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Abstract Crowdsourcing has been an effective and efficient paradigm for providing labels for large-scale un-

labeled data. In the past few years, many methods have been developed for inferring labels from the crowd,

but few theoretical analyses have been presented to support this popular human-machine interaction process.

In this paper, we theoretically study the quality of labels inferred from crowd workers by majority voting and

provide an analysis of label quality that shows that the label error rate decreases exponentially with the number

of workers selected for each task. We also study the problem of eliminating low-quality workers from the crowd,

and provide a conservative condition for eliminating low-quality workers without eliminating any non-low-quality

worker with high probability. We also provide an aggressive condition for eliminating all low-quality workers

with high probability.

Keywords unlabeled data, crowdsourcing, majority voting, label quality, worker selection

Citation Wang W, Zhou Z-H. Crowdsourcing label quality: a theoretical analysis. Sci China Inf Sci, 2015, 58:

xxxxxx(12), doi: xxxxxxxxxxxxxx

1 Introduction

In recent years, unlabeled data can often be obtained abundantly and cheaply for more and more machine

learning applications. Generally, learning algorithms need labeled data to train a model for making

predictions on future data. This practice has been well established in machine learning. Providing labels

for large amounts of unlabeled data has always been a challenge because labeling the data is expensive

and time-consuming. Fortunately, crowdsourcing [1,2] has been an effective and efficient paradigm that

can provide labels for large-scale unlabeled data in applications across widespread domains such as image

annotation, natural language processing, objection recognition and recommendation. The most famous

crowdsourcing system is Amazon Mechanical Turk (AMT), a market where users (known as Taskmasters)

submit their “microtasks” that can be completed by workers in exchange for small monetary payments.

In AMT, users can post any Human Intelligence Tasks (HITs) that computers are currently unable to

perform, e.g., annotating images of trees versus images of non-trees.

Crowdsourcing makes it possible for not just one but many independent, relatively inexpensive workers

(experts and non-experts) to offer their opinions (labels) on the HITs and determine a solution by

aggregating these crowd opinions. The workers usually come from a large range of society and each of

them is presented with multiple tasks. The worker has to answer the question about the task presented to
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her/him (e.g., whether the image contains trees or not) and provides a label based on her/his own opinion.

Among these workers, some may be more reliable than others. Sometimes, there may exist “spammers”

who assign random labels in the tasks (e.g., a robot pretending to be a human for the monetary payment)

or “adversaries” who give wrong answers deliberately. To improve quality and reliability, common wisdom

is to add redundancy into the labels, i.e., each task is presented with multiple workers. In this way,

multiple labels are collected for each task and the ground-truth label can be inferred from the crowd.

There have been many experimental results that show that this label redundancy could improve the label

quality significantly [3–5].

1.1 Prior work

Most popular methods for inferring the labels from the crowd in the past few years build probabilis-

tic models for the crowdsourcing process and derive the labels using algorithms based on Expectation

Maximization (EM) [6] and other inference tools. Raykar et al. [7,8] used a two-coin model to measure

the performance of each worker in term of sensitivity (true positive rate) and specificity (1-false positive

rate) with respect to the unknown ground-truth label. After imposing prior knowledge on sensitivity

and specificity, they iteratively estimated the two terms by an EM algorithm with two assumptions: that

the performance of each worker is independent of the specific task and that the workers in the crowd

are conditionally independent to each other given the ground-truth label. Whitehill et al. [9] formulated

a probabilistic model of worker quality and task difficulty in the labeling process with the conditional

independence assumption and applied an EM algorithm to infer the most probable label for each task.

Subsequently, Welinder et al. [10] introduced worker bias and generalized the probabilistic model in [9]

with a high-dimensional formulation of variables representing task difficulty, worker quality, and worker

bias. In the circumstance where workers are dominated by spammers, Raykar and Yu [11] proposed an

empirical Bayesian algorithm based on EM to iteratively estimate the ground-truth label and eliminate

spammers. Liu et al. [12] transformed the crowdsourcing problem into a variational inference problem

in graphical models and inferred the labels with variational inference tools including Belief Propagation

and Mean Field. As they noted, the performance of their method critically depends on the choice of

prior knowledge about the worker’s reliability, and the MF-form of their method is closely related to

the common methods based on EM algorithms. The minimax entropy principle has also been used to

infer crowdsourced labels. Zhou et al. [13] proposed a minimax entropy method with the assumption

that the labels are generated by a probabilistic distribution over workers and tasks. Task difficulty

and worker quality can be induced by maximizing the entropy of this probabilistic distribution and the

ground-truth label can be inferred by minimizing the entropy of this probabilistic distribution. Yan et

al. [14] studied learning from the crowd in an active learning setting and employed a probabilistic model

to provide criterion for selecting both the task and the worker from which to query the label. Wauthier

and Jordan [15] realized that inferring the labels and learning from the inferred labels are often treated

separately in crowdsourcing. They proposed a Bayesian framework named the Bayesian Bias Mitigation

for Crowdsourcing to unify them.

Because each task is presented to multiple workers and each worker is also presented with multiple

tasks, the crowdsourcing system must decide how to choose which tasks are assigned to each worker.

Karger et al. [16] proposed a task assignment algorithm based on a random regular bipartite graph

and proved the optimality of their algorithm under the assumption that the workers in the crowd are

conditionally independent to each other given the class label. However, they only focused on the situation

where all tasks are homogeneous, i.e., the label error of a worker does not depend on the specific task

and all tasks are equally difficult to her/him. In real-world applications, a worker may have different

qualities for different tasks, i.e., her/his performance is not consistent across different tasks. A natural

intuition is to apply the exploration-exploitation method that has been studied in the multi-armed bandit

problem [17]: estimate the performance of each worker and assign a worker to the tasks that she/he is

good at. Several methods have been developed following this approach. Ho and Vaughan [18] proposed

an algorithm for assigning heterogeneous tasks to workers with different qualities based on the online

primal-dual technique [19]. However, their method assumes that the system can evaluate the worker’s
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performance immediately. Subsequently, Ho and Vaughan [20] utilized tasks with ground-truth labels

to estimate the performance of new-coming workers and proposed a provably near-optimal assignment

algorithm for heterogeneous tasks based on the online primal-dual technique. Furthermore, Chen et

al. [21] formulated a finite-horizon Markov Decision Process in a Bayesian setting for heterogeneous

task assignment and characterized the optimality using dynamic programming, which was solved by an

optimistic knowledge gradient method.

As for the theoretical analysis of inferring the crowdsourced labels, there have been several results,

most of which take an exploration-exploitation approach. Dekel and Shamir [22] studied the problem of

pruning low-quality workers in the setting where each task is only labeled by one worker with a two-step

process: first identify the workers that significantly deviate from the hypothesis trained on the entire

unfiltered data as low-quality workers, then filter the labels labeled by these low-quality workers and

retrain the model on the cleaned data. They also presented a theoretical generalization analysis for

this two-step process. Tran-Thanh et al. [23] introduced the Multi-Armed Bandit (MAB) model to the

study of crowdsourcing. They used the first ε budget to estimate the worker’s quality and maximized the

utility of the remaining (1−ε) budget based on these estimations. An upper bound on the regret for their

Bounded ε-first algorithm was derived. Abraham et al. [24] formalized a model for worker selection called

the Bandit Survey problem, which is similar to but technically different from the MAB problem, because

the MAB problem collects rewards as feedback while the Bandit Survey problem collects the opinions of

workers. They also presented the algorithms and a theoretical analysis for this Bandit Survey model.

1.2 Our focus and contributions

In prior work, existing well-designed methods for inferring the labels from the crowd have their restric-

tions: the methods based on probabilistic models and inference tools heavily depend on prior knowledge

of probabilistic distribution and the initial starting point. If the prior knowledge is different from the

distribution generating the ground-truth, the performance is dramatically poor. Sometimes, the solution

may be locally optimal even if the prior knowledge is exactly the same as the distribution generating

the ground-truth. The methods for task assignment either need tasks with ground-truth labels to esti-

mate the quality of the worker or heavily depend on prior knowledge. Existing theoretical studies on

crowdsourcing either focus on the setting where each task is only labeled by one worker or formalize the

crowdsourcing process as a bandit problem where the feedback relies on the immediate evaluation of the

worker’s label, which cannot be applied to the general crowdsourcing problem.

In real-world crowdsourcing applications, the simplest and most general method for inferring labels

is to use majority voting over multiple labels. It is a good error-pruning strategy and there have been

many reported experimental results on real-world crowdsourcing data sets [3–5] the showed that majority

voting performs significantly well at improving label quality. Inspired by these observations, we present

a theoretical analysis of label quality for majority voting in crowdsourcing that shows that the label

error rate decreases exponentially with the number of workers selected for each task. We also provide a

conservative condition for eliminating low-quality workers without eliminating any non-low-quality worker

with high probability. We also present an aggressive condition for eliminating all low-quality workers with

high probability.

The rest of this paper is organized as follows. After introducing some preliminaries in Section 2,

we present the theoretical analysis on label quality in Section 3 and study the problem of eliminating

low-quality workers in Section 4. Finally, we draw our conclusions in Section 5.

2 Preliminaries

The taskmaster has a set of m tasks {t1, . . . , tm} over X , each task ti corresponds to a binary classification

example xi with an unobserved ground-truth label yi ∈ {0, 1}, 1 6 i 6 m (e.g., annotating whether an

image includes trees or not). The taskmaster assigns these tasks to the workers in the crowd, where W

denotes the set of all workers in the crowd. To improve quality and reliability, an example xi is generally
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presented to N workers denoted by {w1, . . . , wN}, wj ∈ W , for instance, by randomizing the order of

the workers and selecting the first N . Each worker wj makes a prediction on xi and creates a label

yji = wj(xi) ∈ {0, 1}. A final label is then inferred for xi based on the labels {y1
i . . . , y

N
i } provided by

the N workers. In this paper, we focus on the majority voting strategy that uses the majority label as

the inferred label ŷi for the binary classification problem, i.e.,

ŷi =


1, if 1

N

∑N
j=1 y

j
i >

1
2 ,

random guess, if 1
N

∑N
j=1 y

j
i = 1

2 ,

0, if 1
N

∑N
j=1 y

j
i <

1
2 .

(1)

This is a good error-pruning strategy when no information is known about the worker’s quality. Here,

we utilize the two-coin model introduced by Raykar et al. [8] to characterize the quality of each worker.

For a random example (x, y), worker wj ∈ W provides label yj on x based on two biased coins. If the

ground-truth label y is 1, the worker flips a coin with bias αj (sensitivity) and provides a correct label

yj = y with probability αj ; if y is 0, the worker flips a coin with bias βj (specificity) and provides a

correct label yj = y with probability βj . For y = 1, the sensitivity for wj is defined as

αj = P (yj = 1|y = 1);

for y = 0, the specificity for wj is defined as

βj = P (yj = 0|y = 0).

Actually, a similar one-coin model has been considered for task assignment in Karger et al. [16] and Ho

et al. [20]. Karger et al. [16] assumed that wj is characterized by reliability parameter pj that generates

error randomly for each example, i.e., wj provides label yj for x such that yj = y with probability pj and

yj 6= y with probability 1 − pj . This reliability parameter pj does not depend on the specific example.

This setting discussed by Karger et al. [16] is called a homogeneous setting because each worker has

equal quality on all examples. Ho et al. [20] generalized this to the heterogeneous setting, where the

tasks can be divided into several types and each worker performs consistently on tasks of the same type.

The reason why we follow the two-coin model is that the worker may have different qualities for different

task classes.

3 Theoretical analysis on label quality

3.1 Uniform distribution with bounded workers

In this section, we start with a simple model for analyzing the quality of inferred labels. There are

some kind of tasks that require domain knowledge to complete, so the taskmaster hopes to attract the

people she/he needs and select an appropriate crowd. In this situation, she/he may assign tasks to the

community that consists of people who have knowledge about the tasks and will complete them honestly.

Once the taskmaster has selected the appropriate crowd, it is reasonable to assume that the performance

of the worker in the crowd is no worse than predicting all tasks as positive or negative because they have

knowledge about the tasks. Without loss of generality, we assume that the positive class is the minority

class and A(wj) > P (y = 1) for all workers wj ∈W , where A(·) is the accuracy defined as

A(wj) = P(x∈X ,y)

(
wj(x) = y

)
.

Hence for worker wj we obtain

A(wj) = P
(
wj(x) = 1, y = 1

)
+ P

(
wj(x) = 0, y = 0

)
= αjP (y = 1) + βjP (y = 0).

Here, we assume that αj and βj do not depend on the specific example, i.e., wj has equal quality on

all examples, as in Raykar et al. [8]. We discuss the setting where wj has different qualities on different

examples in Subsection 3.2.
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Let α and β denote the random variables corresponding to αj and βj over different workers, respec-

tively. Considering that the crowd may include workers with all possible sensitivities and specificities and

that each worker is selected randomly from the crowd, (α,β) can be thought of as uniformly distributed

over some domain. With A(wj) > P (y = 1) for wj ∈ W , we get that (α,β) should satisfy the following

constraint:

P (y = 1) ·α + P (y = 0) · β > P (y = 1).

Thus, (α,β) is uniformly distributed over the domain 0 6 α 6 1, 0 6 β 6 1 and P (y = 1) · α + P (y =

0) · β > P (y = 1). A similar uniform setting where the workers range from very bad to very good was

discussed by Dekel and Shamir [22], but for a different theoretical analysis. We now present the following

result on label quality:

Theorem 1. Suppose that the sensitivities and specificities of the workers in the crowd are uniformly

distributed over the above domain and each task is presented with N workers selected randomly from

the crowd. The inferred labels generated by majority voting then satisfy the following bound:

P
(
ŷ 6= y

)
6 2 exp

(
− C2N

18(2− C)2

)
P (y = 1) + 2 exp

(
− (3C − 2C2)2N

18(2− C)2

)
P
(
y = 0).

Here, C = P (y=1)
P (y=0) 6 1.

Proof. Letting C = P (y=1)
P (y=0) 6 1, the constraint P (y = 1) ·α+P (y = 0) ·β > P (y = 1) can be simplified

to C · α + β > C. Because (α,β) is uniformly distributed over the domain 0 6 α 6 1, 0 6 β 6 1 and

C · α + β > C, the probability density function of (α,β) is p(α,β) = 2
2−C . We may then calculate the

marginal probability density functions p(α) and p(β). First,

p(α) =

∫ 1

C−C·α

2

2− C
dβ =

2(1− C + C ·α)

2− C
.

Second, if 0 6 β < C, we get

p(β) =

∫ 1

1− βC

2

2− C
dα =

2β

(2− C)C
.

If C 6 β 6 1, we get

p(β) =

∫ 1

0

2

2− C
dα =

2

2− C
.

We now calculate the expectations E(α) and E(β) using the marginal probability density functions.

E(α) =

∫ 1

0

α · p(α)dα =
3− C
6− 3C

,

E(β) =

∫ C

0

β · p(α)dβ +

∫ 1

C

β · p(α)dβ =
3− C2

6− 3C
.

For example (x, y), N workers w1, . . . , wN are selected randomly from the crowd and each of them

provides a label yj on x based on her/his sensitivity and specificity. The inferred label ŷ is generated

by majority voting according to (1). If the ground-truth label y = 1, let Sα = 1
N

∑N
j=1 I

(
yj = 1|y = 1

)
.

From Lemma 1 we obtain

P
(
ŷ 6= y|y = 1

)
= P

(
ŷ = 0|y = 1

)
= P

(
Sα <

1

2

)
6 P

(∣∣E(Sα)− Sα
∣∣ > E(Sα)− 1

2

)
6 2 exp

(
− C2N

18(2− C)2

)
.
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If the ground-truth label y = 0, let Sβ = 1
N

∑N
j=1 I

(
yj = 0|y = 0

)
. From Lemma 1, we obtain

P
(
ŷ 6= y|y = 0

)
= P

(
ŷ = 1|y = 0

)
= P

(
Sβ <

1

2

)
6 P

(∣∣E(Sβ)− Sβ
∣∣ > E(Sβ)− 1

2

)
6 2 exp

(
− (3C − 2C2)2N

18(2− C)2

)
.

Considering that P
(
ŷ 6= y

)
= P

(
ŷ 6= y|y = 1

)
P (y = 1) + P

(
ŷ 6= y|y = 0

)
P (y = 0), Theorem 1 is proved.

Theorem 1 states that the label error rate decreases exponentially with the number of workers selected

for each task when the quality of each worker is bounded and each worker is selected randomly from the

crowd.

3.2 Analog-Gaussian distribution with unbounded workers

In Subsection 3.1, we assume that each worker has equal quality for all examples. We now generalize to

the setting where the sensitivity and specificity of worker wj depend on the task xi, i.e.,

αi,j = P (yji = 1|yi = 1), βi,j = P (yji = 0|yi = 0).

In AMT, once the tasks are posted by the taskmaster, thousands of people have internet access to them.

Sometimes, there may be adversaries in the crowd who give the incorrect answer for the task deliberately

(αi,j or βi,j = 0). The accuracy of an adversary is 0, so the qualities of workers in the crowd are no longer

bounded. In real-world crowdsourcing, there may exist some workers who have the same sensitivity and

specificity. Thus, although each worker is selected randomly from the crowd, the distribution of sensitivity

and specificity over all workers is no longer uniform. Intuitively, normal workers are much more than

experts, spammers, and adversaries. For example xi, the distribution of sensitivity and specificity for the

workers is more like a Gaussian distribution, i.e.,

p(αi) =
1

Zαi
√

2π
exp

(
− (αi − µi)2

2

)
, αi ∈ [0, 1], (2)

p(βi) =
1

Zβi
√

2π
exp

(
− (βi − νi)2

2

)
, βi ∈ [0, 1]. (3)

Here, αi and βi denote the random variables corresponding to αi,j and βi,j on xi over the workers,

respectively. Terms Zαi and Zβi are normalization terms such that∫ 1

0

p(αi)dαi = 1 and

∫ 1

0

p(βi)dβi = 1, (4)

and 0 6 µi, νi 6 1. The distribution parameters µi and νi represent the opinions of the most commonly

occurring workers in the crowd on xi. We now present the following result on label quality:

Theorem 2. For example (xi, yi), suppose that the sensitivity and specificity on xi over the workers are

distributed as (2) and (3) and the task xi is presented to N workers selected randomly from the crowd.

If µi >
1
2 and νi >

1
2 , the inferred label ŷi generated by majority voting satisfies the following bound:

P
(
ŷi 6= yi

)
6 2 exp

(
− 2N(ϕ(µi)− 1/2)2

)
I
(
yi = 1

)
+ 2 exp

(
− 2N(ϕ(νi)− 1/2)2

)
I
(
yi = 0

)
.

Here, ϕ(τ) = 0.827
(
φ(τ)− φ(1− τ)

)
+ τ and φ(τ) = exp(− τ

2

2 ).

Proof. Let X = αi − µi and Y = X√
2
. We obtain

E(αi) =

∫ 1

0

αi · p(αi)dαi
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=
1

Zαi
√

2π

∫ 1−µi

−µi
X · exp

(
−X

2

2

)
dX +

µi

Zαi
√

2π

∫ 1−µi

−µi
exp

(
−X

2

2

)
dX

=
1

Zαi
√

2π

∫ (1−µi)/
√

2

−µi/
√

2

√
2Y · exp(−Y 2)dY + µi. (5)

Considering the integral formulation∫
Y · exp(−Y 2)dY = −1

2
exp(−Y 2),

from (5), we get

E(αi) =
1

2Zαi
√
π

(φ(µi)− φ(1− µi)) + µi. (6)

With (4), we have

Zαi =
1√
2π

∫ 1

0

exp

(
− (αi − µi)2

2

)
dαi =

1√
2π

∫ 1−µi

−µi
φ(X)dX.

For some ∆ > 0 and 1/2 < µi < µi + ∆ 6 1, we get∫ 1−(µi+∆)

−(µi+∆)

φ(X)dX −
∫ 1−µi

−µi
φ(X)dX =

∫ µi+∆

µi

φ(X)dX −
∫ 1−µi

1−(µi+∆)

φ(X)dX < 0.

Hence, Zαi is a monotonically decreasing function of µi for 1
2 < µi 6 1. Let

Φ(λ) =
1√
2π

∫ λ

−∞
φ(X)dX, (7)

we have

min
µi∈( 1

2 ,1]
Zαi = Zαi

∣∣
µi=1

=
1√
2π

∫ 1

0

φ(X)dX = Φ(1)− Φ(0) = 0.8413− 0.5 = 0.3413.

For 1
2 < µi 6 1, from (6), we have

E(αi) > 0.827 (φ(µi)− φ(1− µi)) + µi. (8)

Let ϕ(µi) = 0.827 (φ(µi)− φ(1− µi)) + µi. We calculate its derivative, which is

ϕ′(µi) = 0.827 (−µiφ(µi)− (1− µi)φ(1− µi)) + 1. (9)

Because 1/2 < µi 6 1, from (9), we obtain

ϕ′(µi) > 1− 0.827φ(1− µi) > 0. (10)

This means that ϕ(µi) is a monotonically increasing function of µi for 1
2 < µi 6 1. Hence, we get

ϕ(µi) > ϕ(µi)
∣∣∣
µi=1/2

= 1/2.

With (8), we obtain E(αi) > ϕ(µi) > 1/2. If yi = 1, let Sαi = 1
N

∑N
j=1 I(y

j
i = 1|yi = 1). From Lemma 1,

we get

P (ŷi 6= yi|yi = 1) = P (Sαi < 1/2)

6 P (|E(αi)− Sαi | > E(αi)− 1/2)

6 2 exp
(
−2N(ϕ(µi)− 1/2)2

)
.
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Similarly, we obtain

E(βi) =
1

2Zβi
√
π

(φ(νi)− φ(1− νi)) + νi > 1/2.

If yi = 0, let Sβi = 1
N

∑N
j=1 I

(
yji = 0|yi = 0

)
. We then have

P (ŷi 6= yi|yi = 0) = P (Sβi < 1/2)

6 P (|E(βi)− Sβi | > E(βi)− 1/2)

6 2 exp
(
−2N(ϕ(νi)− 1/2)2

)
.

Thus, Theorem 2 is proved.

Theorem 2 states that when µi, νi >
1
2 , the probability of inferring the incorrect label for xi decreases

exponentially with the number of workers selected for it. When µi, νi >
1
2 , the most commonly occurring

workers in the crowd will make correct predictions on xi with high probability, i.e., the crowd is capable

of completing the task. When µi, νi <
1
2 , we obtain the following result:

Corollary 1. For example (xi, yi), suppose that the sensitivity and specificity for xi over the workers

are distributed as (2) and (3) and the task xi is presented to N workers selected randomly from the crowd.

If µi <
1
2 and νi <

1
2 , the inferred label ŷi generated by majority voting satisfies the following bound:

P (ŷi = yi) 6 2 exp
(
−2N(ϕ(µi)− 1/2)2

)
I (yi = 1) + 2 exp

(
−2N(ϕ(νi)− 1/2)2

)
I (yi = 0) .

Here, ϕ(τ) are given in Theorem 2.

Corollary 1 states that when µi, νi <
1
2 , the probability of inferring the correct label for xi decreases

exponentially with the number of workers selected for it. When µi, νi <
1
2 , the most commonly occurring

workers in the crowd will make incorrect predictions on xi with high probability, i.e., the crowd is almost

dominated by low-quality workers and is not capable of completing the current task. For such extreme

crowd dominated by low-quality workers, we may never achieve good label quality. In the following

sections, we mainly focus on the situation when µi, νi >
1
2 .

Theorem 2 provides the error bound on xi. We now derive the error bound over the example space X .

If there exists some ξ0 >
1
2 such that ξ0 6 µi and ξ0 6 νi for all xi ∈ X , we obtain the following result:

Theorem 3. Suppose there exists some ξ0 >
1
2 such that ξ0 6 µi and ξ0 6 νi for all xi ∈ X . The

inferred labels generated by majority voting then satisfy the following bound:

P(x,y) (ŷ 6= y) 6 2 exp
(
−2N(ϕ(ξ0)− 1/2)2

)
.

Here, ϕ(τ) are given in Theorem 2.

Proof. Because µi > ξ0, νi > ξ0 and ϕ(τ) is a monotonically increasing function of τ for 1/2 < τ 6 1,

we get ϕ(ξ0) > ϕ(µi) and ϕ(ξ0) > ϕ(µi). Considering that

P(x,y) (ŷ 6= y) =

∫
xi∈X

P (ŷi 6= yi) p(xi)dxi,

by Theorem 2, Theorem 3 is proved.

For the heterogeneous setting discussed in Ho et al. [20] where the tasks are divided into several types

and each worker performs consistently on tasks of the same type, the condition in Theorem 3 can be

met. This is easy to understand: support there are l types, and each type of tasks corresponds to a pair

(µb, νb), where 1 6 b 6 l, µb >
1
2 and νb >

1
2 . For these l types, there exists some ξ0 >

1
2 such that

ξ0 6 µb and ξ0 6 νb.

Unfortunately, sometimes the condition in Theorem 3 may not be met, i.e., for any small ξ > 0, there

exists some xk ∈ X such that µk− 1
2 < ξ or νk− 1

2 < ξ. For this task xk, its µk or νk is very close to 1/2.

This means that the most commonly occurring workers in the crowd will make incorrect predictions on

xk with a probability that is very close to 1/2, i.e., xk is a very difficult task for the crowd to complete.
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Generally, this difficulty may be caused by various feature noise. For the tasks in which the features

are corrupted badly, workers can only guess their labels. We use the Tsybakov [25] condition, which is

usually used to characterize difficult examples in learning problem, to model these tasks that are difficult

for the crowd, i.e., for some CT > 0, γ > 0 and all 0 < ξ 6 1/2,

P (xi ∈ X : µi − 1/2 6 ξ ∨ νi − 1/2 6 ξ) 6 CT ξ
γ . (11)

Based on the Tsybakov condition, we give the following result on label quality:

Theorem 4. Suppose that the tasks in X meet the Tsybakov condition in (11). The inferred labels

generated by majority voting satisfy the following bound for any 0 < ξ 6 1/2:

P(x,y) (ŷ 6= y) 6 2 exp
(
−2N(ϕ(ξ)− 1/2)2

)
+ CT ξ

γ .

Here, ϕ(τ) are given in Theorem 2.

Proof. Considering that X = {xi : µi − 1/2 6 ξ ∨ νi − 1/2 6 ξ} ∪ {xi : µi − 1/2 > ξ ∧ νi − 1/2 > ξ},
From Theorem 3 and (11), Theorem 4 is proved.

Theorem 4 states that the error bound on the inferred labels depends on the number of workers selected

for each task and difficult tasks, as characterized by the Tsybakov condition. The first term of the right

hand side in the bound indicates the probability of inferring the incorrect labels for non-difficult tasks

(measured by ξ) and the second term of the right hand side in the bound indicates the quantity of

difficult tasks. For these difficult tasks, it is hard to infer their ground-truth labels. Furthermore, the

Tsybakov condition shown in (11) can also be generalized to the case where there are extreme examples

xs for which µs, νs <
1
2 (discussed in Corollary 1). These extreme examples are also included in the

Tsybakov condition.

The distribution in (2) and (3) can be generalized as the following distribution:

p(αi) =
1

Zαi
√

2πσ
exp

(
− (αi − µi)2

2σ2

)
, (12)

p(βi) =
1

Zβi
√

2πσ
exp

(
− (βi − νi)2

2σ2

)
. (13)

This distribution is not difficult to understand: σ denotes the variance and has no influence on the

expectation in the Gaussian distribution, hence we can derive the error bounds. However, the parameters

ϕ(µi), ϕ(νi), ϕ(ξ) and ϕ(ξ0) depend on σ.

4 Eliminating low-quality workers

We call a worker wj as a low-quality worker if she/he provides correct predictions for tasks with a

probability that is no larger than 1
2 , i.e., A(wj) 6 1

2 . Obviously, these low-quality workers will degenerate

the quality of the crowd. If some of them can be removed, the label quality will be improved. As the

crowdsourcing process continues, the workers complete more and more tasks and the final labels for these

tasks are inferred by majority voting. The theoretical results in Section 3 show that these inferred labels

are good approximations of the ground-truth labels. Intuitively, we can count the number of labels that

are different from the inferred labels for each worker, and the workers who have large numbers of such

labels will be the low-quality ones with a high probability. Let Mα denote the number of tasks with an

inferred label of 1 completed by wj , and let Mβ denote the number of tasks with an inferred label of 0

completed by wj
1). Further, we define the following pseudo-sensitivity and pseudo-specificity of wj to be

α̂(wj) =
1

Mα

Mα∑
i=1

I
(
yji = 1|ŷi = 1

)
, β̂(wj) =

1

Mβ

Mβ∑
i=1

I
(
yji = 0|ŷi = 0

)
.

1) In AMT, each worker has a registered ID to get the monetary payments for completing the tasks, hence the system

can track the tasks completed by each worker. In this paper, we ignore the situation where several workers share one ID.
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Workers with small pseudo-sensitivity and small pseudo-specificity may be low-quality workers. Once

the probable low-quality workers are identified, we can ignore them or decrease the probability that they

are selected for future tasks. Because the inferred labels are not ground-truth, we must do this carefully,

otherwise we may eliminate some non-low-quality workers.

Theorem 5. Let η1 > P (ŷ 6= 1|y = 1) denote the upper bound on the error rate of inferred labels for

the positive class and let η0 > P (ŷ 6= 0|y = 0) denote the upper bound on the error rate of inferred labels

for the negative class. For any δ ∈ (0, 1), if α̂(wj) 6 (1/2−η1)C1−ε1 and β̂(wj) 6 (1/2−η0)C0−ε0, then

A(wj) 6 1/2 holds with a probability of at least 1− δ. Here, ε1 =
√

ln(4/δ)
2Mα

, ε0 =
√

ln(4/δ)
2Mβ

, C1 = P (y=1)
P (ŷ=1) ,

and C0 = P (y=0)
P (ŷ=0) .

Proof. Using Lemma 2, we obtain that P (yj = 1|ŷ = 1) 6 α̂(wj) + ε1 holds with a probability of at

least 1− δ/2. If α̂(wj) 6 (1/2− η1)C1 − ε1, we get

P (yj = 1|y = 1) =
P (yj = 1, ŷ = 1, y = 1)

P (y = 1)
+
P (yj = 1, ŷ 6= 1, y = 1)

P (y = 1)

6
P (yj = 1, ŷ = 1)

P (y = 1)
+
P (ŷ 6= 1, y = 1)

P (y = 1)

= P (yj = 1|ŷ = 1)/C1 + P (ŷ 6= 1|y = 1) 6 1/2.

Similarly, if β̂(wj) 6 (1/2− η0)C0 − ε0, we get that P (yj = 0|y = 0) 6 1/2 holds with a probability of at

least 1− δ/2. Thus, Theorem 5 is proved.

Theorem 5 indicates that we can identify the low-quality workers by estimating their pseudo-sensitivity

and pseudo-specificity using the inferred labels. This provides a conservative condition for eliminating

the low-quality workers because it will never remove any non-low-quality worker (A(wj) >
1
2 ) with a

probability of at least 1 − δ, which is a suitable strategy for the setting where there are not abundant

workers in the crowd. The upper bounds η1 and η0 have been discussed in the proofs of the theorems

in Section 3; they decrease exponentially with the number of workers selected for each task. Further,

C1, C0 ≈ 1, so α̂(wj) and β̂(wj) are close to and smaller than 1/2.

Theorem 6. Let η1 > P (ŷ 6= 1|y = 1) denote the upper bound on the error rate of the inferred labels

for the positive class and let η0 > P (ŷ 6= 0|y = 0) denote the upper bound on the error rate of the inferred

labels for the negative class. For any δ ∈ (0, 1), if A(wj) 6 1/2, then α̂(wj) 6 1 − ( 1
2 − η1)C1 + ε1 or

β̂(wj) 6 1− ( 1
2 − η0)C0 + ε0 holds with a probability of at least 1− δ. Here, ε1, ε0, C1, and C0 are given

in Theorem 5.

Proof. Because A(wj) 6 1/2, we obtain that either P (yj = 1|y = 1) 6 1/2 or P (yj = 0|y = 0) 6 1/2

holds.

If P (yj = 1|y = 1) 6 1/2, we get

P (yj = 1|ŷ = 1) =
P (yj = 1, y = 1, ŷ = 1)

P (ŷ = 1)
+
P (yj = 1, y 6= 1, ŷ = 1)

P (ŷ = 1)

6
P (yj = 1, y = 1)

P (ŷ = 1)
+
P (y 6= 1, ŷ = 1)

P (ŷ = 1)

= P (yj = 1|y = 1) · C1 +
P (y 6= 1, ŷ = 1)

P (ŷ = 1)
. (14)

Considering that

P (y 6= 1, ŷ = 1)

P (ŷ = 1)
=
P (ŷ = 1)− (P (y = 1)− P (y = 1, ŷ 6= 1))

P (ŷ = 1)

= 1− C1 + P (ŷ 6= 1|y = 1) · C1

6 1− C1 + η1 · C1, (15)

from (14), we obtain P (yj = 1|ŷ = 1) 6 1−( 1
2−η1)C1. From Lemma 2, we obtain that P (yj = 1|ŷ = 1) >

α̂(wj)− ε1 holds with a probability of at least 1− δ/2. Hence, we get that α̂(wj) 6 1− ( 1
2 − η1)C1 + ε1
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holds with a probability of at least 1 − δ/2. If P (yj = 0|y = 0) 6 1/2, similarly we obtain that

β̂(wj) 6 1− ( 1
2 − η0)C0 + ε0 holds with a probability of at least 1− δ/2. Thus, Theorem 6 is proved.

Theorem 6 indicates that the pseudo-sensitivity and pseudo-specificity of any low-quality worker will

meet the condition in the theorem with high probability, and further that α̂(wj) and β̂(wj) are both close

to and larger than 1/2. It provides an aggressive condition for eliminating all low-quality workers, which

is applicable to the setting where there are abundant workers but the low-quality ones will significantly

affect the crowd. Furthermore, Theorems 5 and 6 can also be used to eliminate low-sensitivity or low-

specificity workers, which is a suitable strategy for the setting where correctly classifying the positive or

negative class is more important.

5 Conclusion

The majority voting strategy is widely used in crowdsourcing as it is a good error-pruning method

and many reported experimental results on real-world crowdsourcing data sets [3–5] have shown that

it performs significantly well at improving the label quality. Our theoretical study is inspired by these

real-world observations and provides an analysis of label quality that shows that the label error rate

decreases exponentially with the number of workers selected for each task. We also study the problem

of eliminating low-quality workers from the crowd. We provide a conservative condition for eliminating

low-quality workers without eliminating any non-low-quality worker with high probability as well as an

aggressive condition for eliminating all low-quality workers with high probability. The conditions may

inspire the development of new algorithms for task assignment and worker selection problems.

The distribution can be generalized to any computational distribution if further prior knowledge about

the crowd is known. Many methods have been developed for inferring labels from the crowd, but few

theoretical analyses have been presented to support this popular paradigm. Most prior algorithmic

and theoretical results on crowdsourcing are based on the assumption that the workers in the crowd

are conditionally independent given the class label, e.g., the work in [7–9,11,12,14,16,20,24]. To study

crowdsourcing while taking into account the relationships among workers will be an interesting direction

for future research.
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Appendix A

Lemma 1. Hoeffding2) Bound. Let X1, . . . , XN be independent random variables and define the empirical mean of these

variables as X = 1
N

∑N
i=1Xi. Assume that Xi is bounded, i.e., for 1 6 i 6 N such that Xi ∈ [ai, bi]. The following

inequality then holds:

P
(∣∣E(X)−X

∣∣ > ε
)
6 2 exp

(
−

2N2ε2∑N
i=1(bi − ai)2

)
.

Lemma 2. Let X1, . . . , XN be independent random variables and Xi ∈ {0, 1} for 1 6 i 6 N . Define the empirical mean

of these variables as X = 1
N

∑N
i=1Xi. Then for any ε, δ ∈ (0, 1), if N > ln(2/δ)

2ε2
,
∣∣E(X) −X

∣∣ 6 ε holds with a probability

of at least 1− δ.
Proof. Let δ = 2 exp(−2Nε2). From Lemma 1, Lemma 2 is proved.

2) Hoeffding W. Probability inequalities for sums of bounded random variables. J AM Stat Assoc, 1963, 58: 13–30.




