, operations over classes that yield new classes, and such
that the number of objects of a given size in the new class can be computed from
the number of objects of that size or smaller sizes in the constituent classes. To
formalize the notion of admissibility, we need the fundamental notion of counting
generating functions.

Definition 1. The (counting) generating function of a labeled combinatorial class �
is the exponential generating function for the sequence �an�n≥0,

A�z� = ∑
n≥0

an
zn

n!
= ∑

α∈�

z�α�

�α�! �

where an = #�n is the number of objects in � of size n. The nth coefficient of A�z�
is denoted by �zn
A�z�; hence, an = n! · �zn
A�z�.

Definition 2. An operation � over combinatorial classes �1��2� � � � ��k is admis-
sible if and only if there exists some operator � over the corresponding generating
functions A1�z�� � � � �Ak�z� such that

� = ���1� � � � ��k� �⇒ C�z� = ��A1�z�� � � � �Ak�z���

where C�z� is the generating function of �.

Examples of admissible constructions include disjoint unions (denoted by ‘+’),
labeled products (denoted by ‘�’), sequences (Seq), sets (Set), and cycles (Cycle).
In this article, we mostly concentrate on these operations, though similar ideas can
be applied to some other operations, including some not described here and, in
general, it is likely that they apply to any admissible operation.
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Although the collection of operations given above is small, it can be used to
describe many important and useful combinatorial classes. For instance, the class
� of permutations can be both described by � = Seq�Z� and � = Set(Cycle(Z)),
where Z generically denotes any atomic class, i.e., a class that contains only one
element of size 1.

2.1. Standard Specifications

An admissible specification S is a collection of equations of the form

�i = �i���i�
j0
� � � � ��

�i�
ji
��

where no two equations have the same left-hand side, each �i is an admissible
operation, and each �

�i�
jr

is either an ε-class, an atomic class, or there is an equation
in the collection with that class as its left-hand side. An ε-class is a class that contains
a single object of size 0. Each of the classes that appear in the left-hand side of the
equations in S is said to be specified by S. If a class � is specified by an admissible
specification, then the class itself is called admissible. However, we will identify
admissibility with the collection of admissible operators considered here.
Sequences can be expressed in terms of products and it turns out that, in the

labeled world, sets and cycles can be specified by means of the so-called boxed
product, denoted by �� [8].
We recall that in a boxed product, we obtain a collection of labeled objects from

a pair of given objects, much in the same manner as for the usual partitional prod-
uct, but the smallest label must always correspond to an atom belonging to the first
object in the pair. Thus, if α and β are labeled objects of sizes j and n− j, respec-
tively, then their boxed product α� � β contains

(
n−1
j−1

)
labeled objects. The boxed

products are also related to a common combinatorial construction: the marking or
pointing of a class �, usually denoted by ��. In this construction, we get n differ-
ent objects by marking each atom of each object of size n in �. Hence, if an is
the number of objects of size n in �, then n · an is the number of objects of size
n in ��—marking an atom of an object does not increase the object’s size. The
relationship between marking and boxed products is given by

�� = �� �� ⇐⇒ � = � � ��� (1)

There is an alternative way to define boxed products, namely, that the smallest label
is attached to an atom of the second member of the pair. It is easy to see that this
alternative definition, which we denote by ��, satisfies � � �� � � �� �.

The isomorphisms for sequences, sets, and cycles in terms of the other construc-
tors (union, product, and boxed product) that we use in this article are the following:

� = Seq��� ⇐⇒ � = ε+ � � �� (2)

� = Set��� ⇐⇒ � = ε+ � � � �� (3)

� = Cycle��� ⇐⇒ � = � � � Seq���� (4)

In Section 8, we consider alternative isomorphisms and their effects on the perfor-
mance of unranking.
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Other interesting operators such as sequences, sets, and cycles of restricted car-
dinality and substitutions can be also expressed in terms of the basic operators. For
instance,

Seq��� card = k� = �k = � � �k−1�

Seq��� card ≤ k� = �≤k = ε+ � � �≤k−1�

Seq��� card ≥ k� = �≥k = �k � Seq����

where �0 = �≤0 = ε. Similar isomorphisms can be used to define sets and cycles of
restricted cardinality.
Hence, every specification using the above operators can be transformed into an

equivalent specification that involves only unions, products, and boxed products.
Such a specification is called a standard specification.
We also consider the substitution operator which yields a new class � = ���
 by

replacing each atom of each object in a class � by every possible object in �. This
is equivalent to

� = ∑
k>0

�k × Set��� card = k��

which reduces to unions, unlabeled products (‘×’), and boxed products as we have
already seen, but not to a standard specification as it involves an infinite number of
admissible operators.

2.2. Orderings

The notion of rank is based on the existence of a total order among the objects
of the same size in the given class. In our approach, the ordering itself is not a
parameter, but a fixed a priori. We have the freedom to choose whatever ordering
is more suitable for the design of the unranking algorithms, and to make them as
efficient as possible. As we shall briefly see, orderings are not really defined w.r.t.
combinatorial classes, but w.r.t. specifications.
For unions, there are two basic (and equivalent) alternatives: either the elements

of the first class come first and then the elements of the other class, or the opposite
way. We take the first alternative; therefore, given the specification � = �+�, the
order <�n

among the objects of size n in the class � will be defined by

γ1 <�n
γ2 ⇐⇒ �γ1 <�n

γ2 and γ1� γ2 ∈ �� or �γ1 <�n
γ2 and γ1� γ2 ∈ �� or

�γ1 ∈ � and γ2 ∈ ���

Notice that even though the class represented by the specifications � + � and
� + � is the same, the orderings induced by the two specifications are different,
i.e., <�+� �=<�+�.

For products (either standard or boxed products, but we present here only the
standard case), it is “natural” to define the order so that if γ = �α�β� and γ′ =
�α′� β′� are objects of size n in � = � �� and j = �α� = �α′�, then we say that γ
is smaller than γ′ if and only if α is smaller than α′ according to the order in �j
or α = α′ and β is smaller than β′ according to the order in �n−j , or if γ = γ′
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as unlabeled objects, then we say that γ is smaller than γ′ if the label �γ of γ is
smaller than the label �γ′ of γ′, according to an ordering <�n

defined for labels of
size n. This choice is not only obvious, but it also makes the algorithms simpler and
clearer, and there are no indications that other (somewhat unnatural) definitions
could help improve the performance of the algorithms.
However, if � = � ��, then �n = �0 ��n + �1 ��n−1 + · · · + �n ��0, and then

the order in which these unions are made does matter; in other words, we shall
still decide what should be the result of comparing two objects γ and γ′ whose
first components have different sizes. An immediate possibility is that we define
the order so that γ = �α�β� <�n

γ′ = �α′� β′� if �α� < �α′� as suggested by the
“specification” of �n above. We call this ordering as lexicographic order. Formally,

γ = �α�β� <�n
γ′ = �α′� β′� ⇐⇒ �α� < �α′� or

(
j = �α� = �α′� and α <�j

α′) or(
α = α′ and β <�n−j β

′) or(
α = α′ and β = β′ and �γ <�n

�γ′
)
�

Actually, for the above definition to be complete, we must define which order <�n

do we choose for the labels. To be consistent with the “flavor” of the definition, we
assume that <�n

denotes the numerical order among labels (equivalently, since the
labels have the same length, the usual lexicographic order if the labels are seen as
strings).
It turns out that there is another ordering for products that significantly yield

better performance (see Section 4) of the unranking algorithms, although it is
somewhat less natural. It is the so-called boustrophedonic order [6], induced by the
specification

�n = �0 ��n + �n ��0 + �1 ��n−1 + �n−1 ��1 + �2 ��n−2 + · · · �

Once we have chosen an ordering for the products (lexicographic or boustro-
phedonic), the orderings for sequences, sets, cycles, their variants with restricted
number of components, and substitutions follow from the isomorphisms given in
Section 2.1.

3. THE ALGORITHMS

Given the trivial algorithms that solve the unranking problem for the ε classes and
for atomic classes, and after a preprocessing step that converts the initially given
specification to standard form, it is clear that we just need to solve the unrank-
ing problem for unions, products, and boxed products. Throughout this article we
assume that we have a function count��� n� which returns the number of objects of
size n in the combinatorial class � [6].
If � = � + �, then the object of rank i in �n is the object of rank i in �n if

0 ≤ i < an; otherwise, it is the object of rank i− an in �n (see Algorithm 1).
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Algorithm 1. Unranking of disjoint unions

unrank�� +�� n� i�
c �= count��� n�;
if i < c then unrank ��� n� i�

else unrank ��� n� i− c�
fi

To solve the problem of unranking for � = � � �, assuming the lexicographic
order, the first step is to determine the size, say j, of the first component of the
object. Then the two components are recursively generated in � and �, respectively,
and finally, the labeling of the object is constructed from the labelings of the two
components.
If γ = �α�β� is the object of rank i in �n, then j = �α� satisfies

∑
0≤k<j

(
n
k

)
akbn−k ≤ i <

∑
0≤k≤j

(
n
k

)
akbn−k

and γ is the object of rank i′ = i − ∑
0≤k<j

(
n
k

)
akbn−k in �j � �n−j . Each object

in �j is used in the construction of bn� j =
(
n
j

)
bn−j , different objects of �j � �n−j .

Hence, if γ = �α�β� is the object of rank i′ in �j ��n−j , then α is the object of rank
�i′ div (

n
j

)� div bn� j in �j . Similarly, β is the object of rank �i′ div (
n
j

)� mod bn� j , and
the label �γ is the �i′ mod

(
n
j

)�th label among the
(
n
j

)
different labelings correspond-

ing to α � β.
To make the recursive algorithm easier to understand, the algorithm does not

return the label but the rank of the label; once the object has been computed, the
label can be easily reconstructed from the information gathered during the recursive
calls. Thus, a call to unrank�� ��� n� i� will return a tuple ��α�β�� ��, with � being
the rank of the label; in turn, α will be a tuple of the form �object, label rank�, etc.
(see Algorithm 2). Here, we will not show how to reconstruct the labels, but the
ideas behind the algorithm that does the job are quite similar.

Algorithm 2. Unranking of products (lexicographic order)

unrank�� ∗�� n� i�
c �= 0� j �= 0�d �= count ��� j� ∗ count��� n− j�;
while i < c + d do

c �= c + d� j �= j + 1;
d �= (

n
j

) ∗ count��� j� ∗ count��� n− j�
end
i′ �= i− c;
� �= i′mod

(
n
j

)
;

i′′ �= i div
(
n
j

)� b �= count ��� n− j�;
α �= unrank��� j� i′′div b�;
β �= unrank��� n− j� i′′mod b�;
return ��α�β�� ��
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If the boustrophedonic ordering is used instead, then the unranking of products
is similar and the most significant difference being the way we determine the size
of the first component (see Algorithm 3).

Algorithm 3. Unranking of products (boustrophedonic order)

unrank�� ��� n� i�
c �= 0�k �= 0� j �= 0�d �= count��� j� ∗ count��� n− j�;
while i < c + d do

c �= c + d�k �= k+ 1� j �= k div 2;
if even �k� then d �= (

n
j

) ∗ count ��� j� ∗ count��� n− j�
else d �= (

n
j

) ∗ count��� n− j� ∗ count��� j�
fi

end
i′ �= i− c;
if even �k� then j �= n− j fi
� �= i′mod

(
n
j

)
;

i′′ �= i′div
(
n
j

)� b �= count��� n− j�;
α �= unrank��� j� i′′div b�;
β �= unrank��� n− j� i′′mod b�;
return ��α�β�� ��

Last but not the least, the unranking of boxed products is analogous to that of
products, with the provision that the boxed product α� � β of every pair of objects
contains

(
n−1
j−1

)
labeled objects (n = �α� + �β�� j = �α�). This means that it is enough

to substitute the binomial coefficients
(
n
j

)
by

(
n−1
j−1

)
and to start with j �= 1, either

in Algorithm 2 or 3, to obtain an unranking algorithm for boxed products. Also, to
unrank � �� �, it suffices to use

(
n−1
j

)
instead of

(
n
j

)
.

The algorithm for substitution is based on analogous ideas; basically, once the
size k of the �-object is found, it suffices to recursively unrank the appropriate
�-object and the set of k �-objects of total size n.

4. PERFORMANCE OF THE UNRANKING ALGORITHMS

To investigate the complexity of the unranking algorithms, we use the number of
arithmetic operations as our measure of cost. We assume that the cardinalities of
the classes, as given by the function count, are stored in precomputed tables of size
��n� integers1 and we will not take into account in our analysis the time needed by
this preprocessing, which is ��n2�. The conversion of the nonstandard specification
into a standard specification is independent of n and effected only once, so this
contribution will be also neglected.
Labels can be easily reconstructed from the “label ranks” computed by the

unranking algorithms, so that the cost of computing these “label ranks” and actu-
ally reconstructing the labels is at most proportional to the cost of building the

1 Since the stored integers are usually huge, the space requirement in bytes would typically be ��n2 log n�.



UNRANKING OF LABELED COMBINATORIAL CLASSES 9

object’s underlying structure. Also, it is not difficult to show that the objects in
the standard form can be converted back to the given original nonstandard form
in ��n� arithmetic operations, if it were desired. For instance, if we are given the
specification � = Set�Cycle�Z�� and we generate the object in standard form

�Z1
� � �Z3 � �Z5 � ε���� � ��Z2

� � �Z4 � ε��� � �Z6 � ε��

then it is easily converted to

Set�Cycle�Z1� Z3� Z5��Cycle�Z2� Z4��Cycle�Z6���

Thus the main contribution to the cost of the unranking algorithms comes from
the loops for the determination of the size of the first component in the case of
(boxed) products, and their recursive nature. The next two theorems state the worst-
case complexity of unranking objects of size n, for lexicographic and boustrophe-
donic orderings, respectively; they show that our unranking algorithms have the
same performance as the algorithms for random generation, and not surprisingly,
the proof of the theorems given here and their counterparts for random generation
are identical [6].

Theorem 1. The worst-case time complexity of unranking for objects of size n in any
admissible labeled class � using lexicographic ordering is ��n2� arithmetic operations.

Proof. Consider the parse tree associated to the unranking of an object of size
n. Such a tree has a size proportional to n and its arity is ≤ 2, with each of its
nodes associated to a recursive call to the unranking procedure. The nonrecursive
cost associated to a node is at most linear in the size of the object produced as the
result of that call, i.e., linear in the size of the subtree rooted at that node. Hence,
the worst-case cost of unranking an object of size n is proportional to the worst-case
path length of a tree of size ��n�, which is ��n2�.

Theorem 2. The worst-case time complexity of unranking for objects of size n in
any admissible labeled class � using boustrophedonic ordering is ��n log n� arithmetic
operations.

Proof. The number of iterations to determine the size of α in a boustrophedonic
product �α�β� is 2 · �min��α�� �β�� + 1�. The arithmetic operations outside the loop
that determine the size j of the first component in products will contribute a linear
term in the total cost by an argument largely equivalent to that given in the proof
of the previous theorem. Thus, the main contribution in the worst-case cost of
unranking satisfies a recurrence of the form

U�n� = max
0≤k≤n

�U�k� +U�n− k� + c ·min�k� n− k���

for some constant c, whose solution is ��n log n� [7, 9].

The last result concerns iterative classes. A class is called iterative if the depen-
dency graph of its specification is acyclic (not necessarily in standard form, thus
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allowing the use of sequences, sets, cycles, their restrictions, and substitutions).
In contrast, other classes are called recursive. Typical examples of iterative classes
include surjections (Seq�Set�Z� card ≥ 1��) and permutations.

Theorem 3. The cost of unranking an object of size n for any iterative class � is ��n�.

Proof. It is obvious that the cost of unranking objects of size n in any class is
��n�. So, we only need to establish that the worst-case complexity of unranking
for iterative classes is ��n�; this is easily accomplished by structural induction. For
example, for products, there is a linear cost to find the size of the first component
plus the linear costs (by the inductive hypothesis) to unrank both components of
the pair; altogether, the cost is bounded by a linear function. For � = Set���, we
have the cost of unranking the boxed product � � � �; by induction, the cost of
unranking in � is linear. Furthermore, the cost of unranking the smaller set in � is
also linear because the sum of the costs to unrank in turn each component of the set
(belonging to �) is bounded, by induction, by a constant time, the sum of the sizes,
that is, the size of the set, and the result follows. However, notice that if we had used
the alternative isomorphism given by �� = � · ��, then the inductive hypothesis
would no longer hold, since the depth of recursion could be linear and then the
sum of the costs to determine the size of the first component in a recursive fashion
yields a worst-case cost in ��n2�. Similarly, the inductive hypothesis also fails when
we have dependencies (left-recursion) in the specification, like in � = Z +� ��.
The proof for the other constructions (sequences, cycles) works in a

similar way.

5. A CALCULUS FOR THE AVERAGE COST OF UNRANKING

The simplicity of the lexicographic unranking procedures allows for a detailed
analysis of the average cost and higher-order moments. Following the spirit of
the cost algebra for random generation introduced by Flajolet, Zimmerman, and
Van Cutsem [6], we introduce the cumulated costs

ϒ�n =
∑
α∈�n

cu�α��

where cu�α� denotes the cost of unrank��� n� i� with α being the object of rank i
in �n. The exponential generating function of the cumulated costs is then

ϒ��z� = ∑
n≥0

ϒ�n
zn

n!
= ∑

α∈�
cu�α� z

�α�

�α�! � (5)

and the average cost µn�� of unranking objects in �n is given by

µn�� = �zn
ϒ��z�
�zn
A�z� �

These average costs will not include the preprocessing time needed to compute the
tables of counts, nor the time to reconstruct the labels. The number of arithmetic
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operations done in the nonrecursive part of the unranking algorithm for products
or boxed products with lexicographic order is c1 · j + c2, where j is the size of the
first component of the unranked pair and c1� c2 are suitable constants. Hence, if we
compute the cumulated costs ϒ�n by counting the number of iterations made to
determine the sizes of components, then the actual average complexity of unranking
will be given by c1 · µn��+ lower-order terms.
Under the above hypothesis, the operator ϒ behaves exactly like the operator !

introduced in [6] to analyze the average complexity of random generation and obeys
the rules given below (we call them ϒ-rules). We leave the next two results without
proof as they are immediate consequences of the more general results in Section 6.

Theorem 4.

1. ϒ�ε� = ϒ�Z� = 0.
2. ϒ�� +�� = ϒ� + ϒ�.
3. ϒ�� ��� = �A · B + ϒ� · B +A · ϒ�.
4. �ϒ�� � ��� = �2A · B +�ϒ� · B +�A · ϒ�, where the operator � for gen-
erating functions is � ≡ z�d/dz�.

The last rule above is a consequence of the identity ϒ� ≡ �ϒ, a result which
we can get by reasoning by structural induction. For instance, if � = � � ��, then
�� = �� ��; hence,

ϒ�� = ϒ��� ��� = �2A · B + ϒ�� · B +�A · ϒ�
= �2A · B +�ϒ� · B +�A · ϒ� = �ϒ�� � ��� = �ϒ��

A direct argument for this “commutativity” rule also follows from the straightfor-
ward complementary algorithms to unrank �� given an unranking algorithm for
� and conversely, to unrank � given an unranking algorithm for ��. These algo-
rithms are also useful to implement the so-called differential heuristic (see Section 8)
and could be used in place of the algorithm for boxed products (see Algorithm 4).

Algorithm 4. Unranking �� ↔ �

unrank���� n� i� �Unrank � given the unranking for ���
i′ �= i div n unrank��� n� i�
α �= unrank��� n� i′� α �= unrank����� n� i ∗ n�
mark the (i mod n)+1-th atom of α remove the mark from α
return α return α

From Theorem 4 and Eqs. (2)–(4), we can easily obtain rules for sequences,
sets, and cycles, their restricted-cardinality variants (we give here just the rules for
sequences and sets of exactly k components, the other are collected in Appendix A
for completeness), and for substitutions.

Corollary 1. Let � be a combinatorial class such that ε /∈ � (equivalently, A�0� = 0).
Then
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1. ϒ�Seq���� = �A+ϒ�
�1−A�2 .

2. ϒ�Set���� = exp�A� · ��A+ ϒ��.
3. ϒ�Cycle���� = �A+ϒ�

1−A .
4. ϒ�Seq��� card = k�� = kAk−1��A+ ϒ��, for k ≥ 0.
5. ϒ�Set��� card = k�� = Ak−1

k−1! ��A+ ϒ�� if k > 0 and ϒ�Set��� card = 0�� = 0.
6. ϒ����
� = ��� + ϒ���B�z�� + ��B + ϒ�� ·A′�B�z��.

6. PROBABILITY DISTRIBUTION AND HIGHER-ORDER MOMENTS

We now extend the idea behind the ϒ-algebra to the operator ϒ̂ for probability
distributions. Formally, given a class �, the ϒ̂ operator applied to � is the following
bivariate generating function:

ϒ̂��z� u� = ∑
α∈�

z�α�

�α�!u
cu �α�� (6)

By definition, the coefficient of znuk is the number of objects in �n such that the
cost of unranking them is k, divided by n!. Furthermore, ϒ̂��z� 1� = A�z�. Hence

Pr�cu �α� = k � α ∈ �n� = �znuk
ϒ̂��z� u�
�zn
A�z� = �znuk
ϒ̂��z� u�

�zn
ϒ̂��z� 1�
�

and

pn�u� =
�zn
ϒ̂��z� u�
�zn
ϒ̂��z� 1�

is the probability generating function (PGF) of the random variable

Yn�� = “cost of unranking an object of size n in �”�

Moreover, since the cost cu�α� to unrank an object α is basically the same as the
cost of randomly generating that object, it follows that the results below apply to
the complexity of random generation of labeled classes as well.
Successive differentiation of ϒ̂� with respect to u yields the factorial moments of

the random variable Yn��. Indeed, if we define

ϒ�r���z� = ∂rϒ̂��z� u�
∂ur

∣∣∣∣
u=1

(7)

then
Ɛ�Yr

n��
 = Ɛ�Yn���Yn�� − 1� · · · �Yn�� − r + 1�


= �zn
ϒ�r���z�
�zn
A�z� = �zn
ϒ�r���z�

�zn
ϒ�0���z� �

Obviously, ϒ�1� ≡ ϒ, where ϒ is the operator introduced in Section 5. Ordinary and
central moments can be easily recovered. For instance, if µn�� = Ɛ�Yn��
, then the
variance is given by

��Yn��
 =
�zn
ϒ�2���z�
�zn
ϒ�0���z� + µn�� − µ2

n���

The basic rules for computing ϒ̂� are given in the next theorem.
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Theorem 5. Let � and � be two labeled combinatorial classes.

1. ϒ̂�ε� = 1.
2. ϒ̂�Z� = z.
3. ϒ̂�� +�� = ϒ̂��� + ϒ̂���.
4. ϒ̂�� ��� = ϒ̂����zu� u� · ϒ̂����z� u�.
5. �ϒ̂�� � ��� = ��ϒ̂����zu� u�� · ϒ̂����z� u�, with � = z�∂/∂z�.

Here, we also have the “commutativity” rule �ϒ̂ ≡ ϒ̂� by the same arguments
discussed towards the end of Section 5.

Proof. Statements (1) and (2) trivially follow from the definition of ϒ̂. If γ ∈ �+�,
then cu�γ� = cu��γ� if γ ∈ �, and cu�γ� = cu��γ� if γ ∈ �. Rule (3) then easily
follows.
For products we have,

ϒ̂�� ��� = ∑
γ∈���

z�γ�

�γ�!u
cu �γ� = ∑

α∈�

∑
β∈�

( �α� + �β�
�α�

)
· z�α�+�β�

��α� + �β��!u
�α�+cu��α�+cu��β�

=
(∑
α∈�

z�α�

�α�!u
�α�+cu��α�

)
·
(∑
β∈�

z�β�

�β�!u
cu��β�

)
= ϒ̂����zu� u� · ϒ̂����z� u��

Similarly, for boxed products,

�ϒ̂�� � ��� = ∑
γ∈����

z�γ�

��γ� − 1�! u
cu�γ�

= ∑
α∈�

∑
β∈�

( �α� + �β� − 1
�α� − 1

)
· z�α�+�β�

��α� + �β� − 1�!u
�α�+cu��α�+cu��β�

=
(∑
α∈�

z�α�

��α� − 1�!u
�α�+cu��α�

)
·
(∑
β∈�

z�β�

�β�!u
cu��β�

)
= ��ϒ̂����zu� u�� · ϒ̂����z� u��

Corollary 2. Let � be a combinatorial class such that ε �∈ � (equivalently, A�0� = 0).
Then

1. ϒ̂�Seq���� = 1
1−ϒ̂��zu�u� .

2. ϒ̂�Set���� = exp�ϒ̂��zu� u���
3. ϒ̂�Cycle���� = log

(
1

1−ϒ̂��zu�u�

)
�

4. ϒ̂�Seq��� card = k�� = �ϒ̂��zu� u��k for k ≥ 0.
5. ϒ̂�Set��� card = k�� = �ϒ̂��zu�u��k

k! for k ≥ 0.
6. ϒ̂����
� = ϒ̂��ϒ̂��zu� u� · u� u�.
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Proof. Since Seq��� = ε+ � � Seq���, it follows that
ϒ̂�Seq���� = 1+ ϒ̂�� � Seq���� = 1+ ϒ̂��zu� u� · ϒ̂�Seq����

= 1

1− ϒ̂��zu� u�
�

For Set��� = ε+ � � � Set���, we have

�ϒ̂�Set���� = �ϒ̂�� � � Set���� = ��ϒ̂��zu� u�� · ϒ̂�Set�����
and the result follows by integration. The rule for cycles follows from the observa-
tion that

�ϒ̂�Cycle���� = ��ϒ̂��zu� u�� · 1

1− ϒ̂��zu� u�
= �

(
log

1

1− ϒ̂��zu� u�

)
�

The rule for sequences of fixed cardinality is easily established iterating the rule
for products. For sets of k components, let ��k� = Set��� card = k� and introduce
S�z� u� t� = ∑

k≥0 ϒ̂�
�k��z� u�tk. From the rule for boxed products and the inductive

definition

��k� =
{
� � � ��k−1� if k ≥ 1,
ε if k = 0,

we obtain the differential equation

�S�z� u� t� = �ϒ̂��zu� u� · t · S�z� u� t�
whose solution is S�z� u� t� = exp�t · ϒ̂��zu� u�� and hence ϒ̂��k� = �tk
S�z� u� t� =
�ϒ̂��zu� u��k/k!.
Last but not the least, the substitution rule can be proved as follows:

ϒ̂����
� = ∑
�α�β�∈���


z�β�

�β�!u
�α�+cu�α�+cu�β�

= ∑
α∈�

u�α�+cu�α� · ∑
β∈Set��� card=�α��

z�β�

�β�!u
cu�β�

= ∑
α∈�

u�α�ucu�α�ϒ̂�Set��� card = �α���

= ∑
α∈�

�ϒ̂��zu� u� · u��α�
�α�! ucu�α�

= ϒ̂��ϒ̂��zu� u� · u� u��

By using Leibniz differential formula [1] for products, the rules for the ϒ�r�-
calculus easily follow from the definition of ϒ�r� and the rules given in Theorem 5,
so we leave our next theorem without proof. Likewise, we do not explicitly state
the ϒ�r� rules for sequences, sets, etc. (we do it for the case r = 1 in Corollary
1 above). Notice that Theorem 4 is the particular case of the theorem below
when r = 1.
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Theorem 6. Let � and � be two labeled combinatorial classes and let A�z� and
B�z� be their respective exponential generating functions.

1. ϒ�r��ε� = ϒ�r��Z� = 0.
2. ϒ�r��� +�� = ϒ�r���� + ϒ�r����.
3. ϒ�r��� ��� = ∑r

j=0

(
r
j

)
ϒ�j��

∑r−j
k=0

(
r−j
k

)
zk ∂k

∂zk
ϒ�r−j−k��.

4. �ϒ�r��� � ��� = ∑r
j=0

(
r
j

)
ϒ�j��

∑r−j
k=0

(
r−j
k

)
zk+1 ∂k+1

∂zk+1ϒ
�r−j−k��.

7. EXAMPLES

Consider any simply generated family of ordered trees 	 , freely generated by a set
of symbols 
 and equipped with an arity ν: 
 → �:

	 = 
0 + 
1 � 	 + 
2 � 	 � 	 + · · · = ∑
k≥0


k � Seq�	 � card = k�� (8)

where 
k is the subset of symbols of arity k (
k = �s ∈ 
 � ν�s� = k�) and we
impose that the size of all the subsets is bounded by some constant and that 
0 is
not empty.
It is well known (see for instance [4, 12, 13]) that the counting generating function

of 	 satisfies

F�z� = zφ�F�z���

where φ�u� = ∑
k≥0φku

k and φk is the number of symbols of arity k. Under some
mild assumptions, it can be easily proved that

F�z� ∼ τ − c · �1− z/ρ�1/2�

as z → ρ, where ρ = ψ�τ�, ψ�u� = u/φ�u�, τ is the smallest positive root of
ψ′�x� = 0, and

c =
√

−2ρ
ψ′′�τ� =

√
2φ�τ�
φ′′�τ� �

Then, using standard singularity analysis, it is easy to show that the number of
trees of size n in 	 is asymptotically given

�zn
F�z� ∼ n! · ρ−nn−3/2 c

2
√
π
�

Let us now consider the average cost of unranking an object from a simply gen-
erated family 	 . From the rule for sequences of k components (see Corollary 1), it
follows that

ϒ�	 k� = k · Fk−1 · ��F + ϒ	 �� k ≥ 0�

where we use 	 k as a shorthand for Seq�	 � card = k�.
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On the other hand, ϒ�Z � �� = z · �C + ϒ��, and thus

ϒ	 = ϒ�Z � φ�	 �� = zφ�F� + zϒ�φ�	 �� = F + z
∑
k≥0

φk · ϒ�	 k�

= F + ��F + ϒ	 ���φ��F� = ��F�2
F

�

where φ�	 � stands for the right-hand side of Eq. (8). The last step involves a
somewhat lengthy computation along the lines suggested by the second-to-last step,
and the use of some identities, in particular,

�F = F +�F ·��φ��F��

By using the standard analytic techniques, it is easy to establish the following
expansion of ϒ	 around the dominant singularity z = ρ:

ϒ	 �z� ∼ c2

4τ
· �1− z/ρ�−1�

where ρ, τ, and c are defined as above; the rest is routine application of singularity
analysis, yielding the following lemma.

Lemma 1. Let 	 be a simply generated family of trees whose counting generating
function F�z� satisfies

F�z� = z ·φ�F�z���

with φ�u� = ∑
k≥0φku

k and φk = number of symbols of arity k. Furthermore, assume
that gcd�k � φk �= 0� = 1. Then the expected cost µn�	 of unranking an object of size
n in 	 is

µn�	 = �zn
ϒ	 �z�
�zn
F�z� = K	 · 1

2
n
√
πn�

where

K	 = c

τ
= 1
τ

√
2φ�τ�
φ′′�τ� �

ρ = ψ�τ�� ψ�u� = u

φ�u� �

and τ is the smallest positive root of ψ′�x� = 0.

The lemma also applies to unlabeled families of trees, as the development only
involves unions and products, which obey the same rules for both labeled and unla-
beled unranking.
For instance, for general trees

� = �◦� + �◦� � � + �◦� � �2 + · · · = �◦� � Seq���
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we have φ�u� = 1/�1− u�. Then τ = 1/2, ρ = 1/4, and φ′′�u� = 16. Hence, K� = 1
and µn�� = 1

2n
√
πn+ ��n�.

Another example is the so-called Motzkin trees or unary-binary trees, for which
φ�u� = 1 + u + u2. The dominant singularity of M (and hence of ϒ
) is located
at z = 1/3 and by applying the above lemma one easily obtains µn�
 = 1

2n
√
3πn+

��n�, with K
 = √
3. The same result can be arrived at by using the specification


 = ���
, where � = Z +Z � Seq��� card = 2� and � = Z � Seq�Z�, i.e. a unary-
binary tree is the result of substituting each node of a binary tree (�) by a sequence
of 1 or more atoms (�), and applying rule 6 of Corollary 1 for substitutions.
The conditions of the lemma can be somewhat relaxed, in particular, the condition

gcd�k � φk �= 0� = 1, and still get a similar result. However, one gets multiple
dominant singularities in that case and has to sum up their contributions. As a
result, the asymptotic estimate for the average cost of unranking is ��n√n�, but the
computation of the constant requires some additional effort. Moreover, if d ≥ 2
is the gcd of the φks, then the value of µn�	 vanishes unless n mod d = 1. For
instance, for binary trees (φ�u� = 1+ u2, d = 2), the average cost of unranking is
0 if n is even—which is not a surprise, as there are no binary trees of even size.
The development that lead to Lemma 1 does apply to simply generated families

of nonordered trees as well (for instance, it applies to Cayley trees), as shown in [6],
since

ϒ	 = ϒ�Z � φ�	 �� = zφ�F� + zϒ�φ�	 ��
= F + z

∑
k≥0

φk · ϒ�Set�	 � card = k��

= F + ��F + ϒ	 ���φ��F�

= ��F�2
F

�

and

φ�F� = ∑
k≥0

φk
Fk

k!
�

As C�z� = z · exp�C�z�� for Cayley trees, we have ρ = e−1, τ = 1, and K� = √
2.

Then µn�� = n
√
nπ/2 + ��n� (see also [6, p. 21]).

Back again to the cost of unranking simply generated families of ordered trees,
the evaluation of ϒ�2�	 from the rules given in Theorem 6 is a lengthy computation
although feasible using some symbolic computation system. The derived rule for
ϒ�2��	 k� is by no means as simple and short as that for ϒ�	 k� and we will not give
it here.
Another approach is to obtain a recurrence for ϒ̂	 , differentiate it twice w.r.t.

u and set u = 1. Given the simplicity of the rule for ϒ̂	 and the independent
interest of that formula, we follow this second approach. On passing, the functional
equation satisfied by ϒ̂	 �z� u� strongly suggests an asymptotic Airy distribution for
the cost of unranking simple families of trees [14–16].

Lemma 2. The bivariate generating function ϒ̂	 satisfies

ϒ̂	 �z� u� = zuφ�ϒ̂	 �zu� u���
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Several identities, like ϒ̂	 �z� 1� = F�z�, F�z� = zφ�F�z��, etc. have to be applied
to reduce the recurrence to a manageable form like

ϒ�2�	 �z� = 5
��F�2 ·�2F

F2 + ��F�3
F2 − �F ·�2F

F
− ��F�2

F
− 4

��F�4
F3 �

Once ϒ�2�	 has been expressed in terms of F�z� and its first and second deriva-
tives, the corresponding asymptotic estimate of ϒ�2��	 � around the singularity
z = ρ is

ϒ�2�	 �z� ∼ 5c3

16τ2
· �1− z/ρ�−5/2�

which can be readily used to get the asymptotic form of the coefficients and finally,
the variance.

Lemma 3. Let 	 be a simply generated family of (non)ordered trees whose counting
generating function F�z� satisfies

F�z� = z ·φ�F�z���
with φ�u� = ∑

k≥0φk u
k and φk = number of symbols of arity k. Furthermore, assume

that gcd�k � φk �= 0� = 1. Then the variance of the cost σ2
n�	 of unranking an object

of size n in 	 is

σ2
n�	 = �zn
ϒ�2�	 �z�

�zn
F�z� + µn�	 − µ2
n�	 = K2

	

(
5
6
− π

4

)
· n3 + �

(
n5/2

)
where K	 is as in Lemma 1.

For instance, the variance of unranking general trees is 0�0479351698 � � � · n3 +
o�n3�, while that of unary-binary trees is 0�1438055094 � � � · n3 + o�n3�. For Cayley
trees, the variance is 0�0958703 � � � · n3 + o�n3�.
Before ending this section, it is important to mention that there can be slight dif-

ferences of the cost of an unranking class depending on the given specification. We
explore this subject further in the next section, but we illustrate this phenomenon
with a simple example, namely, permutations. The class of permutations can be
defined as the class of labeled sequences of atoms, i.e., � = Seq�Z�. By corollary 1
and since the generating function of any atomic class Z is A�z� = z, we have

ϒ� = �z + ϒZ

�1− z�2 = z

�1− z�2 �

Also, we have that the generating function of permutations is P�z� = 1/�1 − z�.
Extracting coefficients, we get µ�n = ��zn
z/�1 − z�2�/��zn
1/�1 − z�� = n. But
permutations can also be defined as sets of cycles of atoms, � = Set����� =
Cycle�Z�, then ϒ� = exp�C���C + ϒ�� and

ϒ� = �z + ϒZ

1− z
= z

1− z
�

Hence, ϒ� = 2z/�1− z�2 and µ�n = 2n if n > 0.
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8. HEURISTICS

We have already mentioned the isomorphism �� �� � � �� �. Also, there is the
obvious isomorphism � �� � � � �. Together, these two isomorphisms constitute
the basis for the big-endian heuristic introduced by Flajolet, Zimmerman, and Van
Cutsem [6] in the context of random generation.
By using the specification � � � or � � � makes no difference from the point

of view of the algorithm—it is even possible that the unranking algorithm trans-
forms an original specification � �� to the isomorphic specification � ��, performs
the actual unranking w.r.t. � � � and performs the inverse transformation on the
returned object. However, the performance can radically change from one specifi-
cation to the other. In particular, if we compare ϒ�� � �� to ϒ�� � ��, then we
will prefer the former specification if the nth coefficient of �A · B is asymptotically
smaller than the nth coefficient of �B ·A, and the other way around. For instance,
consider the products � � Seq��� and Seq��� � �. Typically one has

�zn
�
(

1
1−A

)
·A! �zn
�A · 1

1−A
�

and hence it is advisable to define sequences by the specification

Seq��� = ε+ � � Seq���

rather than the equivalent (isomorphic) specification

Seq��� = ε+ Seq��� � ��

In general, the specification � �� is to be preferred over � �� if the nth coefficient
of A is of a lower-order of magnitude than the nth coefficient of B.
On the other hand,

�ϒ��� ��� = �2A · B +�A · ϒ�+ B ·�ϒ��
�ϒ�� �� �� = �B ·�A+�A · ϒ�+ B ·�ϒ��

so the comparison is now between the nth coefficients of �2A · B and �A · �B.
This comparison is significant when choosing an appropriate specification for sets
and cycles in terms of boxed products. Recall that through this article we have used

� = Set��� ⇐⇒ � = ε+ �� � ��

� = Cycle��� ⇐⇒ � = �� � Seq����

but in general the alternative specifications

� = Set��� ⇐⇒ � = ε+ � �� ��

� = Cycle��� ⇐⇒ � = Seq��� �� ��

yield better performances; nevertheless, for iterative specifications (see Theorem 3),
the isomorphisms (2)–(4) should be used.
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For example, while the average cost of unranking Cayley trees (� = Z � Set���)
is ��n3/2� as shown in Section 7, if we use the alternative isomorphism for sets,
then the average cost of unranking Cayley trees is ��n log n� [6]. Indeed,

�ϒ� = ϒ� + C ·�ϒ� +�C · ϒ� + ��C�2�
so that ϒ� = C/�1 − C� log�1/�1 − C�� whose nth coefficient is ��en n−1/2 log n�.
Since �zn
C�z� is ��en n−3/2�, the result follows. The result is easily generalized
to simply generated families of nonordered trees; all these can be unranked with
average cost ��n log n�, using the right boxed products (��) to specify sets and sets
of restricted cardinality.
However, the ϒ̂- and ϒ-rules for sets and cycles, for their variants with restricted

cardinality and for substitutions, as given here, are much simpler than those for
the specifications based upon the big-endian heuristic (cf. [6]). For instance, for
Set��� = ε+ Set��� �� �, the rule is

ϒ�Set���� = exp�A�
(
ϒ� +

∫ ��A�2
z

dz

)
�

In any case, the big-endian heuristic is useful both for unranking and for random
generation, and yields identical improvements. The same can be said concerning
the differential heuristic: use differential specifications when feasible. Thus, rather
than the usual specification � = Z +� �� for binary trees, it is more convenient
to use

�� = Z +�� ��+� � �� � Z + ��+�� � ���
where the second specification comes from the application of the big-endian heuris-
tic. We then have

ϒ�� = 2��B�2 + 2B · ϒ��+ 2�B · ϒ��
�ϒ� · �1− 2B� = 2 ��B�2 + 2�B · ϒ��

and solving the first-order linear differential equation above, we get that unranking
of binary trees can be done in time ��n log n� (once we get the marked tree in ��,
it is trivial to recover the sought tree (see Algorithm 4)).

9. IMPLEMENTATION AND EXPERIMENTS

We have implemented the algorithms described in this work in the computer algebra
system Maple2. Various routines of the package combstruct [3] have been used, in
particular, the routines for counting and parsing of combinatorial specifications. The
interface is similar to that of the function draw for random generation defined in
combstruct. For example, we could write:

> bintree:= B = Union(Z, Prod(B, B)):
> unrank([B,bintree, labeled], size = 10, rank = 30);

2 The implementation is available by request from the second author; please send e-mail to
molinero@lsi.upc.es.
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TABLE 1 Average cost of unranking
(experimental data)

n µ̄n

50 290.942
100 825.517
150 1549.845
200 20409.979
250 3421.496
300 4460.638

to obtain the (labeled) binary tree of rank 30 among the binary trees of 10 leaves
(notice that according to the given specification, the atoms are the leaves of the
tree). In general, the syntax for unrank is

unrank ([ class, specification, labeled], size = n, rank = i, options)

where the optional argument options is a comma-separated list that includes among
others lexicographic (default) or boustrophedonic to specify the ordering and
leftboxprod (default) or rightboxprod to specify whether �� or �� should be used
for sets and cycles. The syntax for specifications follows the same rules as in the
package combstruct. Our implementation does not incorporate the automatic trans-
formation of specifications using the big-endian and differential heuristics, though.
We have conducted a few experiments to measure the empirical performance of

the unranking algorithms and as a further check for the validity of the theoretical
developments.
Table 1 collects the average values of unranking binary trees obtained by select-

ing a sample of M = 10000 ranks at random for each size, counting the number
of arithmetic operations used to unrank each object in the sample and aver-
aging these figures over the sample. The best fit for the collected data (shown
in Fig. 1) is 0�884n

√
n. The difference with the theoretical prediction is almost

unappreciable in the plot (it can be noticed in the right part of the figure, when
n → 300). Actually, the relative error is less than 1% as the predicted value3

is µn�� = √
π/2 n

√
n+ ��n� = 0�8862269255 � � � · n√n+ ��n�. On the other hand,

if boustrophedonic order is used, then the observed values for the average com-
plexity fit well with the predicted ��n log n� behavior (the coefficient of n log n
computed from our experimental data is 0�704 but there is no theoretical prediction
to compare with).
Another combinatorial class that we have used for our experiments is the class

of functional graphs. A functional graph is a set of cycles of Cayley trees. That is,

	 = Set����
� = Cycle�� ��
� = Z � Set�� ��

3 Using the standard specification � = Z +� �� and lexicographic order.
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Fig. 1. Average cost of unranking (experimental data).

For instance, the commands

> functgraphs:= {F = Set(C), C = Cycle(A), A = Prod(Z, Set(A))}:
> unrank([F, functgraphs, labeled], size = 10, rank = 500000000);

produce the object (conventionally depicted):

Routine application of the rules given in Section 5 yields

ϒ	 = T �3− 2T �
�1− T �4 �
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where T �z� = ∑
n≥0 n

n−1zn/n! is the usual tree function (the counting generating
function of Cayley trees). Then n! · �zn
ϒ	 ∼ n/4 · en + ��en� and thus

µn�	 = n

4

√
2πn+ ��n� ≈ 0�626657n

√
n+ ��n��

10. FINAL REMARKS AND FUTURE RESEARCH

The framework for the unranking of labeled classes translates smoothly to the
unranking of unlabeled classes involving unions, products, and sequences. Sets—
actually multisets—, powersets, and cycles require a different approach since they
cannot be specified by means of boxed products and/or the pointing operator �.
The use of the so-called stack product proves useful for the unranking of multi-
sets, for which we have already an unranking algorithm. In the case of multisets,
the stack product collects identical occurrences of an object together, in accordance
with the usual isomorphism

Set��� = :α∈�Seq�α��
However, we have been not yet able to find an algorithm to generate unlabeled
cycles.
Another important focus for our ongoing research is the design and implementa-

tion of efficient generic iteration algorithms (given an object, find the next object)
and their precise analysis. We already have some preliminary and promising results,
showing that it is possible to get generic algorithms whose performance (constant
amortized time) is comparable to that of specialized ad-hoc algorithms.
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APPENDIX A: SEQUENCES, SETS, AND CYCLES OF
RESTRICTED CARDINALITY

We collect here the basic ϒ̂-rules for sequences, sets, and cycles of restricted cardi-
nality. The ϒ- and ϒ�r�-rules can be easily derived from these by differentiation.
First, we give the specifications that we have considered (alternative isomorphisms

would yield different rules, see Section 8). To simplify, we introduce the appealing
syntax �condition for sequences of restricted cardinality, ��cond� for sets and ��cond�

for cycles.

1. Sequences: For k ≥ 1,

�k = � � �k−1�

�≤k = ε+ � � �≤k−1�

�≥k = �k � Seq����
with �0 = �≤0 = ε.
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2. Sets: For k ≥ 1,

��k� = �� � ��k−1��

��≤k� = ε+ �� � ��≤k−1��

��≥k� = ��k��� Set����

with ��0� = ��≤0� = ε.
3. Cycles: For k ≥ 1,

��k� = �� � �k−1�

��≤k� = �� � �≤k−1�

��≥k� = �� � �≥k−1�

And the corresponding rules are:

1. Sequences: For k ≥ 0,

ϒ̂�k = �ϒ̂��zu� u��k�

ϒ̂�≤k = �ϒ̂��zu� u��k+1 − 1

ϒ̂��zu� u� − 1
�

ϒ̂�≥k = �ϒ̂��zu� u�k�
1− ϒ̂��zu� u�

�

2. Sets: For k ≥ 0,

ϒ̂��k� = �ϒ̂��zu� u��k
k!

�

ϒ̂��≤k� = ∑
0≤i≤k

�ϒ̂��zu� u��i
i!

�

ϒ̂��≥k� = exp�ϒ̂��zu� u�� − ∑
0≤i<k

�ϒ̂��zu� u��i
i!

�

3. Cycles: For k ≥ 1,

ϒ̂��k� = �ϒ̂��zu� u��k
k

�

ϒ̂��≤k� = ∑
1≤i≤k

�ϒ̂��zu� u��i
i

�

ϒ̂��≥k� = log
(

1

1− ϒ̂��zu� u�

)
− ∑

0<i<k

�ϒ̂��zu� u��i
i

�
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Not surprisingly, all the ϒ̂-rules have the form

ϒ̂���� = ��ϒ̂��z · u� u���

where � is the operator over combinatorial classes and � the corresponding oper-
ator for (counting) generating functions.
The proof for all the cases is similar to that given for sequences and sets of

cardinality exactly k (the two most interesting cases) in the proof of Corollary 2 in
Section 6. Also, it is easy to prove the more general statements:

ϒ̂�Seq��� card ∈ �� = ∑
k∈�

�ϒ̂��zu� u��k�

ϒ̂�Set��� card ∈ �� = ∑
k∈�

�ϒ̂��zu� u��k
k!

�

ϒ̂�Cycle��� card ∈ �� = ∑
k∈�

�ϒ̂��zu� u��k
k

�

the rules given for card � k just particular cases of those above.
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