Classifying Prototype-based
Programming Languages

C. Dony!, J. Malenfant? and D. Bardou!

! LIRMM  Université de Montpellier II
161, rue Ada. 34392 Montpellier Cedex 5, France.
E-mail: dony@lirmm.fr
2 UR VALORIA  Université de Bretagne sud
CGU de Vannes. 1, rue de la Loi. 56000 Vannes, France.
E-mail: Jacques.Malenfant@Quniv-ubs.fr

Abstract. The prototype-based programming model has always been
difficult to characterize precisely. Prototype-based languages are all based
on a similar set of basic principles, yet they all differ in their precise in-
terpretation of these principles. Moreover, if the prototype-based model
advocates concrete objects as the only mean to model concepts, cur-
rent languages promote methodologies reintroducing abstract construc-
tions to manage efficiently groups of similar objects. In the past, we
have proposed two classifications of delegation-based languages in or-
der to clarify these issues. In the present paper, we come back to these
two classifications in the light of our recent work. The first classification
looks at the primitives of the virtual machine underlying each language;
it classifies languages according to the semantics of these primitives.
The second considers the group-oriented constructions provided in each
language; it classifies languages according to the level of abstractness
of these constructions. The two classifications complements each others
and also other existing classifications. They allow people to assess more
precisely the relative merits of the different languages.

1 Introduction

A prototype is a typical member used to represent a family or a category of
objects [15]. Prototype-based languages propose a vision of object-oriented pro-
gramming based on the notion of prototype. Since the middle of the eightees,
numerous prototype-based languages have been designed and implemented: SELF
[45,1,2,13,37], KEVO [41,42], AGORA [40], GARNET [33,34], MOOSTRAP [31, 32],
CECIL [12], OMEGA [5], NEWTON-SCRIPT [38]. Other languages, such as OBJECT-
LISP [3] or YAFOOL [19] not qualified as prototype-based, nevertheless offer closely
related mechanisms or use prototypes at the implementation level. Finally sys-
tems mixing prototypes and classes have also been proposed [22, 21].

A very general and informal characterization of prototype-based languages is
rather simple: they propose a world in which there is one kind of objects equiped

with attributes' and methods, three primitives to create objects: creation “ex

! We use that term to denote a structural characteristic of an object or “frame”.



nihilo”, cloning and extension (differential copy), and one control structure: mes-
sage sending together with a delegation mechanism. Beyond this generalization,
all these languages present slight yet profound and interesting differences.

They are different because they have been developed for different application

domains. They are different because they have been inspired on the one hand by
the earlier frame languages used in knowledge representation and on the other
hand by actors languages used in distributed AI. They are also different because
they have been developed with different goals.

The first goal was to provide simpler descriptions of objects. People’s nat-
ural way to grasp new concepts is generally to begin by creating concrete
examples rather than abstract descriptions; class-based languages force peo-
ple to work in the opposite direction, by creating abstractions (classes) prior
concrete objects (instances).

The second goal was to offer a simpler programming model with fewer con-
cepts and primitives. Applications in the fields of user-interfaces [33] and
virtual reality [7,36] have tried to escape the traditional abstract data type
model to move towards a less constrained one. For these applications, classes
have been considered as a source of complexity because they are playing too
many roles [8]. The alternative solution is often based on the concept of pro-
totypes, more amenable to a form of programming-by-example and providing
an alternative to class instantiation and class inheritance [8, 3,45, 34].

The last goal was to offer new capabilities to represent knowledge. Class-
based languages constrain objects by disallowing, for example, distinctive
behavior for individual objects among their instances and by forbidding in-
heritance between objects to share values of instance variables.

Thus, an exact and unique characterization of prototype-based programming

raises a number of issues [17,26,4]. Current prototype-based languages differ in
the semantics of object representation, object creation, object encapsulation,
object activation and object inheritance.

There exists various interpretations of what is a prototype, a concrete ob-
ject or an average representative of a concept, which can lead to different
languages.

The semantics of the basic mechanisms (cloning, differential copy, delegation)
is not unique and allows for different interpretations.

Differential copy creates inter-dependent objects and authorizes various in-
terpretations concerning the precise nature of the concept of object they
implement.

Finally, some of the capabilities offered by classes, for example the ability to
express sharing at a conceptual level, have revealed to be so important for
program organization that they have been reintroduced in different ways.

So, understanding each language, both in terms of their expressive power

and their applicability to specific kinds of problems, is not always easy. The



Frame Frame
name: "whale" name: "Moby-Dick"
category: mammal is-a: whale
environment: sea color: white
enemy: man enemy: Cpt-Haccab
weight: 10000
color: blue Fig. 2. Differential description

Fig. 1. Example of Frame

Treaty of Orlando [39] proposes a first comparison of class-based and prototype-
based languages; we go further by addressing more extensively the issues pending
the alternative semantics associated to pure prototype-based languages and the
level of abstration propsed by the different mecahnisms reintroducing class func-
tionalities into prototyped-based languages. In the past, we have proposed two
complementary classifications to this end. The goal of the present paper is to
come back to these two classifications in order to present and explain their main
classification criteria, but also to complement them in the light of our recent
work.

The rest of the pgper is organized as follos. Section 2 recalls the genesis
of prototype-based programming and thus proposes a first classification of lan-
guages. Section 3 proposes a first classification of prototype-based languages
according to the vision their conceptor had on them. Section 4 presents the com-
parison criteria related to primitive operations and mechanisms that constitute
a prototype-based language virtual machine. Section 5 presents the comparison
criteria related to how programs written in prototype-based languages are orga-
nized. Section 6 proposes the two classifications of languages according to the
previously defined criteria.

2 Genesis of the Prototype-Based Programming Model

To understand the genesis of ideas is a first important step in a classification pro-
cess. This section recalls how frame-based and actor languages have influenced
prototype-based ones.

2.1 Prototypes and knowledge representation

The concepts of prototype and differential description can be found in the frame
theory [30] and in some systems inspired from this theory such as the frame-based
languages KRL [6] or FRL [35]. Frames have been designed as an alternative way
to represent knowledge such as typicality, default values or exceptions, which
are difficult to describe in other formalisms [29]. Frame-based languages use the
prototype’s theory and they have influenced some prototype-based languages.
Structure. A frame is a set of attributes. Each attribute represents one
characteristic of the frame and is made of a couple “attribute name - set of



facets”. The most common facet, and the only one considered in our examples,
is the attribute’s value. The figure 1 shows a definition of a frame representing
a whale.

Differential description. Differential description makes it possible to cre-
ate a new frame by only expressing the differences from an existing one?. The
differential description creates a relation between the new frame and the former
(its prototype or parent). This relation is implemented by a link generally called
“is-a”?. The figure 2 shows the definition of a frame representing Moby-Dick,
which looks like the above whale but is white and has a specific enemy.

Frame hierarchies and inheritance. The is-a relation is an order rela-
tion that defines frame hierarchies [9]. A frame can inherit from its parent a
set of attributes. Frame-based systems propose inheritance hierarchies made of
representatives of concepts, which are conceptually very similar to those built
later with prototype-based systems. One can generally find at the top of those
hierarchies average representatives, such as whale, and at the bottom concrete
representatives, such as Moby-Dick. What is tremendously important here is
that what is shared are not descriptions, as with class inheritance, but rather
concrete representations and so bindings of slots to values.

2.2 Actor languages

To represent entities with classless objects [46] has also been proposed in descrip-
tions of AcT 1 [23] although the papers related to this language don’t mention
neither the prototype concept, nor its use in the earlier frame-based languages.
ACT 1 provides objects and mechanisms conceptually close to those described
above and part of the fundamental characteristics of today’s prototype-based
language.

From our point of view, the main difference between the frame-based lan-
guage KRL quoted above and AcT 1 is that AcT 1 is a programming (and not a
representation) language. Actors thus have attributes (acquointances) and a set
of behavior. We will use the term “method” to denote the representation of a
behavior and the term “property” to denote either an attribute or a method.
Methods are invoked by sending messages to actors*. The figure 3 shows an ac-
tor named point with two attributes and one method. Actors, being classless
objects, are created by cloning and extending existing ones with three primitives
create, extend and c-extend [10].

Cloning. Although a copy primitive did exist in earlier languages such as
SMALLTALK, ACT 1 has introduced cloning (shallow copying) as a primitive way

2 “The object being used as a basis for comparison (which we call the prototype) pro-
vides a perspective from which to view the object being described. (...) It is quite
possible (and we believe natural) for an object to be represented in a knowledge sys-
tem only through a set of such comparisons” [6].

3 This link may be accessible to the programmer via a related attribute also called
is-a.

* This simplified vision is sufficient here; in fact, methods are grouped in a script and
invoked via pattern matching.



(object ’extend ’point
. Point2 ’((x 5) (y 10))
Point n ’((norm (lambda () ...))))
X J 3 = X
y - 10 0 =1 y_ . s o s
i — orinting T print (p(’)lnt create ’point2
norm ———= norm computation <——— | horm ((x 3) (y 30))
moving =<——— | move ’((move (lambda (newX newY)
(setq x newX y newY))))
turtle (point2 ’extend ’turtle
0 <F | heading > ((heading 0) (y 4))
movinginadirection <= | forward ’((forward (lambda (...)
..o0)))

Fig. 3. Cloning and extension in ACT 1.

to create new objects. The simple biological metaphor of cloning makes it very
appealing, compared to the traditional way to create objects in class-based mod-
els, namely by instantiation. The basic idea is that, given an existing and co-
herent object, it is easier to get a new object similar to the first one by simply
copying it than to instantiate correctly a new one with coherent initial values for
its instqnce variables. Another primitive, called create, combines cloning and
addition of new properties. For example, in Figure 3, point2 is a clone of point
with new attribute’s values and to which a new method has been added.

Extension. Differential description is conceptually similar to that of frames
and is performed by a primitive called extend, which creates a new actor that
we will call an “extension” of its model. The model is called the proxy and is the
equivalent of the parent or prototype in the frame’s terminology. The figure 3
shows the definition of a (Logo) turtle actor as an extension of point2. A turtle
is like a point but as a heading and a forward behavior to move in the direction
defined by its heading. What we call extension should not be confused with the
possibility to add new attributes to objects.

Inheritance and delegation. The relation between an actor and its proxy
is really similar to the is-a relation between frames. This relation is implemented
by a link named proxy, that we will also call parent in the rest of the paper.
An extension can inherit properties of its proxy. The inheritance is achieved
whenever an actor does not know how to handle a message, in which case it
(explicit delegation), or the system (implicit delegation), can ask its proxy to
answer for it. The transfer of control to the proxy is called delegation®. Papers on
ACT 1 do not precise the context in which a method is executed after a delegation
(the binding of self); this mechanism is however a first form of what will become
delegation in prototype-based languages.

5 “Whenever an actor receives a message he cannot answer immediately on the basis
of his own local knowledge (...), he delegates the message to another actor, called his
prozy ”. [23]



3 Different visions of Prototype-Based Programming

The above systems contain the essence of what has been later called prototype-
based programming. The first studies that led to the design of classless object-
oriented programming languages have been published in the middle of the eigh-
tees. They brought to the fore various issues generally related to class-based
programming and proposed various solutions based on the use of prototypes.
This section recalls these early proposals and thus supports classification based
on the vision their conceptors had and the problems they wanted to solve.

3.1 Prototypical instances and cloning - A simpler programming
model

The class-based model is complex [8, 22,21, 39]; classes play different roles® that
makes program design difficult. In reaction to this complexity, in a quest for a
simpler programming model, Borning [8] has proposed an informal description of
a classless language in which new objects are produced by copy and modification
of prototypes. Once the copy is done, no relation is maintained between the
copied prototype and its clone. The resulting programming model is simple but
quite poor in term of sharing and in term of program organization. As far as
we know, the model has not been pursued by its author but has inspired some
complete cloning- and prototype-based languages such as KEVO [42], OMEGA [5]
and OBLIQ [11].

3.2 Prototypical instances and differential description - A new way
to conceive objects

At the same time, and partially for the same reasons, but also mainly to propose
a new way to conceive and define objects, Lieberman has proposed to applied
some ideas extracted from ACT 1 to object-oriented programming [24,25]. He
has described an informal programming model based on prototypical instances,
cloning and differential description. Many different languages have been inspired
by his work and share basically the same characteristics: SELF, OBJECT-LISP,
NEWTON-SCRIPT, MOOSTRAP, etc. SELF has attracted the largest development
effort and it has been widely distributed.

As a prototypical example of such languages, we can give a flavor of OBJECT-
LISP [3], which has a well-known LISP syntax. The figure 4 shows an OBJECT-LISP
version of the prototypical “point-turtle” example. Objects have attributes and
methods; they can be cloned and extended. Extension objects have a parent and
inherit their properties. Activation is based on message sending (function ask).
There is no encapsulation, attributes can be accessed via message sending ((ask
turtle x)) or through their name within methods. Delegation can occur either
to retrieve the value of an attribute or to activate a method if the receiver does

5 Let us quote: instance descriptors, method libraries, support for encapsulation shar-
ing and reuse, support for the architecture of programs, etc.



(setq point (kindof)) ;Creating an object ex nihilo.

(ask point (have ’x 3)) ;Creating an attribute for point.
(ask point (have ’y 10))
(defobfun (norm point) () ;A method norm for point.

(sqrt (+ (x x x) (x y y)))) ;variables are the receiver’s ones.
(defobfun (move point) (newx newy) ;4 method with parameters,

(ask self (have ’x (+ x newx)) ;to add two points.

(ask self (have ’y (+ y newy))) ;Modifying values of attributes.
(defobfun (plus apoint) (p) ;4 method to add two points.

(let ((newx (+ x (ask p x)))
(newy (+ y (ask p y)))

(newp (kindof apoint))) ;Creating an extension of the object
(ask newp (have ’x newx)) ;passed as parameter.
(ask newp (have ’y newy))
newp))
(setq point2 (kindof point)) ;point2 is an extension of point,
(ask point2 (have ’y 4) ;with a new attribute y.
(setq turtle (kindof point2)) ;An extension of point2,
(ask turtle (have ’cap 90)) ;with a new attribute cap,
(defobfun (forward turtle) (dist) ;and a method forward.

(ask self (move (* dist (cos cap))
(* dist (sin cap))))

OBIJECT-LISP is an extension of Lisp towards objects allowing both message passing
and traditional function call. Message passing is implemented by the function ask ;
its first arqument is the receiver and the second a function call where the name of a
function is used as message selector (a method corresponding to that name must exist);
the arguments of the function call are the arguments of the message. The following
primitives are used in the example:

creating objects “ex nihilo”: function kindof without arguments,
— creating extensions: functions kindof (with one argument, which is the extended
object),

method definition: function defobfun,
— attribute definition: method have.

Fig. 4. A prototype-based language example — OBJECT-LISP.

not hold the required property. Delegation can here be described informally in
the following way: “an object that cannot answer a question can delegate it to its
parent, if the parent can answer it, the answer will be performed in the context
of the values of the original object”. Thus, compared to ACT 1, the fundamental
new points are explicit description of polymorphism and dynamic binding. In our
example, the method norm is polymorph because it can be applied to a point or
to a turtle. Dynamic binding ensures that a method executed after a delegation
is applied in the context of the initial receiver (in our example, sending the
message norm to turtle returns 5).



3.3 Classless objects - knowledge representation

Another motivation to study classless languages was a quest for greater flexibility
to represent knowledge and express sharing in object-oriented programs.

As shown by the frame experience, prototypes offer new capabilities to rep-
resent knowledge difficult to grasp in class-based languages such as [24,39,17]:

— different objects of the same family having different structures and behaviors,
exceptional objects,

— objects with viewpoints and sharing at the object level,

— incomplete objects to be classified.

Such capabilities, although widely used, are more specifically the mark of
a family of hybrid languages, combining declarative knowledge representation
and programming. Representatives of such languages are GARNET [33,34] (the
object layer of which, named KR, being prototype-based), which is dedicated to
graphical user interfaces, or YAFOOL [19], which is a knowledge representation
language based on frames that can have methods in the sense of traditional
object-oriented languages.

3.4 Class and object hierarchies - Disconnecting subtyping and
reuse

A last family is made of languages that integrates both prototypes and classes. If
several propositions have been made in this direction and have influenced actual
languages, this family has yet to produce a concrete representative.

Indeed, one of the first proposal embedding object hierarchies [22,21] has
suggested to mix in a single world classes and instances (called examplars) hav-
ing some kind of autonomy. The main purpose of that proposition was related
to object-oriented program organization; it was meant to experiment a sepa-
ration between subtyping hierarchies between classes, and code inheritance hi-
erarchies (or implementation hierarchies) between instances. In this proposal,
object methods are stored in instances and type interfaces in classes; classes can
have different instances with different implementations of the same method. For
example, the instances empty-1list and non-empty-1list of the class 1ist have
a different version of the append method. New objects are created by cloning
instances; for example, new lists are created by cloning either empty-1list or
non-empty-list. Besides, any instance can inherit from any other, some pri-
vate methods necessary for the implementation of the methods that compose its
interface. The delegation hierarchy between instances is not necessarily isomor-
phic to the inheritance hierarchy between classes”.

Although such proposals have not been pursued, they have influenced actual
languages and represent, in our opinion, a source of new ideas for the applications
of the prototypes formalism [26, 4].

" By the way, the non isomorphic interface and class hierarchies of JAVA, each class
implementing one interface, is a new form of that idea.



4 Classification criteria related to primitive mechanisms

The classification of the previous section is based on various visions of what is
classless programming and on various application domains for prototype-based
programming. We now focus on a classification based on the primitive operations
of prototype-based languages. Beyond a set of similar basic principles (object-
centered representation, dynamic addition and deletion of slots, cloning and
delegation), prototype-based languages differ in the precise interpretation of the
primitives that constitute their virtual machine and in the way programs are
organized. To build some classifications reflecting those differences requires to
present the comparison criteria.

4.1 Object Representation

Objects in prototype-based languages are defined by a set of properties. A prop-
erty is basically the binding within the object of name to a value®. Properties
are conceptually of two kinds: attributes or methods. Two main solutions have
been considered for the representation of objects: (1) to separate the concepts
of attributes and methods or (2) to amalgamate them using the concept of slot.
The first alternative mimics objects of a traditional class-based approach, the
value of each attribute can be accessed within methods by referencing its name
and can be changed through assignment. In the second alternative, no distinc-
tion is made between variables and methods; instead, an object gets a collection
of slots where a variable can be viewed as a method that simply returns a value.

Distinction between variables and methods : are objects represented
with attributes and methods or with slots?

Indeed, both alternatives have advantages and disadvantages. The advan-
tages of slots are advocated by SELF [45]: they are more flexible, they allow
users to access in the same way attributes and methods, they permit to override
an attribute with a method and conversely a method with an attribute. How-
ever, they force to implement an explicit encapsulation mechanism. With the
variables&methods approach, encapsulation of variables can be simply enforced,
by establishing standard (SMALLTALK-like) visibility rules (OBJECT-LISP— cf.
Fig. 4 does not provide such rules, variables can be accessed via message
sending).

4.2 Criteria related to object creation and evolution

Two alternatives are possible to create new objects in current languages. An
object can be created ex nihilo or it can be created from an existing one (by
cloning or extending it). Whether or not a primitive to create new objects ex
nihilo is provided makes up our second criteria.

& A property can also have a type, a domain, facets, ...



Creation ez mihilo: is it possible to create new objects ex nihilo?

If a primitive to create new objects ex nihilo is provided, two new alternatives
show up. We can create empty objects, or objects with an initial structure. If
we restrict ourselves to the creation of new empty objects alone, this raises the
question of what to do with them? Some means must be provided to modify
their structure in order to build the concrete objects in applications. Indeed,
this introduce two other design alternatives, can the structure of objects be
extended and/or shrunk dynamically, by adding or deleting properties?

Dynamic modification of object structure : can object’s structure be
modified?

Consider the creation of new objects from existing ones. The first solution is
cloning. Most languages (except GARNET and AMULET) provide a primitive for
cloning objects. Cloning (cf. Section 2.2) in itself offers two alternatives: shallow
cloning or deep cloning. However, deep cloning is usually ruled out as an unin-
teresting alternative because it is time consuming and provide little interesting
properties on its own. The second solution is extension and is discussed in the
next section.

4.3 Extensions and other solutions for life-time sharing between
objects

A new alternative appears with the question of extension objects (cf. Sections 2.1
and 2.2): are extensions necessary and what do they add to cloning? Some lan-
guages do not provide primitives to create extensions of other objects. For ex-
ample KEVO only allows for cloning and adding new properties to clones. The
object point2 in figure 3 is a clone to which a new property has been added; it
would have been possible to define turtle by cloning point2 and by adding the
new object the properties heading and forward.

The difference between an extension and an augmented clone lies in the way
objects share properties [17]. From the sharing and reuse point of view, shallow
cloning essentially means that immediately after cloning, the corresponding slots
of an object and its clone will point to the same objects. For example, consider
point and its clone point2 in the same figure 3, they share the method print
and their position by the virtue of pointing to the same value objects through
their respective slots print, x and y. However, even if they get the same structure
and the same values, they have independent slot bindings; if point is modified for
example, the two objects cease sharing the values of the updated slots. If a new
property is added to point, point2 will not have it. Hence, shallow cloning en-
force “creation-time sharing”, characterized by an independent evolution of the
clone and the copied object, which prevents objects to be unexpectedly modified
through their clone. The independent evolution applies to slot individually; here
point and point2 continue to share the method move, even after point2’s y
slot has been modified.



With extensions, we face “life-time sharing”: the extension inherits the prop-
erties of its parent and as long as the objects exist, the sharing will continue.
In our example, turtle will continue to share the y slot of point2 even if this
slot’s value is modified. Moreover, if a new property is added to point2, turtle
will inherit it.

Cloning and extension mechanisms are thus different and have distinct ap-
plications.

Does the language provide both cloning and extension mechanisms?

When an extension mechanism is provided, some languages allow new objects
to be extensions of more than one object. There is no conceptual difference,
this possibility simply raises usual multiple-inheritance problems when accessing
inherited properties. Some languages also allow an object to change its parent
at run-time; this is called dynamic inheritance in SELF.

Multiple parents : is it possible to have multiple parents?
Dynamic inheritance : is it possible for an object to change its parent.

When no extension mechanism is provided, achieving life-time sharing be-
tween objects requires other “group-wide mechanisms”. For example, KEVO makes
possible, via a mechanism that we will call propagation, to add, for example, a
new method to all objects of the same clone family [43]. This requires of course
that such families be handled automatically by the system.

If the language provides no extension mechanism, is there a
propagation-like mechanism allowing to achieve some kind of life-
time sharing.

4.4 Message sending

As in other object-oriented languages, the basic control structure of prototype-
based languages is message sending. The alternatives with message sending lie
in the way methods are searched. In the simplest case, methods are simply
searched in the object that has received the message. However, most prototype-
based languages provide a sharing mechanism named delegation. Delegation can
be implicit or explicit.

Implicit delegation is used goes hand in hand with a corresponding exten-
sion mechanism. Delegation here is a kind of inheritance mechanism allowing
to retrieve, access or apply properties of an object, which are in fact owned by
its parents. Implicit delegation was first introduced by Lieberman [23] (see Sec-
tion 2.2) as a message forwarding mechanism, who has accurately described it
in [24] (see Section 3.2). With implicit delegation, when an object does not own
the requested method or attribute, the interpreter automatically delegates the
question to the object pointed by its parent link.



point2 point2
X —+—= 5 X =5
y 14 y T 10
add = add 0
move 1. move — ...
turtle
turtle » I 10
X ——= 10 v J= 1
heading —T—= 90 heading —— 90
forward I .. forward I .
rotate T .. rotate -, ..
Fig. 5. after the modification of y with || Fig. 6. after the modification of y with
property sharing. value sharing.

Another form of delegation is qualified as explicit, where any object can ex-
plicitely delegate, via a specific instruction, a request to another object. Explicit
delegation is quoted in ACT1 and is also used in OBLIQ (achieved through an
alias mechanism).

If the language provides a delegation mechanism, is delegation im-
plicit or explicit?

4.5 Extensions, delegation and sharing

The next comparison criterion is related to the interpretation that is given to
the notion of extension. Such an interpretation governs the exact semantics of
the delegation mechanism. More precisely the interpretation given to the exten-
sion mechanisms governs what is inherited by an extension and what is shared
between an extension and its parent. The delegation mechanism is responsible
for correctly achieving inheritance and sharing. To introduce those different in-
terpretations, let us recall that any object created in a program represents an
entity being represented in the program, which is part of the real world; we call
the set of such entities the “domain” of the program.

Delegation as a sharing mechanism between representation of different
entities In the first interpretation, that we will call value sharing interpretation,
the notion of extension is used to express attribute and method values sharing
between two objects representing different entities of the domain. For example,
consider again in the figure 3 the object turtle created as an extension of
point?2. The object turtle represents a Logo turtle of the domain and the object
point?2 represents a point of the domain. The reason why the turtle object is
made a child of the point2 object is clearly the reuse of the definition of point2’s
properties. We do not want point2’s properties to be the very properties of



JoePerson
growOld | —— age:=age+1
address —T= 8 Octave street
age T 30
name —= John
phone —— 11-11-11-11
e
parent link
JoeFilmEnthusiast JoeSportsman
favActor - ... stamina —_ ..
favFilm -1 .. weight -
favDirecto] ——= ...

Fig. 7. A representation of a person with three objects.

turtle, but rather point2 to provide default values for the turtle’s variables,
which are not redefined. An object has at least as many properties as its parent,
each of these properties is identified by the same name within the context of any
of the two objects and has the same default value®. If the entities are distinct,
the objects cannot share properties but only property values.

What about delegation? With this interpretation, an object should not be
modified by sending an assignment message to one of its descendants. For ex-
ample, an assignment message for the slot y sent to turtle should not result in
point2’s y value modification as shown in Figure 5 but rather in the definition
of the y variable in turtle as shown in Figure 6. In other words, assignment
messages (or write access to attributes in methods bodies) should not be dele-
gated but should eventually entail a local redefinition of the attribute. Parent (or
delegation) links can in this case be intended as “is-like-a” links. Delegation then
grants read access to variables but no more write access to the parent proper-
ties. The frontiers between objects are then clearer: in our example point2 and
turtle can be considered as two different objects because they can evolve almost
on their own. The only way to modify the value of the point2’s y variable is to
explicitly send a message to point2. Although this will also modify the y slot’s
value for turtle, this may be acceptable in a sense, since this value is intended
to be a default one.

In terms of sharing, such an interpretation of variable assignment amounts to
restrict, between an extension and its parent, property sharing to value sharing
(the object turtle does not share with point2 the property named y but the
value of that property as long as it is not redefined on turtle).

Delegation as a sharing mechanism between representation of view-
point on the same entity. In a second interpretation, that we will call :

¥ Lieberman has also suggested objects as default behavior and value repositories for
their children in [24].



“property sharing interpretation”, an extension object and its parent can be
seen as different parts of the same domain entity. In such a case, properties of
the parent can be seen as full properties of the extensions. To split a representa-
tion in several objects in a delegation hierarchy is a natural way of representing
viewpoints.

For example, consider objects collectively representing a person — say “Joe”
— in a delegation-based system as shown in Figure 7 [17,27,4]). The object
JoePerson holds the basic information about the person (its address, age, name
and phone and a method grow01ld while the object JoeSportsman, an exten-
sion of JoePerson holds information related to Joe as a sportsman. Creating
JoeSportsman as an extension object instead of simply adding the slots salary
and company to JoePerson also leaves the door open for other extensions, e.g.
Joe as a film enthousiast. Any modifications to JoePerson are automatically
seen by its extensions. Also, changes to the person Joe can be made through
its extension objects. For example, if the employee changes its personal address,
the change will naturally be made at the person level and will be effective for all
extensions of this person. As in a description hierarchy, the most general view-
points are those denoted by the objects near the top of the hierarchy whereas
the most specific viewpoints are those denoted by the objects which are leaves
of the hierarchy. In our example, person is a more general viewpoint on Joe than
either sportsman or film enthusiast.

What about delegation? With this interpretation, it is coherent that an object
may be modified by sending an assignment message to one of its descendants.
For example, asking JoeSportsman to change its age can (and even has to) result
in a modification of the attribute age of JoePerson.

In terms of sharing, this interpretation is an application of property sharing
between objects. The address or age properties, not only their values, are shared
by the objects JoePerson, JoeSportsman and JoeFilmEnthusiast. Property
sharing is a characteristic of the extension mechanism and is achieved through
the delegation mechanism.

Interpretation of the extension mechanism : When the language pro-
poses an extension mechanism, is it with a “property sharing” or
“value sharing” interpretation?

A short analysis. Fully analysing these choices goes beyond the scope if this
paper. A first partial analysis can be found in [17] and more recent ones in [27,
28,16].

Let us just insist that the “property-sharing” interpretation raises some en-
capsulation issues when used in a ”point-turtle” like example, indeed delegation
establishes a so strong link between the objects point2 and turtle that they
cannot any more be considered as representing distinct entities. Conversely, it
enables split representations. A split representation is a set of objects linked
by delegation, representing a single entity of the domain such as the person
Joe. There is, as far as we know, in today’s prototype-based languages, no way
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Fig. 8. Differential creation of the prototype o2 representing Fred from the prototypical
instance of elephants also representing Clyde.

to handle split representations as first-class objects, entities for which we have
coined the name split objects. Handling split objects in a language would mean
to create them, refer to them, clone them and otherwise deal with them as with
other objects. This is an open issue on which we are currently working [4, 27].

Besides, the “value-sharing” interpretation partially eliminates encapsulation
issues by making parents independent of their extensions but it also restrict
the expressive power of the language by forbidding split representation with
viewpoints.

5 Classification criteria based on program organization

Despite the basic principles of prototype-based programming, which advocates
concrete objects as the only mean to model concepts, current languages have
introduced mechanisms to deal with groups of similar objects. The three most
common ones are: prototypical instances, traits objects, and maps.

Early in the foundation of prototype-based programming, Lieberman has pro-
posed the mechanism of prototypical instances to share properties among objects
related to a similar concept. The essential idea is to use the first concrete ex-
ample of a concept as the representation of the concept itself. The well-known
elephant example illustrates this (Fig. 8). Here, the object ol represents the
elephant Clyde, which is the first elephant we have encountered. Clyde is there-
fore chosen as the representation of the concept of elephant. It is grey, has four
legs and two ears. When the white elephant Fred appears, delegation allows us
to differentially create Fred as an object 02, having ol as parent and simply
redefining the slot color to be white.

Traits and maps have been invented in the prototype-based language SELF
[44]. A traits object is a repository for methods (and “semi-global” variables)
applying to the whole group of its delegating objects. The trait-based program-
ming model [44] proposes to segregate the slots of a prototypical object in two
parts: the representation part and the protocol part. Typically, the protocol part
consists of slots holding method values while the representation part will consist
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Fig. 9. A point example.

traits points | display ——= method for displaying points
add ——= method for adding points
01 | parent 02 | parent 03 | parent
X 10 X 0 X 3
y 20 y 0 y 5

Fig. 10. A point example using a traits object.

of slots holding either object identifiers or constant values, but this need not
to always be the case. In our first example (Fig. 9), the representation part of
a point object would include the slots x and y, while the protocol part would
include the slots display and add. A traits object is an object holding the pro-
tocol part, the idea being that this object can be shared among several copies

of the representation part (themselves represented as objects, see Fig. 10).

Traits encourage the creation of delegation hierarchies that look like an in-
heritance one in its higher levels made of traits. At the leaves, we find concrete
objects, somewhat like the instances in class-based programming. Trait-based
programming leaves more flexibility in the creation of objects, and traits are not
classes: they are less flexible and less abstract. An operation traitof returning
the first parent traits of an object can be provided; testing whether two ob-
jects support the same protocol then boils down to test if the two objects’ traits
are the same or have a common parent. In this sense, trait-based programming
emphasizes the notion of similar behavior among objects.

A map factors structural information out of objects in a clone family, i.e. a
group of structurally identical objects obtained by cloning one another. Maps,
illustrated in Figure 11, are similar to standard prototypes, except that the slot
values are replaced by indexes giving the relative position of the slot values in
the object, now represented merely as a vector of slot values. In fact, SELF goes
beyond that by putting in the map the values of immutable slots, an existing
concept in this language. When an object receives a message, the selector is used
to look up the map to find a slot index, a value or a method. If a value is found, it
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Fig. 11. The point example using maps.

is returned; if a method is found, it is applied in the context of the receiver; if an
index n is found, the content of receiver’s nth slot is retrieved and either returned
if it is a value or applied if it is a method. In SELF, maps are created automatically
behind the scene and if an object is cloned, the two clones will share the same
map. They give SELF the same space efficiency in the representation of objects
as the one of class-based languages. Because maps are not object in SELF, they
have no direct influence on its programming methodology.

5.1 Generalization

Prototypical instances, traits and maps are specific mechanisms used in existing
languages to structure programs. Compared to the original objectives of the
prototype-based model, we have argued [26] that they are going against the very
notion of prototype-based programming as it has been originally defined. But
from them emerge a much richer notion of delegation-based programming. In fact,
delegation-based languages exhibit much more diversity than it first appeared,
because these new mechanisms impose slightly different programming models,
which can hardly be put under the same “prototype-based” hat.

This approach allows us to complement existing classifications, such as the
one presented in the previous section, but also the ones of Wegner [46] and
the Treaty of Orlando [39]. Wegner identifies the class of object-centered pro-
gramming languages as classless object-based languages, within which he singles
out delegation-based languages, i.e. “classless objects with delegation”'°. In our
point of view, Wegner’s classification underestimates the diversity of classless
object-based languages, indeed because it is an attempt to characterize the whole
design space of object-oriented language. Moreover, at the time of his writing,
delegation-based languages were still underinvestigated. It is in this sense that
we complete his classification, being more precise in one of his original class.

19" A little confusion appears in [26], where object-based languages are understood as
always classless.



We propose to classify delegation-based programming languages according
to the number of different kinds of objects and the number of different kinds of
links they manipulate. For example, the parent-of link of delegation is one link
manipulated in all delegation-based programming languages. Similarly, a trait-
based programming language manipulates two kinds of objects: concrete ones
and traits. We argue that the number of kinds of links and objects manipulated
in a language bears important insights into the nature of its programming model.
We explore four classes of delegation-based languages: languages with one kind
of object and one kind of link, ones with two kinds of objects and one kind of
link, ones with two kinds of objects and two kinds of links and finally ones with
one kind of object and two kinds of links. This classification is founded on four
illustrating languages, the formal semantics of which have been developed and
thoroughly examined [26].

Prototype-based languages have always been criticized for their lack of man-
ifest organization in programs. Our new classification brings to the fore the
existence of delegation-based languages with a more and more structured pro-
gramming model, forming a continuum between pure prototype-based languages
and class-based ones. Not only this shows that the organization of a program
can be made more explicit without sacrificing an object-centered programming
model, it also suggests a step by step (possibly automatic) transformation of
prototype-based programs into class-based ones, a programming methodology
advocated before [46, 39].

5.2 Languages based on one kind of object and one kind of link

Delegation-based languages where the space of objects is completely homoge-
neous and where delegation is used for sharing, correspond to the usual notion
of prototype-based languages. All objects are equally first-class entities: they can
be created dynamically, they can be sent a message, they are all mutable, they
can be passed as parameters and returned as results. All of them can be used as
parent and cloned. We categorize these languages as having one kind of object
and one kind of link, namely the parent-of link.

5.3 Two kinds of objects, one kind of link

Typically, a language with one kind of object and one kind of link will evolve
towards one with two kinds of objects when some objects become exceptional
compared to others. Objects can become exceptional because of a particular
programming methodology that must be supported at the language level in
order to have all its strength. They also become exceptional when their “first-
classness” is severely restricted, such as being immutable or abstract (in the
sense that they cannot answer messages). They may not be cloned or used as
parents. We illustrate this category of languages with a trait-based programming
language.

The trait-based programming model is a good example for this class of lan-
guages, having two kinds of objects, prototypes and traits, and one kind of link,



delegation. In prototype-based programming, while assumed to be a concrete
object, the traits object will fail if sent messages since presumably the corre-
sponding methods will try to send the receiver (self) messages accessing the
representation part, which will fail. In fact, for trait-based programming to work
properly, most traits objects must never receive messages. And we propose that
the language must make sure that it happens like that.

5.4 Two kinds of objects, two kinds of links

Languages with one kind of link will typically have a delegation, or parent-of
link, which implements sharing akin to inheritance. Adding a second kind of link
suggests introducing a structural description link similar to the class-of link. In
traditional prototype-based languages, each object being one-of-a-kind, it gets
both its slot names and slot values. When a large number of structurally identical
objects are created, it becomes tempting to share the structural information, a
line of reasoning that pushed the SELF team to invent maps [14].

A map-based language is constructed by making maps true objects. Because
their slots contain indices to be reinterpreted in the context of the receiver, maps,
as objects, cannot answer messages. So we make them abstract objects unable
to answer messages. With maps represented as objects, it becomes possible to
take advantage of them in the programming methodology. A map-based language
encourages a programming methodology where the notion of structurally similar
objects becomes very important. In such a language, we can speak about a group
of structurally identical objects. Map-based operations to add or delete a slot to
all objects in a clone family, etc. should be implemented.

5.5 Two kinds of links, one kind of object

Typically, a language with two kinds of links and one kind of object can be
obtained by some rationalization of a language with two kinds of objects (and
two kinds of links). For example, consider the map-based language proposed
earlier. Can we transform maps in order to make them standard objects capable
of answering messages without impairing the programming model? The answer is
yes. The problem with maps begins when we send them messages whose result
needs a reinterpretation in the context of a concrete object in order to make
sense. But maps don’t need to be implemented like standard prototypes. A
simple idea, illustrated in Figure 12, is to replace the map by a descriptor object
with one slot called slotsDict, which points to an object implementing a slot
dictionary. The slot dictionary is not an ordinary prototype (despite a similar yet
not identical aspect in Figure 12), but rather an object similar to SMALLTALK’s
method dictionary. We draw it as a box with round corners and it is actually an
object answering at : (some selector) returning its associated value and at : (some
selector) put: (some value) messages like a SMALLTALK dictionary.

The advantage of this representation is that now we can send legitimate
messages to descriptors, namely slotsDict, as well as to slot dictionaries. In
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Fig. 12. The point example using descriptors.

fact, our descriptors look pretty much like SMALLTALK classes. A descriptor-
based language similar to the previous map-based one can be designed very
simply. In order to preserve an object-centered programming model, descriptors
should be created automatically, like maps were. Nonetheless, descriptors are so
much like classes that we are at the frontier between abstraction-centered and
object-centered programming here. An important missing feature that makes
the language still promoting an object-centered programming model is the lack
of a sharing mechanism between descriptors that would have a semantics similar
to inheritance. By taking care not to introduce such a link between descriptors,
we don’t encourage programmers to design their applications mainly around
descriptors (see [28] for more information about descriptors).

5.6 But what’s in a link?

The characterization by the number of links is an important measure of the
complexity of a language, but since this classification was first published, ex-
amples have proved that the nature of these links is also important. Amulet,
for instance, defines four different delegation semantics called modes. Clearly,
classifying Amulet has having four kinds of links would bring little insight into
the nature of the language.

This suggests another level of classification: classifying the links themselves.
We have identified two main family of links: comparative links (like, delegation,
inheritance, etc.) and descriptive links (is-a, class-of, map-of, descriptor-of, etc.).
Other family of links could also be added, especially reflective links such as a
behavior-of found in reflective languages [31,40]. Kinds of links ars therefore
better understood in our classification as kinds of families of links.



| Objects + message sending + shallowClone|

representation| variables and methods slots
dynamic
modification
of structure
creation
ex-nihilo
cregtion
primitive
delegation iml?ijt explicit implicit implicit

[obiectLispLike] [ActiLike] [ExemplarLike]  [SdlfLike]

L1 < L2 |Z X X possible extensions of L1
L2isreductibleto L1 uninteresting language " aenot developed in this paper

Fig. 13. An historical taxonomy [17].

6 Classifying Existing Languages

6.1 First classification based on primitives mechanisms

The taxonomy shown in Figure 13 is extracted from [17] and is only shown here to
give an historical perspective that reflects our understanding of prototype-based
languages at that time'!. It takes into account how objects are represented,
how they can be created and modified and the form of delegation (implicit or
explicit) proposed by the language. Four existing prototype-based languages were
classified in this taxonomy: SELF, OBJECT-LISP, ACT 1 and EXAMPLARS.

SELF and ObjectLisp are members of the language families (L8) and (L2)
respectively, both extended with implicit delegation. From the point of view of
that taxonomy, they only differ in the representation of objects; SELF uses slots
while OBJECT-LISP uses variables and methods. EXAMPLARS is best characterized
by the family illustrated by (L13): prototypes have variables and methods, the
structure of prototypes cannot be modified dynamically, new objects are created
ex- nihilo or by copying existing ones, the parent link is named ”superExemplar”
and delegation is implicit along this link. However since it is an hybrid language

" This classification is also operational one implemented as a SMALLTALK class hi-
erarchy. The hierarchy can be used to interpret expressions of simulations of the
classified languages. This SMALLTALK program, named Prototalk, is in fact a frame-
work allowing to rapidly implement a simulation of any prototype-based language
[18].



also providing classes, some of its characteristics are out of the scope of our tax-
onomy. ACT 1, described in Section 2.2, can be attached specific characteristics.
Objects can have variables and a script. Messages to objects are examined by the
script in which various actions can be performed, including explicit delegation
to other objects in the system. When the script rejects a message, there is an
implicit delegation to the parent of the receiver, the script of which being in turn
executed. These functionalities can be classified in an extension of the language
(L5) for which the evaluator is also able to deal with explicit delegation orders.

6.2 Second classification based on the semantics of primitives

This section now proposes a comparative table taking into account the whole
set of criteria presented in Section 4. Most of the entries have been explained,
let us simply quote a few particularities.

For what concerns the interpretation of the extension mechanism, languages
such as GARNET or YAFOOL only propose the “value sharing interpretation” while
others such as SELF or OBJECT-LISP only propose the “property sharing” one.
Others, such as NEWTON-SCRIPT propose both by allowing to create the two
kind of extensions implemented by two links named _proto or _parent. Another
approach (encapsulated inheritance) is proposed by AGORA which permits each
object to control the creation of its future extensions and the read/write access
they will have on the attributes of the extended object [40]. We have quoted
the advantages and drawbacks of both interpretations; besides, mixed solutions
raise the issue of managing both kind of delegation links.

6.3 Abstraction-based Classification

The figure 15 summarizes our second classification. We have represented five
categories of languages: four described here with one example language in each,
and one corresponding to Wegner’s classless object-based languages, in which
he classifies Ada [20]. The list of possible languages in each class is by no mean
closed. For example, another path towards a language with two kinds of objects
but one kind of link appears when considering the status of prototypical ob-
jects in Lieberman’s first proposal. In Lieberman’s mind, the standard way to
represent a concept is to provide a prototypical instance of this concept (Clyde
is the prototypical elephant) to which other objects of the same concept can
delegate for default properties. Because modifying a prototypical object has an
important, and often undesirable, effect on all other objects delegating to it, we
can make them immutable objects, hence stressing their particular role. In the
Clyde Fred example, Clyde would no longer be mutable, therefore making it
impossible to indirectly modify Fred by mutating Clyde. A safe version of such a
language designed in this line provides another example of a language with two
kinds of objects and one kind of link.

It is also worth noting that the classification using the number of kinds of
objects and links needs not to be restricted to object-centered languages. We have
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Fig. 14. Languages comparison.

already noted that our descriptor-based language is at the frontier of abstraction-
centered programming. If we take this language and add an inheritance link
between descriptors, we end up having a language with one kind of objects but
three kinds of links (parent-of, descriptor-of and descriptor inheritance) which
cannot be characterized as object-centered. Moreover, consider a language where
metaclasses are first-class objects as Cointe’s ObjVlisp. Such a language has
two kinds of objects (instances and classes, since metaclasses are simply classes
whose instances are classes) and two kinds of links: instantiation and inheritance.
However, it is certainly not object-centered. We have used our classification to
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Fig. 15. The second classification with example languages.

characterize object-centered programming languages, but it is not restricted to
this class of languages.

An interesting work now is to assess existing languages in the light of our
classification. For example, in our view SELF is not prototype-based but it is cer-
tainly object-centered. It is our opinion that using the notion of object-centered
programming with abstract objects presented here, the design of SELF can be
positively enhanced. Our preferred path of upgrade would be to introduce traits
as abstract objects like in Section 5 but to make maps first-class objects in the
line of our descriptors (Section 5 and [26]). This would make SELF a delegation-
based programming language with two kinds of objects and two kinds of links.

7 Perspectives

A domain, in order to be considered mature, must provide a comprehensive and
intelligible description of its basic principles, its roots, its foundations, its alter-
native designs and its concrete realizations. It is our hope that our work since
the beginning of the nineties has help to convey people in the field of prototype-
based programming and their potential users some of this deep understanding.
To this end, we have used traditional scientific processes: observation, compar-
ison and classification. The two major contributions are the two classifications,
which have clarify the design alternatives behind prototype-based languages,
but also the richness of their different programming models as well as their posi-
tion in the larger domain of object-oriented programming. These contributions



complement existing work, and especially the Treaty of Orlando and Wegner’s
classification.

Besides this classification effort, our work has also open some new research
perspectives. The explicit definition of the kinds of sharing, life-time and creation-
time sharing, achieved by cloning and delegation has shown that the two mech-
anisms are irreducible to each other. It has also led us to identify the problem
of self, which occurs when frontiers between objects are blurred by teh sharing
of slot bindings between them. In turn, the self problem has led us to identify
on major use of delegation, which is to create split representations of domain
entity using first-class split objects. Split objects consider as a whole a set of
individual objects delegating to each other that represent one single domain en-
tity. The kind of sharing allowed by delegation gives unique properties to split
objects that make them especially useful in object-oriented databases and other
persistent applications.

A second perspective is open by our second classification. We have introduced
a general notion of object-centered programming, which admits some kinds of
abstract devices, such as traits and maps, provided that the programming model
is still dominated by the object-centered subset of the language, i.e. the major
application design activity revolves around the creation of concrete objects. By
recognizing the potential for abstract objects different from classes yet capable
of structuring object-centered programs, we have reconcile prototypes and ab-
stractions. Corollarily, we have brought to the fore the existence of more and
more structured delegation-based languages forming a continuum between pure
prototype-based languages and class-based ones.

For a long time, proponents of the prototype-based approach have suggested
software development methodologies evolving from a liberal designs, using pro-
totypes, towards a more a more structured one to end up with a completely
structured applications using classes. Our work not only highlights the poten-
tial for several object-centered programming models, but also suggest a concrete
path of evolution where prototype-based programs could be turned into class-
based ones by successive transformations from less structured to more structured
object-centered programs.

If prototype-based programming has still to find its place in the realm of
software development, it is our convictions that split objects and object-centered
programming have an essential role to play in its future.
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