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Abstract

We like to find the CLR in ATM networks when the statistical multiplexing is an important factor. In

this paper, first we have proposed the combination of three analytical expressions, which approximate

the cell loss probability, based on the fluid-flow approximation model and two stationary

approximation models. Second, we have provided a very accurate numerical model for the finite

buffer, which lies at the input of each VP. The sources are statistically independent and each traffic

source has a two-state Markov model. This simulation is done at the cell level and its results are very

accurate. We have compared the results of the numerical simulation with the results of the analytical

approximation models. Also we have used the linear estimation to find an accurate expression for cell

loss approximation in ATM networks

1. Introduction

ATM as a high-speed cell switching technology can support multiple classes of traffic sources

with different quality of service (QoS) requirements and diverse traffic characteristics. In this

study we are interested in one of the QoS requirements: cell loss probability.

In our study the sources are statistically independent and each traffic source has a two-state

Markov model [1]. A single source has a variable bit rate alternated asynchronously between

On and Off state and bounded by the peak rate r. Such a source in an On state transmits at

peak rate and in an Off state transmits at zero bit rate. The duration of the On and the Off state

are assumed to be exponentially distributed and therefore the source is completely

characterized by three parameters, namely peak rate r, utilization ρ, and b, where ρ is the

fraction of time the source is active and b is the mean of the On state period. Other parameters

of interest, such as the mean m and the variance σ2 of the bit rate are identified completely

from the source metric vector  (r, ρ, b):  

m = ρ . r

and                                                         σ2  = ρ (1- ρ) r 2

The advantages of the above physical model are its simplicity and flexibility, such as it can be

used for connections ranging from burst to continuous bit streams.

The remainder of this paper is organized as follows: in section 2, we discussed analytical

approximation models. In section 3, we proposed an accurate numerical model for finding the

cell loss probability in the finite buffer, which lies at the input of each VP. In section 4, we

163



proposed a new accurate expression for the cell loss ratio in the buffers of ATM switchs. The

conclusion of our study is discussed in section 5.

2. Combination of Three Models

In this paper, first we have proposed the combination of three analytical expressions, which

approximate the cell loss probability, based on the fluid-flow approximation model and two

stationary approximation models. These models have been proposed to approximate the

equivalent capacity of two-state Markov sources. Most of researchers that studied the routing

in ATM networks used only the results of the fluid-flow approximation model for the call

admission function ([5], [6], [7], [8]). But, we showed that for a good approximation, we must

combine all the existing models to obtain an accurate result for different ranges of

connections characteristics. The following expressions calculate the cell loss ratio in a finite

buffer, which lies at the input of each VP. We consider a finite buffer with the capacity of x

(Mbit) capacity, FIFO queuing and two-state Markov (On-Off) arrival traffic. Let F be the

ratio of the VP capacity C to the VC peak rate r (F=C/r) and L be the number of VCs in the

VP. Considering to the fluid-flow approximation model[1],[2], we have:

                                  P1loss(L)                                                                                                  (1)

On the other hand, we have found P2loss (L), which is the cell loss probability obtained from

stationary approximation using binomial distribution. We have:

                                                            P2loss (L) =                                                                    (2)

Also, we have obtained P3loss (L), which is the cell loss probability based on stationary

approximation using Gaussian distribution, as follows:

(3)  

Since, all three of the above approximations are conservative and valid upper bounds[2],[8]

(we will show this fact according to our numerical results), Ploss (L) can be obtained from the

following expression:

  Ploss(L)=min{P1loss(L), P2loss(L), P3loss (L)}                                      (4)

3. A Numerical Model
We like to provide a very accurate numerical model for the finite buffer, which lies at the
input of each VP. Just like the analytical models, here again, we consider a finite buffer with

the capacity of x (Mbit) capacity, FIFO queuing and two-state Markov (On-Off) arrival
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traffic. The result, which has to be calculated at the end, is the buffer overflow probability (the

loss probability). Figures 1 show this model briefly. We will obtain the Ploss for different

values of L and δ by providing a program in C++ language based on this model. The aims and

objectives of this simulation are as follows:

• This simulation is done at the cell level and the results of the numerical model are very

important. Figures 2 to 4 show the results of our simulation.

• Finding an accurate expression for cell loss ratio is the main aim of this research.

• Evaluation of different analytical methods, which have represented in this paper for

Ploss approximation. In this research we have compared the results of the numerical

simulation with the results of the Fluid-flow approximation, stationary approximation

using Gaussian distribution and stationary approximation using binomial distribution

methods.

• Proving the fact that the analytical methods of the Ploss approximation are inaccurate

and conservative and each of them works out better in a particular range of L (the

number of VCs in the VP) and δ (1/δ is the mean of Off periods). These results lead to

the substantiation of the expression, which has obtained from the combination of all the

three analytical approximation methods.  

• The result of the simulation will help us to determine the minimum, maximum and

average error of each of the analytical methods. These results lead to find out the more

accurate expressions for calculating the cell loss probability.

• This model has a great flexibility, such that we can also use it for other disciplines

(other than FIFO) such as weighted fair queuing (WFQ), just by modifying some

variables and a small part of the program logic. Also, we can easily use an arrival

traffic model else than On-Off Markov model by modifying the random generators (as

an instance, we can use the self-similar traffic generator). These changes are not

feasible easily in analytical models and all the algebraic calculations must be repeated

from the beginning or we have to ignore the model entirely and using other analytical

models. We can use non-homogeneous traffics in this model, too.

Considering to the simulation results, if we assume that the maximum error coefficient (that is

equivalent to the minimum of the proportion of the analytical and numerical results) in P1loss,

P2loss, and P3loss are respectively α1, α2 and α3, then we can write the previous analytical

expressions (1, 2, and 3) in a more accurate form as follows:

P1loss= α1*P1loss (old)

P2loss = α2*P2loss (old)

P3loss = α3*P3loss (old)

Where:

α1=1.04 * 10
-2

α2=9.55*10
-3

α3=7.37*10
-3

Finally, Ploss(L) can be calculated from the following expression:

Ploss(L)=min{P1loss(L), P2loss(L), P3loss (L) }                             (5)

To find the upper bound for Ploss , we used the maximum error coefficient. These expressions

are the results of combining the analytical and numerical methods, which are discussed in this

paper.
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We repeated the simulation for other values of the VP capacity and the buffer size and we saw

that always the expression (5) is a valid upper bound for Ploss.

4.  A Very Accurate Model
Although the results of the numerical model are very accurate, but these results can not be

used directly in the ATM routing algorithm or call admission function. Actually we need an

explicit and simple expression, which can approximate Ploss as a function of different

parameters such as L, δ, x, and F(C/r). In the previous section, we found constant coefficients

for compensating the error of the Ploss expression, which have been obtained by the three

analytical models. But in this section, we like to estimate a new accurate expression for cell
loss ratio based on the results of the exact numerical model. In other words, we want to find

the Ploss expression as a function of the model parameters. Usually the desired cell loss

probability is considered in the range of 10
-6 

to 10
-9

[2]. But we have considered the range of

10
-3 

to 10
-9

 for Ploss  to find a valid expression in a wide range of L. We will try to find an
expression, which can approximate Ploss in this range with high accuracy.

The figures 2 to 4 show PNloss (the numerical model results) in comparison with the results of

the three analytical approximation models, for δ respectively equal to 0.125, 1, and 5. Note

that these curves are drawn logarithmically. We have chosen these values (0.125, 1 and 5) for

δ to find a general expression which can be used in a wide range of arrival traffics, from

almost burst traffic (δ=0.125, ρ=1/9) to nearly continuous bit streams (δ=5, ρ=5/6).

Figures 2 to 4 show that the logarithm of PNloss in the range of 10
-3 

to 10
-9

 is a linear function
of L. So, we can use the linear estimation method to obtain an expression for the Ploss. But the

problem is that each of these lines can be used just for particular F (F=C/r), x and δ. In the

other word, if F, x and δ are constant and the Ploss (we have called it ψ) is a function of L

(Number of VCs), then the slope of ψ will be a function of F, x and δ. We have the following

expressions:

ln(Ploss)=ψ(L, F, x , δ)

Since �=�/(�+1), we can write:

ln(Ploss)=ψ(L, F, x, �)

and

Considering that ψ is a linear function of L, Table 1 shows the end points of 27 lines, which

estimate ψ for x of 24, 48, and 96, F of 25, 50, and 100 , and δ of 0.125, 1, and 5. These

ranges are considered wide to achieve an expression, which is valid in all ranges of F, x, L,

and δ. We have liked to find a line, in which the end points ((X1,Y1) and (X2,Y2)) are the

function of F, x, and ρ. These parametric end points must be fit to all of 27 end points ((x1,y1)

and (x2,y2)) in Table 1.

As we have already mentioned, in ATM networks, the desired CLR is considered in the range

of 10
-6 

to 10
-9

[2]. But we have considered the range of nearly 10
-3 

to nearly 10
-9

 (because of

limitation of the results of simulation, these values are not exactly equal to 10
-3 

and 10
-9

) for
Ploss  to find a valid expression in a wide range of L. We will try to find an expression, which

can approximate Ploss in this range with high accuracy. Since in all end points, y1 is nearly

equal to 9.5*10
-8 

and y2 is nearly equal to 1.9*10
-3

 (these values are the averages of y1 and y2

in Table 1), we can write:

),,(/),,,( ρρψ xFfLxFL =∂∂
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Y1=ln(9.5*10
-8

)=-16.17

Y2=ln(1.9*10
-3

)=-6.27

Although Y1 and Y2 found easily, but finding X1 and X2 as functions of network and traffic

parameters are very hard. We have guessed each of terms of  the following expressions

individually. Then we have write a program to find the coefficients of the expressions by try

end error (iteration) method. Finally we have found the following expressions, which are the

accurate approximation of X1 and X2  :

The linear estimation can be written as Follows:

After replacement of X1 and X2 expressions and Y1 and Y2 values in the above line function

and a simple modification, we can write:

(6)

So, we can use the expression (6) for calculating Ploss in the routing algorithms of ATM

networks.

5. Conclusion

In this paper, first we discussed three analytical approximation methods for cell loss ratio and

combined these methods for finding the more accurate expression (4). Since the results of the

Ploss expression (4) are not accurate, we provided a very accurate numerical model for the

finite buffer at the input of each VP. We used the maximum error coefficient and found a

more accurate expression (5) for Ploss. Then we used the linear estimation to find the Ploss as a

function of the model parameters and found a very accurate expression for calculating the cell

loss probability (expression (6)).

The curves of figures 2 to 4 show that our approximation model (P6loss, which can be

calculated by expression (6)) is accurate (note that PNloss is the results of an accurate model of

Ploss).
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Table 1. The End Points of Estimated lines

 y2�x2�y1x1�����F�x
1.62*10-31861.15*10-71301/9 0.125
2.01*10-3471.34*10-739� 0.5 1
3.05*10-3301.92*10-829� 5/6 5

 

25

1.56*10-33901.24*10-7300� 1/9 0.125
1.34*10-3941.40*10-782� 0.5 1
2.94*10-3604.00*10-858� 5/6 5

50

2.18*10-37969.01*10-8641� 1/9 0.125
1.34*10-31911.38*10-7172� 0.5 1
2.84*10-31202.78*10-8116� 5/6 5

100

 

 

 24

2.29*10-32069.59*10-8150� 1/9 0.125
1.96*10-3499.90*10-842� 0.5 1
2.06*10-3311.05*10-829� 5/6 5

25

1.35*10-34051.87*10-7320� 1/9 0.125
1.29*10-3981.29*10-786� 0.5 1
1.64*10-3601.00*10-1058� 5/6 5

50

1.23*10-38151.15*10-7665� 1/9 0.125
1.84*10-31941.29*10-7174� 0.5 1
1.11*10-31225.1*10-8117� 5/6 5

100

 

 48

1.93*10-32481.25*10-7192� 1/9 0.125
1.74*10-3541.05*10-747� 0.5 1
3.08*10-3329.67*10-830� 5/6 5

25

2.69*10-34461.83*10-7364� 1/9 0.125
1.01*10-31021.01*10-791� 0.5 1
1.07*10-3627.5*10-860� 5/6 5

50

2.62*10-38548.33*10-8705� 1/9 0.125
2.21*10-31989.99*10-8180� 0.5 1
1.31*10-31236.1*10-8118� 5/6 5

100

 96
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                                                                                        Figure 2. Comparison of the numerical results with the 

                                                                                 expressions 1, 2, 3, and 4 for x=24, F=50 and �=0.125
 

 

 

 

 

 

 

 

 

 

 

                                                                                       Figure 3. Comparison of the numerical results with the

                                                                                expressions 1, 2, 3, and 4 for x=24, F=50 and �=1.0
 

 

 

 

 

 

 

 

 

 

 

 

                                                                                       Figure 4. Comparison of the numerical results with the

                                                                              expressions 1, 2, 3, and 4 for x=24, F=50 and �=5.0
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