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In a distributed system, consisting of a set of interconnected local area networks, users migrate to
different machines, users invoke different programs and users and programs need distinct data files
to satisfy their expectations. Consequently, optimal allocation of program tasks can increase system
performance as results of traffic cost  reduction between clusters.

The problem of allocating a parallel program in a particular system can be seen as the  allocation of
the program components in a set of available clusters such that traffic costs are minimized. A total
intercluster traffic cost function is the objective function to be optimized and used to evaluate the
individuals in a population through the evolutionary process.

This paper discusses possible improvements of the a previous evolutionary approach to the cluster
allocation problem, at the light of enhancements  found in the evolutionary field itself.
A multiple crossovers per couple (MCPC) approach is applied to the evolutionary algorithm and
contrasted against a modified simple genetic algorithm. Details on experiments and results are
shown.

������ �: distributed systems, genetic algorithms, multiple crossovers per couple.

                                                          
1 The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to
Promote Science and Technology).
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The problem of allocating a program in a particular system node can be divided into two
subproblems: (i) allocate the program in a cluster2 such that traffic costs are minimized and (ii)
within a particular cluster choose the node following some load balancing criteria. To solve
subproblem (i), in 1992 Borghoff [2] proposed the Individual Program Execution Location
Algorithm IPELA, where essentially giving a distribution of data files the best allocation for
program execution, minimizing the expected intercluster traffic, is searched. The algorithm uses
diverse input data such us the cost for starting a program at some node [12], the dependencies
between program and data files [1], separated read and write access costs [11], the impact of I/O
activities on the communication costs [8] and the allocation of program and data files [3]. As the
number of possible allocations induce high complexity and the model could not be solved to
optimality Borghoff reduced the number of combinations by limiting the number of data file
replicas and looking for those combinations where the relevant file sets’s allocation is varied. This
approach reduced complexity. Nevertheless running IPELA  implied evaluation of each solution in
a large problem space. Extending the Borghoff’s individual program framework, we focussed on its
application in a parallel program environment confronting the problem by means of an evolutionary
approach [6].
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Now we briefly explain the nature of the problem. Given a user initiated parallel program, which
during execution accesses to a set of files in a distributed system, allocate the program parallel tasks
(modules) in order to minimize intercluster traffic (tasks migration, intermodule and module-file
communication).

As an example Fig. 1 shows the final allocation of parallel tasks after both substrategies were applied.
The parallel program, comprising ten tasks, was residing in workstation ��  of cluster 5, initiation took
place from  workstation �� of cluster 1, ten files were distributed throughout the system and the
parallel tasks, were first allocated to nine available clusters following the minimization criteria and
then to a selected node, within their respective clusters.

In other words, our main objective is to minimize communication time between the clusters where the
parallel program components are allocated under the following characteristics:

• The program, which is residing in some cluster, is decomposed in � parallel modules where each
of them can be executed in an arbitrary available3 cluster.

• During execution, parallel modules can communicate each other and access data blocks in files
which are resident anywhere in the system.

In our model some data structures referring to programs profile and file distribution are supposed to be
available in a Cluster Supervisor Node (CSN) within each cluster.
Assuming that,

                                                          
2  Nodes belonging to the same local area network are said to build a cluster.

3 A cluster is available if it is connected to the internet.



• A parallel program can be divided into � migrating modules.
• Each migrated module generates a number of output data blocks (transient or partial results) to the

node where it is residing. These blocks are to be transferred to the program residing cluster when
computation completes.

• � files, distributed throughout the system and involved in the computation, are accessed by the
modules.

• The current system state provides � available clusters.

then we need the following data structures to hold information associated to each parallel program:

• �� Modules. An scalar describing the number of modules comprising the program.
• ��: Code Blocks (including executing environment). An  �-vector indicating the length of code in

blocks for each parallel module to be transferred from the program file residing cluster to each
executing cluster.

• ��	�� Module Output Data Blocks. An �-vector specifying the number of output data blocks
produced by each parallel module to be transferred to the program file residing cluster. ��	��

indicates the number of output data blocks (partial results) produced by module 
 during
computation.

• ��	�� Program Output Data Blocks. A scalar specifying the number of output data blocks,
corresponding to global results, to be transferred from the program residing cluster to the initiating
cluster.

Figure 1. A possible layout of parallel tasks within clusters.



• ��	�� Read/Write Data Blocks. A �
� matrix specifying the number of data blocks accessed in
a given file by each parallel module during computation. ��	���� indicates the number of
read/write accesses of module � on file 
.

• ���� InterModule Communication. An �
� matrix indicating the intermodule communication
measured in data blocks transferred. ������ specifies the number of data blocks transferred from
module 
 to module � during execution.

• �	� File Distribution. A �
� matrix indicating the file distribution throughout the clusters. �	��� =
1 indicates that file 
 is stored in some node of cluster �� �	��� = 0 indicates that file 
 is not stored in
any node of cluster �.

• ���� Maximum SPeed. An �
� matrix specifying the maximum transfer speed between clusters.
������ indicates the maximum transfer speed between cluster 
 and cluster �, following some of the
interconnections allowed by network topology.
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If CA= {cA1,..., cAN} is the set of available clusters in the network, our objective is to find an execution
cluster distribution4

CD = <�
���, ..., �
���> where �
��� ∈ ��, 1 ��
 ���

to allocate each parallel module in such a way that execution leads to a minimization of intercluster
traffic according to the parallel module individual profiles, the current allocation of the program file
and the current allocation of involved data files. Our objective function deals with the following partial
costs:

� ��
�
��
������������� Includes the cost to handle the user request to run the program, plus migration
of parallel tasks to available clusters.

� ������� !"�� ����!�
���
��� ����� ������� Includes the cost to transfer messages and/or data
between modules.

� �
"��#�������������#��� Which includes read/write accesses from modules to data files.
� �!�$!������� ����� Includes the cost to transfer results from execution clusters to the initiating

cluster.
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A user can initiate the execution of a program $��� from any cluster. Let be ����� the cluster where the
user node resides, and ����	 the cluster where the invoked program code resides.  The initiation process
can be divided into two stages, the first, related to the transfer of a remote command execution request
from ����� to ����	 and the second involved in parallel tasks migration from ����	 to each selected

                                                          
     4 The execution cluster distribution CD, is a m-vector specifying that module i must be allocated to cluster

execi.



execution cluster according to an allocation distribution vector �
&(�
���)����)��
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) specifying that

module 
 must be allocated to cluster �
���.
So, if ��+	� is the number of data blocks involved in the remote command execution request, then
the first component of IC is given by:
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The Cluster Supervisor Node in cluster ����	 is responsible, by applying the optimization strategy, of
distributing the M modules composing the parallel program, among available clusters. Then the second
constituent of �� is given by:
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Assuming that communication links of similar technology between two clusters exists in either
direction, then communication between module 
 and module � is measured as the number of blocks
transferred from one module to another disregarding direction. This assumption is introduced to
simplify the model by using a triangular matrix, without loss of generality. The ������� !"�
����!�
���
������� is given by the following expression:
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In our model we assume that a single copy of the files accessed during parallel computation exists in
the system. A generalization considering file replication implies slight modification of the objective
function and data structures. Access to files typically encompass input data requests and data file
modifications. This cost includes transfer of data blocks to be read (write) from (to) the cluster where a
file exists to (from) the cluster where the executing module is allocated. �#� is given by:
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* = < exec1
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* >, the near optimal allocation distribution vector comes as a result of a
minimization strategy



�!�$!�����������

In computing intensive task processing, minimum interaction is advisable for achieving high
throughput. In our model we assume that the final output (partial results) from each parallel module is
first transferred to ����	 (the cluster where the parallel program file is residing). Then after some local
computations in ����	 global results are transferred from ����	 to ����� (the cluster where the program was
initiated).

Then the �!�$!������ is given by:
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Given � modules and � available clusters all possible allocations must be searched and corresponding
costs calculated. The size of the problem space is ��. A difficult tractable problem depending on � and
�. In our model we chose to obtain timely near-optimal allocations instead of out-of-time optimal
results. Genetic Algorithms are a valuable tool to face this kind of problems.
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The algorithms were applied on many scenarios with diverse number of modules, clusters and files
each, and ten series of twenty runs, with diverse values for the corresponding input parameters were
accomplished. Here we discuss the case of 10 modules, 9 clusters and 10 files.

We decided to work with an integer representation as a more natural description of the allocation
problem. So, a particular position (gene) in the chromosome represented a module identifier which is
allocated in the cluster identified by its value (allele). As an example when 10 modules are to be
allocated in 9 available clusters, the chromosome of Fig. 2 indicates the following cluster distribution:
modules 1 and 7 will be allocated in cluster 3, modules 2 and 5 in cluster 1, modules 8 and 9 in cluster
9, module 3 in cluster 4, module 4 in cluster 5, module 6 in cluster 6 and module 10 in  cluster 7.
Clusters 2 and 8 will not allocate any module.

3 1 4 5 1 6 3 9 9 7
1 2 3 4 5 6 7 8 9 10

Two genetic algorithms were contrasted, a modified simple genetic algorithm  (MSGA) and a
combination of multiple crossovers per couple with fitness proportional couple selection (MCPC-
FPCS). The MSGA used the above indicated integer representation, uniform  crossover and little-
creep operators [4] for mutation.

cluster   →
module  →

Fig. 2. Chromosome structure for the cluster allocation problem



The basic idea of  FPCS [7] is to create, from the current population  of individuals, an intermediate
population of couples which subsequently undergoes selection for mating under MCPC those pairs
showing higher fitness (see Fig. 3). To assign the fitness to the couple a criterion based on the
parents fitness average (FPCSAVG) was chosen. The method can be sketched as follows:

• A number of individuals are initially selected by proportional selection to build the intermediate
population of parents.

• A couple fitness value, computed in accordance to the couple fitness criterion, is assigned to each
mating pair.

• Couples are selected for repro-duction by proportional selection (according to couple fitness). The
process of producing multiple offspring (MCPC) is controlled, for each mating pair, in order not to
exceed the population size.

The following relevant performance variables were chosen:

����: It is the  objective value of the best found individual.

����� = (Abs(�$�./�" - best value)/�$�./�")100
It is the percentile error of the best found individual when compared with the known, or  estimated,
optimum value �$�./�". It gives us a measure of how far are we from that �$�./�".

�+�+ = (Abs(�$�./�"- pop mean fitness)/�$�./�")100
It is the percentile error of the population mean fitness when compared with �$�./�". It tell us how far
the mean fitness is from that �$�./�".

�����: Identifies the generation where the best value (retained by elitism) was found.

            Fig. 3# Couple Selection
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	-0�: It is the running time in seconds of the algorithm implemented on a  Pentium PC (MMX of 233
MHz).

A particular benchmark case with known optimum was chosen for experimentation. Different setting
of parameters, such as crossover and mutation probabilities, population size and maximum number of
generations, were used.

Tables 1 and 2 show the 10 best results under each method. Those in boldface correspond to the
optimum solution.

�#����� �#�1�# 2��� 2��. ����� �+�+ ����� ����
0.650000  0.001000  200   50 0.000006 0.032412 21 3#4)536)
0.650000  0.001000  200  100 0.000006 0.000006 21 3#4)536)
0.650000  0.050000  200  100 0.000006 26.899259 65 3#4)536)
0.500000  0.050000  200  100 0.053974 16.329121 68 4.039642
0.500000  0.050000  200   50 0.237420 19.403321 49 4.047049
0.500000  0.050000  100  100 0.263320 17.944509 64 4.048094
0.650000  0.050000   50   50 0.422890 7.381497 47 4.054537
0.650000  0.050000   50  100 0.422890 7.851154 47 4.054537
0.500000  0.001000  200   50 0.473060 0.545403 28 4.056563
0.500000  0.001000  200  100 0.473060 0.473060 28 4.056563

�#����� �#�1�# 2��� 2��. ����� �+�+ ����� ����
0.500000  0.050000  200   50 0.000006 19.659855 39 3#4)536)
0.500000  0.050000  200  100 0.000006 16.261753 39 3#4)536)
0.650000  0.050000  200  100 0.476376 27.080477 90 4.056696
0.650000  0.001000  200   50 0.487356 0.627650 29 4.057140
0.650000  0.001000  200  100 0.487356 0.832470 29 4.057140
0.650000  0.050000  200   50 0.915364 26.391131 24 4.074420
0.500000  0.001000  200   50 1.032137 1.032137 37 4.079135
0.500000  0.001000  200  100 1.032137 1.102010 37 4.079135
0.650000  0.050000   50  100 3.160282 11.271904 87 4.165058
0.500000  0.050000  100  100 3.466643 15.800654 97 4.177427

	-0�, was recorded in 2 seconds and 4 seconds for 50  and 100 generations respectively.

The following observations can be done:

• Both approaches find the optimum value for some setting of parameters: different crossover and
mutation probabilities but equal population size of 200. This fact indicates that a greater
population size improves the search process.

• MSGA finds the optimum in earlier generations.

• MCPC-FPCS finds near optimal solutions in earlier generations.

Table 1. Results of the best ten runs for MSGA

Table 2. Results of the best ten runs for MCPC-FPCS



• Conventional probabilities of crossover and mutation (0.65 and 0.001) favours the MSGA
approach, while lesser values for Pc and higher values for Pm (0.5 and 0.05) favours MCPC-
FPCS.

• The error of the best individual (Ebest) ranges from 0.0% to 0.5% for MSGA and from 0.0% to
3.4% for MCPC-FPCS.

• The error of an average individual in the population (Epop) ranges from 0.0% to 26.6% for
MSGA and from 0.6% to 27.1% for MCPC-FPCS.

Summarizing,  MSGA seems to behave better than MCPC-FPCS for the selected suite of parameters.
But under any approach, it is worth remarking that since GAs work on a population of feasible
solutions, instead of providing a single optimal or near optimal solution a subset of optimal or near
optimal solutions is always available after reaching the final generation. This peculiar characteristic
yields to fault tolerance in the model by providing a significant subset of near-optimal solutions as
alternates to be used in case the real world constraints prevent using the first selected alternate (eg. lack
of availability of some cluster to be allocated). Alternate strategies can be ordered according their
goodness 6.
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The implementation would require a monitoring process to determine a Mean Parallel Program Profile
(MPPP) and a GA process to determine a set of near-optimal cluster allocation strategies. The output
obtained from these processes, includes part of a data base accessible to the system and residing in the
Cluster Supervisor Node of each cluster. As we said above, some information about program profile is
assumed to be available in data structures within the CSN of each cluster. To obtain a MPPP, the
program and modules behaviours are monitored, relevant information gathered and associated data
structures (e.g., M, CB, MODB, RWDB, IMC) initialized or updated.

As any cluster in the network could become an initiation cluster (�����) or an execution cluster (�
��i)
each CSN maintains a data base to provide information about locations of data files and program files.
In addition, CSNs belonging to those clusters holding at least a program file in any of its nodes,
maintains the corresponding MPPPs and the output from the initial GA run. Besides, each CSN
updates a description of the availability state of remaining clusters.

After written and compiled, parallel programs will be submitted to a set of initial runs to create the
corresponding MPPP. Depending on user requirements, programs could be occasionally or frequently
modified. In the former case only occasional updates will be necessary to maintain a reliable MPPP,
while in the latter case updates would be as frequent as new program versions are created.  In either
case after obtaining a new MPPP a genetic algorithm is run to acquire a new subset of near-optimal
cluster allocation strategies. But for how long  do initial strategies remain valid?

The GA run provides its output based on the current set of available clusters. The current state of each
cluster (available or not available) is ready for checking within each CSN. Concerning to cluster

                                                          
     6 In our model we say that solution i shows higher goodness than solution j iff   TITCi < TITCj.



availability, internets show variable behaviour. Consequently, after each request of a parallel program
execution, CSN in ����	� follows a simple procedure to provide a feasible near-optimal allocation
strategy:

I. It checks, in an orderly manner, each previously determined alternate strategy with the current
available clusters set. (e.g., it verifies if for any of the near optimal CD

* vectors all its components
belong to the current set CA of available clusters).

II. If any of these allocation alternates could be satisfied within the current system state, then
process halts as soon as the first match is found and that strategy is selected. Otherwise, if no
alternate satisfies (e.g., because of clusters unavailability) a new GA run is necessary to establish
the current valid subset of near-optimal cluster allocation strategies.

In those internets where clusters availability remains almost unchanged it will rarely be necessary to
run a GA process while satisfying a request of a parallel program execution and the system
performance will be near optimal. If due to changes in cluster availability, a GA process would be
necessary then some extra seconds are required to establish a subset of near-optimal strategies but
the system keeps trying to make efficient use of communication resources.

Once parallel tasks are allocated to near-optimal clusters a selected load balancing strategy can be used
to settle the corresponding executing node within each cluster (Eager et al. [5], Jacqmont et al [9],
Wang et al. [13]). This also depends on how CPU availability is defined in the system. If an idle
workstation approach is used then selection of executing node will not require load balancing [10]. In
case of searching for an underloaded workstation one of the simplest approaches  is deciding to choose
that workstation with maximum ratio of attested processing power to the number of running processes.

7#��������
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Evolutionary computation has recently been recognized as a research field. Applications are
possible in diverse areas. A broad but not exclusive categories involve scheduling, packing, routing,
on line and off line control and design. Computer systems, including networks, are promising areas of
applications for evolutionary computation.

The present paper introduced a model to near-optimally allocate available clusters of an internet, for
execution of program parallel components. Two different evolutionary approaches, MSGA and
MCPC-FPCS, were contrasted and despite their differences in implementation and results both,
definitely provide not a single optimal solution but a set of timely optimal or near optimal solutions to
the first subproblem for parallel task allocation.

The architecture of the proposed implementation contemplates the dynamics of the system behaviour
by incorporating procedures within the Cluster Supervisor Node to check the feasibility of the current
set of near-optimal strategies and by contributing to fault tolerance through multiple alternates.

Also, the flexibility of the genetic algorithm approach allows by changing parameters, such as
population size and number of generations achieved, and genetic operators to tune the goodness of
alternate strategies according to the accuracy and speed on response demanded by the problem. Future
work is related to the incorporation of different multiple recombination approaches and incest
prevention to escape from premature convergence.
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