
A Proposal for Extensible AspectJ ∗

Vladimir Oliveira Di Iorio
Universidade Federal de Viçosa - Brazil

vladimir@dpi.ufv.br

Leonardo Vieira dos Santos Reis
Roberto da Silva Bigonha

Mariza Andrade da Silva Bigonha
Universidade Federal de Minas Gerais - Brazil

{leo,bigonha,mariza}@dcc.ufmg.br

ABSTRACT
This article presents the preliminary results achieved while
working with a language to define extensions to the con-
crete syntax of AspectJ. The language uses the concept of
syntax classes, units that extend classes with syntax defi-
nitions, building modular specifications for extensions. A
syntax class can define a new construct with cross-cutting
features either by translating it into pure AspectJ code or
by modifying the behaviour of elements in different parts of
the program, acting like an aspect weaver. The definition
of new pointcut designators is also possible, with clear sep-
aration between run-time and weave-time processing. The
language can be used as a tool to create domain-specific ex-
tensions to AspectJ, and domain-specific aspect languages
embedded into AspectJ.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Extensible languages

General Terms
Languages

1. INTRODUCTION
Domain-specific aspect languages (DSALs) are program-

ming languages with aspect-oriented features specially de-
signed for a particular domain. Aspect-oriented languages
must cope with cross-cutting behaviour, meaning that con-
structs may affect several distinct parts of a program. So
the implementation of DSALs frequently requires more so-
phisticated resources than the ones required by languages
without aspect orientation.

Syntax extension is a technique that can be used to em-
bed a domain-specific language within an existing language.
Some tools for syntax extension of programming languages

∗Work supported by Fapemig (APQ-00205-08).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DSAL’09, March 3, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-455-3/09/03 ...$5.00.

work as macro expanders, with new defined constructs re-
placed by code written on the original (base) language [11,
7]. This technique may also be applied to aspect-oriented
languages, when the cross-cutting resources of the base lan-
guage are powerful enough to express the semantics of the
new proposed constructs [10, 8].

This article presents XAJ , a language to extend the con-
crete syntax of AspectJ, with more powerful resources than
the ones provided by simple macro expanders. The main
concept of XAJ is syntax classes, units that encapsulate the
specification of extensions, adding syntax definitions to As-
pectJ classes.

Some of the main features of XAJ are presented by exam-
ples, in the next sections. Section 2 explains how the basic
mechanism of syntax classes works, and shows an example
where a single instance of a new proposed construct is trans-
lated into several AspectJ elements. Section 3 describes an
example that the cross-cutting resources of AspectJ are not
powerful enough to define the semantics of the proposed new
construct. The solution using XAJ shows how the language
can execute typical tasks of an aspect weaver, changing the
behaviour of elements located in different parts of the pro-
gram. Several proposals of extensions for AspectJ deal with
extensions of the pointcut language definition. Section 4
describes the XAJ approach for this problem, giving a defi-
nition of a new pointcut designator with a clear separation
of run-time and weave-time processing.

Although the examples discussed in the following sections
do not always represent real use situations or complete lan-
guages, they give a clear perspective of how XAJ can be
used to easily design and implement extensions for AspectJ.

2. MULTI-INTRODUCTIONS
An extension for AspectJ proposed in [6] eliminates redun-

dancy related to inter-type declarations in cases where the
declarations must be inserted in several classes, but follow-
ing a simple pattern. An example is the accept method for
the Visitor pattern, which must be inserted in all classes on
a given class hierarchy. Chiba suggests the following syntax
for multi-introductions:

void Base+.accept(Visitor v) { v.visit(this); }

The use of Base+ on the declaration means that it must be
inserted on all subclasses of Base.

Syntax classes are a XAJ resource which extends classes
with syntax definitions. New language constructs may be
defined with the @Grammar declaration, with an associated
semantic action that builds a node of an abstract syntax tree

21

public class MultiIntro extends Sugar {

private TypeD returnType;

private String className, methodName;

private Formals params;

private BlockStm block;

public MultiIntro(TypeD t, String c,

String n, Formals p, BlockStm b) {

returnType = t; className = c;

methodName = n; params = p; block = b; }

@Grammar extends IntroducedDec {

MultiIntro ::=

t = TypeD

c = String

"+." n = String

"(" p = Formals ")"

b = BlockStmt

{ return new MultiIntro(t, c, n, p, b); }

public AST desugar(Context ctx) {

ClassDec cd = ctx.getClass(className);

ClassDec sub[] = cd.getSubClasses();

AspectMembers list = new AspectMembers();

for(ClassDec x : sub)

list.addChild(’[#returnType #x.getName()

.#methodName (#formals) #block]);

return list;

}

}

Figure 1: Definition of multi-introductions.

(AST). Figure 1 shows a syntax class for multi-introduction,
defined as an extension of the nonterminal symbol Intro-
ducedDec of an AspectJ grammar. The @Grammar decla-
ration adds a new nonterminal symbol MultiIntro and two
new production rules to the grammar:

IntroducedDec -> MultiIntro

MultiIntro -> TypeD String "+" "." String

"(" Formals ")" BlockStm

The production rule uses other existing symbols of the As-
pectJ grammar, such as TypeD (return type for methods),
Formals (list of parameters) and BlockStm (block of state-
ments). In the AspectJ grammar adopted, the symbol Intro-
ducedDec is used for the definition of declarations inside an
aspect, such as pointcuts and advices. So the new construct
is treated as a new kind of declaration which may appear
inside an aspect.

Besides defining concrete syntax, syntax classes may also
be used for the representation of new constructs as nodes of
an AST. In Figure 1, the nonterminal symbols of the new
production rule are bound to variables t , c, n, p and b and
the constructor of the class is executed, building an AST
node for the representation of the new MultiIntro construct.
Note that the type of the attributes of the class, which also
represent nodes of an AST, have the same name as the non-
terminal symbols of the AspectJ grammar.

A XAJ compiler translates syntax classes into an extended
AspectJ compiler. When applied to programs using the ex-
tended syntax, the generated compiler first builds an AST
that may include nodes defined by the user. Then a traver-
sal on the AST is performed, and the desugar method is
executed on the new nodes. This method must return pure
AspectJ code, which will replace the processed node on the

public class GlobalPointcut extends Sugar {

static List<GlobalPointcut> globalPcs; ...

public AST desugar(Context ctx) {

globalPcs.add(this); return null;

}

}

Figure 2: Compilation of global pointcuts.

AST. Semantic errors can be detected and reported. Fig-
ure 1 shows an example of desugar for the MultiIntro syn-
tax class. The Context parameter allows access to context
information from the point where the new construct is used
on the program, such as local variable declarations, or even
the entire AST. The Java code on the method body is exe-
cuted during compilation time, when the traversal of the
AST is performed. It calculates the set of subclasses of the
given type using operations on the AST. At this point, it is
not possible to use reflection on the classes of the system,
since no real code has been generated yet. Then the method
returns a list of inter-type declarations that will replace the
multi-introduction node. To build this list, generative pro-
gramming is used, using syntax based on Meta-AspectJ [8].
The generated code must be something that may be pro-
duced by the IntroducedDec symbol of the AspectJ gram-
mar, otherwise a syntax error occurs.

3. GLOBAL POINTCUTS
The example presented in this section shows two features

of XAJ: the use of more than one traversal pass on the AST
and the redefinition of existing AspectJ elements.

In [1], an extension for AspectJ is proposed, called global
pointcut , defining a common conjunct shared by many pieces
of advice. The general form is:

global : <ClassPatern > : <Pointcut >;

It has the effect of replacing the pointcut of each advice
declaration with the conjunction of the original pointcut and
the global Pointcut , for the aspects whose name matches
ClassPattern.

The compilation of global pointcuts requires two passes.
The first pass registers the information about the global
pointcuts, which may appear anywhere inside aspect defi-
nitions. The second pass introduces the conjunctions on all
advices matching the given pattern, for each global pointcut.

Figure 2 shows the compilation of global pointcut decla-
rations. The desugar method is executed, by default, on the
first traversal of the AST. Each global pointcut declaration
is registered on a static list and then a null value is returned,
meaning that the global declaration will not be present on
the generated code.

Figure 3 shows the compilation of advices. The method
definePasses is overridden, defining that desugar is called
only on the second traversal of the AST. The keyword over-
rides on the @Grammar declaration indicates that this class
does not define a new AST node, but changes the behaviour
of AST nodes representing advices. The complete code of
desugar is not shown in Figure 3, but it must implement the
following: each registered global pointcut is analyzed, and a
conjunction is added to the pointcut of the currently visited
advice, if the name of the aspect which contains this advice
matches the registered pattern.

22

public class AdviceGP extends Sugar { ...

public void definePasses() {

includePass(2); } ...

@Grammar overrides Advice; ...

public AST desugar(Context ctx) {

for (GlobalPointcut gp :

GlobalPointcut.getGlobalPcs()) { ... }

}

}

Figure 3: Overriding compilation of advices.

public AST onWeaving(Context ctx) {

Type t = ctx.typeOf(expr);

Type t1 = ctx.typeOf(typeName);

if (t.subTypeOf(t1)) return ’[if (true)];

if (! t1.subTypeOf(t)) return ’[if (false)];

return ’[if (#expr instanceof #typeName)];

}

Figure 4: Weaving-time for a pointcut designator.

The XAJ approach for traversal passes of the AST makes
it easy also to define multiple traversals for a single class.
More than one pass may be included by definePasses, and
in this case an alternative version of desugar may be used,
with an additional parameter pass that indicates the current
traversal pass:

public AST desugar(Context ctx, int pass) {

if (pass == 1) { ...

else if (pass == 2) { ...

This method could be used, for example, to report a warning
for global pointcuts with no matches, in a third traversal
pass.

It is important to note that XAJ offers no support for deal-
ing with problems caused by the interaction of more than
one extension definition. The programmer is totally respon-
sible to define the operations performed in each traversal of
the AST.

4. POINTCUT DESIGNATORS
In [6], a mechanism is proposed in order to enrich pointcut

languages with user-defined pointcut designators, constructs
that play the role of “new primitive pointcuts”. In this sec-
tion, we show that XAJ may do something similar.

Suppose a pointcut designator isType that tests the type
of a given expression, used as follows:

... && args(x) && IsType(x,T) ...

where T is a valid type. Such a test may be implemented
in AspectJ with conditional check pointcuts, but only at
run-time. XAJ proposes a clear separation of run-time and
weave-time processing.

Suppose that a XAJ syntax class defining IsType extends
the AspectJ definition of pointcuts, with attributes expr
and typeName representing the parameters of the proposed
pointcut designator. Figure 4 shows the code of a method
onWeaving that is called during weave-time. Since the defi-
nition of pointcut is extended, this method is called for every
join point visited by the weaver.

The Java code on the method body is executed during

weave-time. If it is possible to decide the result using only
static information, the method returns a pointcut that is al-
ways true or false – in this case, no run-time test is added to
the generated code. If it is not possible to decide the result
using only static information, a run-time test is generated.

The resources for syntax definition even allow the notation
for a new pointcut designator to be different from the pat-
tern “identifier(parameterList)”. It is possible to generate
completely different pieces of code for each join point vis-
ited during weave-time, depending on the current context,
but the generated code must be a valid pointcut. It is also
possible to access directly static information on joinpoints,
dispensing the use of variables like x , on the given example.

5. RELATED WORK
The idea and format of syntax-classes of XAJ, extending

Java classes with syntax definitions, are borrowed from XJ
[7], a proposal for a language extension to Java. In both XAJ
and XJ, extensions are modularized by being attached to
classes, and code is generated in the form of AST instances,
represented by expressions using a quasiquote mechanism.
An important difference is that, in XJ, every new construct
must be prefixed with the “@” character, having only a local
effect, and the semantics of existing constructs may not be
altered. Another obvious difference from XAJ to XJ and
other tools like OpenJava [11] is that those systems generate
only Java code, with no cross-cutting resources.

Maya [3] is another system that generates Java code, us-
ing a pattern matching mechanism to define macro expan-
sion rules on Java ASTs. Unlike XJ, the definitions have
a global effect on Java programs. This feature produces
extensions with lower modularization than XJ, but is well
suited for the implementation of language extensions such
as aspect weaving. Syntax-classes of XAJ define modular-
ized extensions, and also allow the generation of code that
affects several parts of a program, either by generating As-
pectJ code (as in Section 2) or by overriding the semantics
of existing constructs (as in Section 3).

XAspects [10] defines a plug-in mechanism for developing
domain-specific aspect languages. The only point for exten-
sion of the concrete syntax is the definition of aspects. The
aspect keyword may be followed by parentheses containing
a valid type name for a class, which describes the plugin it-
self. All the tokens contained in the {} brackets are scanned
and interpreted by the plugin. So, unlike XAJ, XAspects is
not tailored to the definition of general extensions for the
concrete syntax of AspectJ, and the modification of existing
code is limited by the use of AspectJ advices and intertype
declarations.

In [8], a methodology for language extension using Meta-
AspectJ is presented. It is another approach that uses As-
pectJ as the underlying “assembly” language, with the con-
structs of AspectJ as the only resource for the modification
of existing code. Extensions are defined using annotations.
No mechanism for the extension of the concrete syntax of
the language is discussed.

Josh [6] allows users to define new pointcut designators,
with separation of run-time and weave-time processing. If
a run-time check is necessary, it must be explicitly inserted
using a bytecode manipulation framework. With XAJ, it is
only necessary to generate code following the same mecha-
nism used for all extensions. XAJ also allows pointcut des-
ignators using a new notation defined by the user.

23

A common technique for the implementation of DSLs con-
sists of writing a library in an existing programming lan-
guage, designing a notation for the DSL and then program-
ming a compiler that translates from the notation into equiv-
alent library calls. DSALs makes this task harder, because
crosscutting resources are more difficult to be encapsulated
in libraries. In [2], the Syntax Definition Formalism (SDF)
[12] is used for defining language syntax (notation). The
authors propose the use of Stratego/XT [4] as the program
transformation tool for the definition of libraries with cross-
cutting features.

The AspectBench Compiler (abc) is an implementation of
AspectJ designed to support easy extensibility. In [1], the
authors show how several extensions for AspectJ may be
implemented using this workbench. The example presented
in Section 3 is one of these extensions.

6. CONCLUSION
This article has presented the preliminary results achieved

while working with a language called XAJ, a proposal for ex-
tensible AspectJ. The main contributions are: an approach
that produces modular specifications for AspectJ extensions,
encapsulated in syntax classes; the possibility of defining a
cross-cutting behaviour for new constructs, either by gener-
ating AspectJ code or by overriding the semantics of existing
constructs; easy specification of more than one traversal on
abstract syntax trees; the possibility of defining new point-
cut designators with clear separation of run-time and weave-
time processing.

The design of XAJ tries to follow a criterion of proportion-
ality for the development of extensions: smaller extensions
should require a smaller amount of work and code. It is
evident on the examples shown in sections 2 and 3. If code
must be generated only on the first traversal of the AST, just
the definition of the simple version of the desugar method is
necessary. If the extension requires a single traversal of the
AST, different from the first one, the definePasses method
must be overridden. If two or more traversals are required,
they must be defined on the definePasses method and the
extended version of the desugar method must be used.

The plans for the complete development of XAJ are as
follows: (1) design a first version for the specification of
the language; (2) collect significant examples of extensions
for the AspectJ language; (3) describe how the selected ex-
tensions may be implemented in XAJ; (4) build a compiler
for the language; (5) test the extensions with the compiler.
This work has presented results from stages (1), (2) and (3)
above. Now we are evaluating tools for the implementation
of the compiler for the language.

The implementation of XAJ syntax classes requires tools
that allow the definition of formal languages with easy ex-
tensibility. Polyglot [9] is a good option, with the specifi-
cation of AspectJ given on the abc workbench [1]. Another
option is the Syntax Definition Formalism (SDF) [12], with
the definition of AspectJ presented in [5].

The code generation in XAJ uses a quasiquote mechanism,
as shown in figures 1 and 4. One option for this mechanism
is Meta-AspectJ (MAJ) [8], a mature meta-programming
tool with resources that imply syntactically correct gener-
ated programs.

The example presented in Section 4 shows how new point-
cut designators can be defined in XAJ. The proposed mech-
anism produces calls to the onWeaving method for every

jointpoint visited by the weaver, when the definition of point-
cut is extended by a syntax class. In the future, XAJ may
propose notations for other extensions that must interact
with the AspectJ weaver, such as: the definition of new kinds
of joinpoints, and new pointcuts that match these joinpoints;
the definition of new pointcuts that produce variable bind-
ings, such as the AspectJ args pointcut; the definition and
use of new dynamic and static information for weave-time
processing. Examples of such extensions are implemented
in the abc workbench and are well documented in [1]. XAJ
may evolve to become a DSAL with a notation specially
designed for the extensibility mechanisms of abc.

7. REFERENCES
[1] P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: an
extensible aspectj compiler. In Proceedings of AOSD
’05, pages 87–98, New York, NY, USA, 2005. ACM.

[2] A. H. Bagge and K. T. Kalleberg. DSAL =
library+notation: Program Transformation for
Domain-Specific Aspect Languages. In DSAL’06
Workshop, 2006.

[3] J. Baker and W. C. Hsieh. Maya: multiple-dispatch
syntax extension in java. In Proceedings of PLDI ’02,
pages 270–281, New York, NY, USA, 2002. ACM.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/XT 0.16. Components for
transformation systems. In PEPM’06 Workshop,
Charleston, South Carolina, January 2006. ACM
SIGPLAN.

[5] M. Bravenboer, E. Tanter, and E. Visser. Declarative,
formal, and extensible syntax definition for AspectJ. A
case for scannerless generalized-lr parsing. In W. R.
Cook, editor, Proceedings of OOPSLA’06, pages
209–228, Portland, Oregon, October 2006. ACM Press.

[6] S. Chiba and K. Nakagawa. Josh: an open aspectj-like
language. In Proceedings of AOSD ’04, pages 102–111,
New York, NY, USA, 2004. ACM.

[7] T. Clark, P. Sammut, and J. Willans. Beyond
Annotations: A Proposal for Extensible Java (XJ),
2008. (http://www.ceteva.com/docs/XJ.pdf).

[8] S. S. Huang and Y. Smaragdakis. Easy language
extension with meta-aspectj. In Proceedings ICSE ’06,
pages 865–868, New York, NY, USA, 2006. ACM.

[9] N. Nystrom, M. R. Clarkson, and A. C. Myers.
Polyglot: An extensible compiler framework for java.
In In 12th Conference on Compiler Construction,
pages 138–152. Springer-Verlag, 2003.

[10] M. Shonle, K. Lieberherr, and A. Shah. Xaspects: an
extensible system for domain-specific aspect
languages. In OOPSLA ’03, pages 28–37, New York,
NY, USA, 2003. ACM.

[11] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian.
Openjava: A class-based macro system for java. In
Proceedings of the 1st OOPSLA Workshop on
Reflection and Software Engineering, pages 117–133,
London, UK, 2000. Springer-Verlag.

[12] E. Visser. Syntax Definition for Language Prototyping.
PhD thesis, University of Amsterdam, 1997.

24

