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Abstract. Efficient exploration is essential to reinforcement learning
in tasks with huge state space and long planning horizon. Recent ap-
proaches to address this issue include the intrinsically motivated goal
exploration processes (IMGEP) and the maximum state entropy explo-
ration (MSEE). In this paper, we propose a goal-selection criterion in
IMGEP based on the principle of MSEE, which results in the new explo-
ration method novelty-pursuit. Novelty-pursuit performs the exploration
in two stages: first, it selects a seldom visited state as the target for
the goal-conditioned exploration policy to reach the boundary of the ex-
plored region; then, it takes random actions to explore the non-explored
region. We demonstrate the effectiveness of the proposed method in en-
vironments from simple maze environments, MuJoCo tasks, to the long-
horizon video game of SuperMarioBros. Experiment results show that
the proposed method outperforms the state-of-the-art approaches that
use curiosity-driven exploration.

Keywords: Reinforcement learning · Markov decision process · Efficient
exploration.

1 Introduction

Reinforcement learning (RL) [39, 40] is a learning paradigm that an agent in-
teracts with an unknown environment to improve its performance. Since the
environment transition is unknown in advance, the agent must explore (e.g.,
take new actions) to discover states with positive rewards. Hence, efficient ex-
ploration is important to learn a (near-) optimal policy in environments with
huge state space and sparse rewards [44], where deep-sights planning behaviors
are required [29]. In those cases, simple exploration strategies like ε-greedy are
inefficient due to time-uncorrelated and uncertainty-unaware behaviors [2].

To avoid insufficient exploration, advanced curiosity-driven approaches en-
courage diverse actions by adding the uncertainty-based exploration bonus on
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the environment reward [4, 7, 30, 31, 37]. In addition, recently proposed methods
to tackle this issue include the intrinsically motivated goal exploration processes
(IMGEP) [14], and the maximum state entropy exploration (MSEE) [18]. In par-
ticular, IMGEP was biologically-inspired to select intrinsically interesting states
from the experience buffer as goals and to train a goal-conditioned (goal-input)
exploration policy to accomplish the desired goals. On the other hand, MSEE
aimed to search for a policy such that it maximizes the entropy of state distri-
bution.

Fig. 1. Illustration for the proposed method. First, a goal-conditioned policy plans
to reach the exploration boundary; then, it performs random actions to discover new
states.

In this paper, we propose a goal-selection criterion for IMGEP based on the
principle of MSEE, which results in the new exploration method novelty-pursuit.
Abstractly, our method performs in two stages: first, it selects a novel state that
was seldom visited as the target for the goal-conditioned exploration policy to
reach the boundary of the explored region; subsequently, it takes random ac-
tions to discover new states. An illustration is given in Figure 1. Intuitively,
this process is efficient since the agent avoids meaningless exploration within
the explored region. Besides, the exploration boundary will be expanded further
as more and more new states are discovered. To leverage good experience ex-
plored by the goal-conditioned policy, we also train an unconditioned policy that
exploits collected experience in the way of off-policy learning.

We conduct experiments on environments from simple maze environments,
MuJoCo tasks, to long-horizon video games of SuperMarioBros to validate the
exploration efficiency of the proposed method. In particular, we demonstrate
that our method can achieve a large state distribution entropy, which implies
our exploration strategy prefers to uniformly visit all states. Also, experiment
results show that our method outperforms the state-of-the-art approaches that
use curiosity-driven exploration.

2 Related work

In addition to the ε-greedy strategy, simple strategies to remedy the issue of
insufficient exploration include injecting noise on action space [23, 26] or pa-
rameter space [8, 10, 15, 24, 34], and adding the policy’s entropy regularization
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[25, 36]. For the tabular Markov Decision Process, there are lots of theoreti-
cal studies utilizing upper confidence bounds to perform efficient exploration
[21, 22, 38]. Inspired by this, many deep RL methods use curiosity-driven ex-
ploration strategies [4, 7, 30, 31, 37]. In particular, these methods additionally
add the uncertainty-based exploration bonus on the environment reward to en-
courage diverse behaviors. Moreover, deep (temporally extended) exploration via
tracking the uncertainty of value function was studied in [29]. Maximum (policy)
entropy reinforcement learning, on the other hand, modifies the original objec-
tive function and encourages exploration by incorporating the policy entropy
into the environment reward [17, 28].

Our method is based on the framework of intrinsically motivated goal ex-
ploration processes (IMGEP) [3, 14, 32]. Biologically inspired, IMGEP involves
the following steps: 1) selecting an intrinsically interesting state from the expe-
rience buffer as the goal; 2) exploring with a goal-conditioned policy to accom-
plish the target; 3) reusing experience by an exploitation policy that maximizes
environment rewards. Obviously, the performance of exploitation policy heavily
relies on samples collected by the goal-conditioned exploration policy so that the
criterion of intrinsic interest is crucial for IMGEP. As reminiscent of IMGEP,
Go-Explore [12] used the heuristics based on visitation counts and other do-
main knowledge to select goals. However, different from the basic framework of
IMGEP, Go-Explore directly reset environments to target states, upon which
it took random actions to explore. As a result, it achieved dramatic improve-
ment in the challenging exploration task of Montezuma’s Revenge. However, the
requirement that the environment is resettable (or the environment transition
is deterministic), together with many hand-engineering designs, clearly restricts
Go-Explore’s applications. The exploration scheme of our method in Figure 1
is similar to Go-Explore, but our method does not require environments to be
resettable or deterministic.

Recently, [18] introduced a new exploration objective: maximum state en-
tropy. Since each policy induces a (stationary) state distribution, [18] provided
a provably efficient reinforcement learning algorithm under the tabular MDP
to search for an optimal policy such that it maximizes the state (distribution)
entropy. The such-defined optimal policy is conservative to visit uniformly all
states as possible in unknown environments. Inspired by this principle, we pro-
pose to select novel states as goals for the goal-conditioned exploration policy in
IMGEP. Note that [18] mainly focused on the pure exploration problem while
we additionally train an exploitation policy that leverages collected experience
in the way of off-policy learning to maximize environment rewards.

Finally, we briefly review recent studies about how to quickly train a goal-
conditioned policy since it is a core component of our method. Particularly,
[35] proposed the universal value function approximator (UVFA) and trained it
by bootstrapping from the Bellman equation. However, this training procedure
is still inefficient because goal-conditioned rewards are often sparse (e.g. 1 for
success and 0 for failure). To remedy this issue, [1] developed the hindsight expe-
rience replay (HER) that replaced the original goal with an achieved goal. As a
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result, the agent can receive positive rewards even though it does not accomplish
the original goal. In this way, learning on hindsight goals may help generalize for
unaccomplished goals. Moreover, [13] used a generator neural network to adap-
tively produce artificial feasible goals to accommodate different learning levels,
which servers as an implicit curriculum learning.

3 Background

In the standard reinforcement learning (RL) framework [39, 40], a learning agent
interacts with an Markov Decision Process (MDP) to improve its performance
via maximizing cumulative rewards. The sequential decision process is char-
acterized as follows: at each timestep t, the agent receives a state st from the
environment and selects an action at from its policy π(s, a) = Pr{a = at|s = st};
this decision is sent back to the environment, and the environment gives a reward
signal r(st, at) and transits to the next state st+1 based on the state transition
probability pass′ = Pr{s′ = st+1|s = st, a = at}. This process repeats until the
agent encounters a terminal state after which the process restarts.

The main target of reinforcement learning is to maximize the (expected)
episode return E[

∑∞
t=0 γ

tr(st, at)], where γ ∈ (0, 1) is a discount factor that
balances the importance of future rewards and the expectation is taken over
the stochastic process induced by the environment transition and the action
selection. Since the environment transition (and possibly the reward function)
is unknown in advance, the agent needs exploration to discover valuable states
with positive rewards. Without sufficient exploration, the agent will be stuck
into the local optimum by only learning from sub-optimal experience [44].

4 Method

As demonstrated in Figure 1, our exploration method called novelty-pursuit runs
in two stages: first, it selects a novel state as the goal for the goal-conditioned
exploration policy to reach the boundary of the explored region; then, it takes
random actions to explore the non-explored region. Again, newly observed states
will be set as the desired goals in the next round. As this process repeats, the ex-
ploration boundary will be expanded further and the whole state space will prob-
ably be explored. To leverage good experience explored by the goal-conditioned
policy, we also train an unconditioned policy that exploits collected experience
in the way of off-policy learning. We outline the proposed approach in Algorithm
1 (for simplicity, the procedure of training the exploitation policy is omitted).

In the following parts, we focus on the detailed implementation of the pro-
posed method. Firstly, goal-selection in complicated tasks (e.g., tasks with high-
dimensional visual inputs) is given in Section 4.1. Then, we introduce the ac-
celerating training techniques for goal-conditioned exploration policy in Section
4.2. Finally, we discuss how to effectively distill a good exploitation policy from
collected experience in Section 4.3.
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Algorithm 1 Exploration by novelty-pursuit

Input: predictor network update interval K; goal-conditioned policy update interval
M ; mini-batch size of samples for updating goal-conditioned policy N .
Initialize parameter θ for goal-conditioned exploration policy πg(s, g, a; θ).
Initialize parameter ωt for target network f(·;ωt), and ωp for predictor network
f̂(·;ωp).
Initialize an empty experience replay buffer B, and a priority queue Q with randomly
collected states.
for each iteration do

Reset the environment and get the initial state s0;
Choose a goal g from priority queue Q, and set goal success = False;
for each timestep t do

# Interact with the environment
if goal success == True then

Choose an random action at;
else

Choose an action at according to πg(st, g, at; θ);
end if
Send at to the environment, get reward rt and the next state st+1, and update
goal success;
# Store new states and update the predictor network
if t%K == 0 then

Store samples {sk, g, ak, rk}tk=t−K into replay buffer B;
Calculate prediction errors for {sk}tk=t−K and put these states into priority
queue Q;
Update predictor network f̂(·;ωp) using {sk}tk=t−K ;

end if
# Update the goal-conditioned policy
if t%M == 0 then

Update πg with {sk, gk, ak, r′k}Nk=1 sampled from B;
end if

end for
end for

4.1 Selecting goals from the experience buffer

As mentioned previously, our method is inspired by the principle of maximum
state entropy exploration [18] to select novel states with the least visitation
counts from the experience buffer as the targets. In this way, the goal-conditioned
policy will spend more steps to visit the seldom visited states. As a result, the
exploration policy prefers to uniformly visit all states and therefore leads to an
increase in the state distribution entropy.

Unfortunately, computing visitation counts for tasks with high-dimensional
visual inputs is intractable due to the curse of dimensionality. Therefore, we can-
not directly apply the above goal-selection. However, it is still possible to build
some variables that are related to visitation counts and are easy to compute.
For example, [7] showed that prediction errors on a batch of data have a strong
relationship with the number of training iterations. That is, if some samples
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are selected multiple times, the prediction errors of such samples will be small.
Thus, we can use the prediction errors to reflect the visitation counts of observed
states. Other approaches like pseudo-counts [4, 30] can be also applied, but we
find that the mentioned method called random network distillation (RND) by
[7] is easy to scale up.

Concretely, RND is consist of two randomly initialized neural networks: a
fixed (non-trainable) network called target network f(·;ωt) that is parameter-

ized by ωt, and a trainable network called predictor network f̂(·;ωp) that is
parameterized by ωp. Both two networks take a state s as input and output a
vector with the same dimension. Each time a batch of data of size K feeds into
the predictor network to minimize the difference between the predictor network
and the target network with respect to the predictor network’s parameters (see
Equation 1).

min
ωp

1

K

K∑
i=1

||f(si;ωt)− f̂(si;ωp)||2 (1)

In practice, we employ an online learning setting to train RND and maintain
a priority queue to store novel states based on the prediction errors of RND.
In particular, after the goal-conditioned policy collects a mini-batch of states,
these states will be used to train the predictor network. In this way, frequently
visited states will have small prediction errors while the prediction errors for
seldom visited states will be large. Also, states with large prediction errors will
be stored into the priority queue and the state with the least prediction error
will be removed out of the priority queue if full. This process repeats and for
simplicity, no past data will be reused to train the predictor network. Based
on this scheme, each iteration a novel state will be selected4 from the priority
queue as the desired goal for the goal-conditioned policy. After achieving the
goal, the exploration policy will perform random actions to discover new states.
Intuitively, such defined exploration behaviors will try to uniformly visit all
states, which will even the state distribution and lead to an increase in state
distribution entropy. This will be empirically verified in Section 5.

4.2 Training goal-conditioned policy efficiently

Ideally, each time we sample a novel state from the experience buffer and directly
set it as the input for the goal-conditioned policy πg. However, this processing is
not friendly since the size of policy inputs is doubled and the representation of
inputs may be redundant. Following prior studies about multi-goal reinforcement
learning [1, 33], we manually extract useful information from the state space as
the input of πg. For instance, we extract the agent position information (i.e.,
coordinates) from raw states, which provides a good representation of the desired
goal.

4 We sample goals from a distribution (e.g., softmax distribution) based on their pre-
diction errors rather than in a greedy way.
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To assign rewards for goal-conditioned policy πg, we need to judge whether
it achieves the desired goal. Again, we use the same technique to extract a
representation called achieved goal ag from the observed state [1, 33]. Let us
denote the desired goal as g, we conclude the desired goal is accomplished if
d(agt, g) is small than a certain threshold ε, where agt is the achieved goal
at timestep t and d is some distance measure (e.g., `2-norm). As a result, an
ordinary method to compute rewards for the goal-conditioned policy is (note
that the desired goal g does not change during an episode):

r′(agt, g) =

{
1 if d(agt, g) < ε
0 otherwise

(2)

However, the training of goal-conditioned policy is slow with this sparse re-
ward function. An alternative method is to use negative distance as the reward,
i.e., r′ = −d(agt, gt). However, the distance reward function may lead to unex-
pected behaviors [1, 27]. Next, we introduce some techniques to deal with the
above problems.

r′(agt, g) = d(agt−1, g)− d(agt, g) (3)

Firstly, let us consider the technique of reward shaping [27], which intro-
duces additional training rewards to guide the agent. Clearly, this operation will
modify the original objective and change the optimal policy if we don’t pose
any restrictions. Interestingly, reward shaping is invariant to the optimal policy
if the reward shaping function is a potential function [27]. Specifically, we can
define the difference of two consecutive distances (between the achieved goal
and the desired goal) as a reward shaping function, shown in Equation 3. Since
this function gives dense rewards, it leads to substantial acceleration in learn-
ing a near-optimal goal-conditioned policy. Consequently, the policy πg can avoid
meaningless actions within the explored region and quickly reach the exploration
boundary. Verification of the optimal goal-conditioned policy is invariant under
this reward shaping function is given in Appendix A.1.

Alternatively, one can use Hindsight Experience Replay (HER) [1] to train
the goal-conditioned policy via replacing each episode with an achieved goal
rather than one that the agent was trying to achieve. Concretely, for state st, we
may randomly select a future state st+k from the same trajectory and replace
its original target with st+k, where k is a positive index. In this way, the agent
can still get positive rewards though it may not achieve the originally defined
goal. But one should be careful when applying this technique since HER clearly
changes the goal distribution for learning and may lead to undesired results for
our setting.

4.3 Exploiting experience collected by exploration policy

In the above, we have discussed how to efficiently train a goal-conditioned policy
to explore. To better leverage experience collected by the goal-conditioned policy,
we need to additionally train an exploitation policy πe that learns from goal-
conditioned policy’s experience buffer with environment rewards in an off-policy
learning fashion.
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Interestingly, it was shown that off-policy learning without interactions does
not perform well on MuJoCo tasks [16]. The authors conjectured off-policy learn-
ing degenerates when the experience collected by the exploration policy is not
correlated to the trajectories generated by the exploitation policy (they called
this phenomenon extrapolation error). To remedy this issue, we add environment
rewards on the goal rewards computed in the previous part. The environment
rewards are scaled properly so that they do not change the original objective too
much. In this way, πe and πg will not be too distinct. In addition, we parallelly
train πe as well as πg and allow πe to periodically interact with the environment
to further mitigate the extrapolation error.

5 Experiment

In this section, we conduct experiments to answer the following research ques-
tions: 1) does novelty-pursuit lead to an increase in the state entropy compared
with other baselines? 2) does the training technique for goal-conditioned pol-
icy improve the performance? 3) how does the performance of novelty-pursuit
compare with the state-of-the-art approaches in complicated environments? We
conduct experiments from simple maze environments, MuJoCo tasks, to long-
horizon video games of SuperMarioBros to evaluate the proposed method. De-
tailed policy network architecture and hyperparameters are given in Appendix
A.4 and A.5, respectively.

Here we briefly describe the environment settings (see Figure 2 for illustra-
tions). Details are given in Appendix A.3.

Empty Room & Four Rooms. An agent navigates in the maze of 17× 17
to find the exit (the green square in Figure 2 (a) and (b)) [9]. The agent receives
a time penalty until it finds the exit and receives a positive reward. The maximal
episode return for both two environments is +1, and the minimal episode return
is −1. Note that the observation is a partially observed image of shape (7, 7, 3).

FetchReach. A 7-DOF Fetch Robotics arm (simulated in the MuJoCo sim-
ulator [42]) is asked to grip spheres above a table. There are a total of 4 spheres
and the robot receives a positive reward of +1 when its gripper catches a sphere
(the sphere will disappear after being caught) otherwise it receives a time penalty.
The maximal episode return is +4, and the minimal episode return is −1.

SuperMarioBros. A Mario agent with raw image inputs explores to dis-
cover the flag. The reward is based on the score given by the NES simulator [19]
and is clipped into −1 and +1 except +50 for a flag. There are 24 stages in the
SuperMarioBros game, but we only focus on the stages of 1-1, 1-2, and 1-3.

5.1 Comparison of exploration efficiency

In this section, we study the exploration efficiency in terms of the state distribu-
tion entropy. We focus on the Empty Room environment because it is tractable
to calculate the state distribution entropy for this environment.



Efficient Exploration by Novelty-Pursuit 9

(a) Empty Room (b) Four Rooms (c) FetchReach (d) SuperMarioBros

Fig. 2. Four environments considered in this paper.

Table 1. Average entropy of visited state distribution over 5 random seeds on the
Empty Room environment. Here we use ± to denote the standard deviation.

Entropy

random 5.129 ± 0.021
bonus 5.138 ± 0.085

novelty-pursuit 5.285 ± 0.073

novelty-pursuit-planning-oracle 5.513 ± 0.077
novelty-pursuit-counts-oracle 5.409 ± 0.059

novelty-pursuit-oracles 5.627 ± 0.001

maximum 5.666

We consider the following baselines: 1) random: uniformly selecting actions;
2) bonus: a curiosity-driven exploration method that uses the exploration bonus
[7]; 3) novelty-pursuit: the proposed method. We also consider three variants
of our method: 4) novelty-pursuit-planning-oracle: the proposed method with
a perfect goal-conditioned planning policy; 5) novelty-pursuit-counts-oracle: the
proposed method with goal-selection based on true visitation counts; 6) novelty-
pursuit-oracles: the proposed method with the above two oracles. The results
are summarized in Table 1. Here we measure the entropy over all visited states
by the learned policy. Note that the maximum state distribution entropy for this
environment is 5.666.

Firstly, we can see that novelty-pursuit achieves a higher entropy than the
random and bonus method. Though the bonus method outperforms the random
method, it is inefficient to a maximum state entropy exploration. We attribute
this to delayed and imperfect feedbacks of the exploration bonus. Secondly, when
the planning oracle and visitation counts oracle are available, the entropy of our
method roughly improves by 0.228 and 0.124, respectively. We notice that the
planning-oracle variant avoids random actions within the exploration boundary
and spends more meaningful steps to explore around the exploration boundary,
thus greatly improves the entropy. Based on this observation, we think accelerat-
ing goal-conditioned policy training is more important for our method. Thirdly,
the combination of two oracles gives a near-perfect performance (the gap be-
tween the maximum state entropy is only 0.039). This result demonstrates that
goal-condition exploration behaviors presented by novelty-pursuit can increase
the state entropy.
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Fig. 3. Training curves of learned policies with different goal-conditioned policy train-
ing techniques on the Empty Room environment. Solid lines correspond to the mean
of episode returns while shadow regions indicate the standard deviation.

5.2 Ablation study of training techniques

In this section, we study the core component of our method regarding quickly
learning a goal-conditioned policy.

In particular, we study the effects of qualities of goal-conditioned policies
when using different training techniques. We compare HER and the reward-
shaping with the distance reward function. Results on the Empty Room are
shown in Figure 3.

From Figure 3, we find that both HER and reward shaping can accelerate
training goal-conditioned policies. Similar to the planning-oracle in the previous
section, such-trained goal-conditioned policy avoids random exploration within
the explored region, hence it can quickly find the exit. The distance reward func-
tion may change the optimal behaviors of goal-conditioned policy and therefore
does not perform well.

5.3 Evaluation on complicated environments

In this section, we compare different methods in terms of environment rewards.
We will see that without sufficient and efficient exploration, the learned policy
may be stuck into the local optimum. Two baseline methods are considered:
1) vanilla: DDPG [23] with Gaussian action noise on Fetch Reach with the
continuous action space and ACER [43] with policy entropy regularization on
other environments with the discrete action space; 2) bonus: a modified vanilla
method that combines the environments reward and the exploration bonus [7].
Note reported results of novelty-pursuit are based on the performance of the
exploitation policy πe rather than the goal-conditioned exploration policy πg.
And we keep the same number of samples and policy optimization iterations for
all methods to ensure fairness.

Firstly, we consider the Empty Room and the Four Rooms environments. The
results are shown in the first two parts of Figure 4. We see that the vanilla method
hardly finds the exit on the maze environments. Novelty-pursuit outperforms the
bonus method on both environments. And we also observe that the behaviors
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Fig. 4. Training curves of learned policies over 5 random seeds on the Empty Room,
Four Rooms, and FetchReach environments. Solid lines correspond to the mean of
episode returns while shadow regions indicate the standard deviation.
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Fig. 5. Training curves of learned policies over 3 random seeds on the game of Super-
MarioBros. Solid lines correspond to the mean of episode returns while shadow regions
indicate the standard deviation.

of the bonus method are somewhat misled by the imperfect exploration bonus
though we have tried many weights to balance the environment reward and
exploration bonus.

Secondly, we consider the FetchReach environment, and results are shown
in the most right part of Figure 4. We see that novelty-pursuit can consistently
grip 4 spheres while other methods sometimes fail to efficiently explore the whole
state space to grip 4 spheres.

Finally, we consider the SuperMarioBros environments, in which it is very
hard to discover the flag due to the huge state space and the long horizon.
Learning curves are plotted in Figure 5 and the final performance is listed
in Table 2. We find the vanilla method gets stuck into the local optimum on
SuperMarioBros-1-1 while the bonus method and ours can find a near-optimal
policy. All methods perform well on SuperMarioBros-1-2 because of the dense
rewards of this task. On SuperMarioBros-1-3, this task is very challenging be-
cause rewards are very sparse and all methods fail to discover the flag on this
environment. To better understand the learned policies, we plot trajectories of
different methods on SuperMarioBros-1-3 in Figure 6, and more results on other
environments can be found in Appendix A.2. It turns out only our method can
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Fig. 6. Trajectory visualization on SuperMarioBros-1-3. Trajectories are plotted in
green cycles with the same training samples (18 million). The agent starts from the
most left part and needs to fetch the flag on the most right part. Top row: vanilla
ACER; middle row: ACER + exploration bonus; bottom row: novelty-pursuit (ours).

get positive rewards and make certain progress via deep exploration behaviors
presented by the goal-conditioned policy on SuperMarioBros-1-3.

Table 2. Final Performance of learned policies over 3 random seeds on SuperMario-
Bros. We use ± to denote the standard deviation.

novelty-pursuit bonus vanilla

SuperMarioBros-1-1 36.02 ± 8.19 17.74 ± 7.84 8.43 ± 0.14
SuperMarioBros-1-2 33.30 ± 6.13 33.19 ± 1.53 29.64 ± 2.02
SuperMarioBros-1-3 8.14 ± 0.55 0.20 ± 0.14 -0.07 ± 0.01

6 Conclusion

We focus on the efficient exploration aspect of RL in this paper. We propose a
goal-section criterion based on the principle of maximum state entropy explo-
ration and demonstrate the proposed method is efficient towards exploring the
whole state space. Therefore, the proposed method could escape from the local
optimum and heads the (near-) optimal policy. Goal representation is somewhat
manually extracted in our method and we believe an automatic representation
learning for goal-conditioned learning can lead to more general applications. In
addition to the way of off-policy learning, methods based on imitation learning
to leverage good experience is another promising direction.
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A Appendix

A.1 Reward shaping for training goal-conditioned policy

Reward shaping is invariant to the optimal policy under some conditions [27].
Here we verify that the reward shaping function introduced by our method
doesn’t change the optimal behaviors for goal-conditioned policy. Lets’ consider
the total shaping rewards during an episode of length T :

T∑
t=1

−d(agt, g) + d(agt+1, g)

= −d(ag1, g) + d(ag2, g)− d(ag2, g) + d(ag3, g) · · ·
= −d(ag1, g) + d(agT+1, g)

For the optimal policy π∗g , d(agT+1, g) = 0 while d(ag1, g) is a constant. There-
fore, the optimal policy πg induced by the reward shaping is invariant to the one
induced by the sparse reward function in Equation 2.

Fig. 7. Visualization for the true visitation counts and the corresponding exploration
boundary.

A.2 Additional results

In this part, we provide additional experiment results to better understand our
method.
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Empty Room. We visualize the true visitation counts and the corresponding
exploration boundary in Figure 7. Note the agent starts from the left top corner
and the exit is on the most bottom right corner. The data used for visualization
is collect by a random policy. Hence, the visitation counts are large on the left
top part. We define the true exploration boundary as the top 10% states with
least visitation counts and the estimated exploration boundary given by our
method are states with the largest prediction errors in the priority queue. From
this figure, we can see that our method can make a good approximation to the
true exploration boundary given by visitation counts.

SuperMarioBros. In Figure 8, we make additional trajectory visualization
on SuperMarioBros-1-1 and SuperMarioBros-1-2. Trajectories are plotted with
the same number of samples (18M). We can observe that the vanilla method
gets into the local optimum on SuperMarioBros-1-1 even though it has used
the policy entropy regularization to encourage exploration. In addition, only our
method can get the flag on SuperMarioBros-1-2.

(a) SuperMarioBros-1-1. The agent starts from the most left part and needs to
find the flag on the most right part.

(b) SuperMarioBros-1-2. The agent starts from the most left part and needs
to get the flag through the water pipe on the right part (see arrows).

Fig. 8. Trajectory visualization on SuperMarioBros-1-1 and SuperMarioBros-1-2. For
each figure, top row: vanilla ACER; middle row: ACER + exploration bonus; bottom
row: novelty-pursuit (ours). The vanilla method gets stuck into the local optimum on
SuperMarioBros-1-1. Only our method can get the flag on SuperMarioBros-1-2.
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A.3 Environment prepossessing

In this part, we present the used environment preprocessing.
Maze. Different from [9], we only use the image and coordination informa-

tion as inputs. Also, we only consider four actions: turn left, turn right, move
forward and move backward. The maximal episode length is 190 for Empty
Room, and 500 for Four Rooms. Each time the agent receives a time penalty of
1/max episode length and receives a reward of +1 when it finds the exit.

FetchReach. We implement this environment based on FetchReach-v0 in
Gym [5]. The maximal episode length is 50. The xyz coordinates of four spheres
are (1.20, 0.90, 0.65), (1.10, 0.72, 0.45), (1.20, 0.50, 0.60), and (1.45, 0.50, 0.55).
When sampling goals, we resample goals if the target position is outside of the
table i.e., the valid x range: (1.0, 1.5), the valid y range is (0.45, 1.05), and the
valid z range is (0.45, 0.65).

SuperMarioBros. We implement this environment based on [19] with Ope-
nAI Gym wrappers. Prepossessing includes grey-scaling, observation downsam-
pling, external reward clipping (except that 50 for getting flag), stacked frames
of 4, and sticky actions with a probability of 0.25 [26]. The maximal episode
length is 800. The environment restarts to the origin when the agent dies.

A.4 Network architecture

We use the convolutional neural network (CNN) for Empty Room, Four Rooms,
and video games of SuperMarioBros, and multi-layer perceptron (MLP) for
FetchReach environment. Network architecture design and parameters are based
on the default implementation in OpenAI baselines [11]. For each environment,
RND uses a similar network architecture. However, the predictor network has ad-
ditional MLP layers than the predictor network to strengthen its representation
power [7].

A.5 Hyperparameters

Table 3 gives hyperparameters for ACER [43] on the maze and SuperMarioBros
(the learning algorithm is RMSProp [41]). DDPG [23] used in Fetch Reach envi-
ronments is based on the HER algorithm implemented in OpenAI baselines [11]
expect that the actor learning rate is 0.0005. We run 4 parallel environments for
DDPG and the size of the priority queue is also 100. As for the predictor net-
work, the learning rate of the predictor network is 0.0005 and the optimization
algorithm is Adam [20] for all experiments, and the batch size of training data is
equal to the product of rollout length and the number of parallel environments.

The goal-conditioned exploration policy of our method is trained by comb-
ing the shaping rewards defined in Equation 3 and environment rewards, which
helps reduce the discrepancy with the exploitation policy. The weight for en-
vironment rewards is 1 for all environments except 2 for SuperMarioBros. For
the bonus method used in Section 5, the weight β to balance the exploration
bonus is 0.1 for Empty Room and Four Rooms, 0.01 for FetchReach, 1.0 for
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SuperMarioBros-1-1 and SuperMarioBros-1-3, and 0.1 for SuperMarioBros-1-2.
Following [6, 7] we also do a normalization for the exploration bonus by dividing
them via a running estimate of the standard deviation of the sum of discounted
exploration bonus. In addition, we find sometimes applying the imitation learn-
ing technique for the goal-conditioned policy can improve performance. We will
examine this in detail in future works. Though we empirically find HER is useful
in simple environments like the maze and the MuJoCo robotics tasks, we find it
is less powerful than the technique of reward shaping on complicated tasks like
SuperMarioBros. Hence, reported episode returns of learned policies are based
on the technique of reward shaping on SuperMarioBros and HER for others.

For the exploitation policy, we periodically allow it to interact with the en-
vironment to mitigate the exploration error [16]. For all experiments, we split
the half interactions for the exploitation method. For example, if the number of
maximal samples is 200k, the exploration and the exploitation policy will use
the same 100k interactions.

Table 3. Hyperparameters of our method based on ACER on the maze and Super-
MarioBros environments.

Hyperparameters Empty Room Four Rooms SuperMarioBros

Rollout length 20 20 20
Number of parallel environments 4 4 8

Learning rate 0.0007 0.0007 0.00025
Learning rate schedule linear linear constant

Discount factor γ 0.95 0.95 0.95
Entropy coefficient 0.10 0.10 0.10

Size of priority queue 100 100 20
Total training steps 200K 500K 18M


