Computer Science ›› 2015, Vol. 42 ›› Issue (10): 202-207.

Previous Articles     Next Articles

Research on SQL Energy Consumption Modeling and Optimization

GUO Bing-lei, YU Jiong, LIAO Bin and YANG De-xian   

  • Online:2018-11-14 Published:2018-11-14

Abstract: The increasing energy consumption of IT system makes us take energy efficiency into consideration when designing a new generation of DBMS.Because SQL queries consumes almost 70%~90% of the database resources,the energy efficiency of database can be improved by optimizing query and energy consumption modeling.After an in-depth study on optimization of query processing mechanism,an energy consumption model for SQL was proposed and many experiments were designed on a series of query optimization methods to show their effectiveness of performance improvement and energy reduction.Experiments and energy consumption data analysis prove that CPU utilization is the most critical factor that affects power consumption,SQL energy consumption optimization can ignore the memory optimization and should balance two aspects:performance optimization and power consumption optimization,and the model and the proposed methods have good application value.

Key words: Green computing,SQL energy consumption optimization,SQL energy consumption modeling,Query processing

[1] Katz R H.Tech titans building boom[J].IEEE Spectrum,2009,46(2):40-54
[2] Koomey J G.Estimating total power consumption by servers in the US and the world[EB/OL].http://ccsl.iccip.net/koomey_long.pdf
[3] IDC.Solutions for Data Centers’ Thermal Challenges[EB/OL].http://www.blade.org/docs/wp/idc cool bluewhitepaper.pdf
[4] Institute for Energy Efficiency.Greenscale[EB/OL].http://www.iee.ucsb.edu/greenscale
[5] Rasmussen N.Determining Total Cost of Ownership for Data Center and Network Room Infrastructure[EB/OL].http://apcpartnercentral.com/assets/2012/07/CMRP-5T9PQG_R4_EN.pdf
[6] Global action plan.An inefficient truth [EB/OL].[2011-02-12].http://globalactionplan.org.uk
[7] 廖彬,于炯,张陶,等.基于分布式文件系统HDFS的节能算法研究[J].计算机学报,2013,36(5):1047-1064 Liao Bin,Yu Jiong,Zhang Tao,et al.Energy-Efficient Algorithms for Distributed File System HDFS[J].Chinese Journal of Computers,2013, 36(5):1047-1064
[8] 廖彬,于炯,孙华,等.基于存储结构重配置的分布式存储系统节能算法[J].计算机研究与发展,2013,50(1):3-18 Liao Bin,Yu Jiong,Sun Hua,et al.Energy-Efficient Algorithms for Distributed Storage System Based on Data Storage Structure Reconfiguration [J].Journal of Computer Research and Deve-lopment,2013,50(1):3-18
[9] 廖彬,于炯,张陶,等.一种适应节能的云存储系统元数据动态建模与管理方法[J].小型微型计算机系统,2013,34(10):2407-2412 Liao Bin,Yu Jiong,Zhang Tao,et al.Novel Energy-efficient Metadata Dynamic Modeling and Management Approach for Cloud Storage System[J].Journal of Chinese Computer Systems,2013,34(10):2407-2412
[10] Gray J.Tape is dead,disk is Tape,flash is disk,RAM locality is king[EB/OL].http://www.signallake.com/innovation/Flash_is_Good.pdf
[11] Schall D,Hudlet V,Hrder T.Enhancing energy efficiency ofdatabase applications using SSDs[C]∥Proceedings of the Third C* Conference on Computer Science and Software Engineering.ACM,2010:1-9
[12] Lee S W,Moon B.Design of flash-based DBMS:an in-page logging approach[C]∥Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data.ACM,2007:55-66
[13] Lee S W,Moon B,Park C,et al.A case for flash memory ssd in enterprise database applications[C]∥Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.ACM,2008:1075-1086
[14] Tsirogiannis D,Harizopoulos S,Shah M A.Analyzing the energy efficiency of a database server[C]∥Proc.of SIGMOD ’10 Indianapolis.IN,USA,2010:231-242
[15] 王江涛,赖文豫,孟小峰.闪存数据库:现状,技术与展望[J].计算机学报,2013,36(8):1549-1567 Wang Jiang-tao,Lai Wen-yu,Meng Xiao-feng.Flash-Based Database:Studies,Techniques and Forecasts [J].Chinese Journal of Computers,2013,36(8):1549-1567
[16] Xu Z.Building a power-aware database management system[C]∥Proceedings of the Fourth SIGMOD PhD Workshop on Innovative Database Research.ACM,2010:1-6
[17] Xu Z,Tu Y C,Wang X.Exploring power-performance tradeoffs in database systems[C]∥2010 IEEE 26th International Confe-rence on Data Engineering (ICDE).IEEE,2010:485-496
[18] Xu Z,Tu Y C,Wang X.PET:reducing database energy cost via query optimization[J].Proceedings of the VLDB Endowment,2012,5(12):1954-1957
[19] Rodriguez-Martinez M,valdivia H,Seguel J,et al.EstimatingPower/Energy consumption in Database Servers [J].Procedia Computer Science,2011,6:112-117
[20] Times N Y.Power,Pollution and the Internet [EB/OL].[2013-5-20].http://www.nytimes.com/2012/09/23/technology/data-ceneters-waste-vast-amounts-of-energy-belying-industry-image.html
[21] Kansal A,Zhao F,Liu J,et al.Vitrual machine power metering and provisioning[C]∥Proceedings of the 1st ACM Symposium on Cloud Computing.Indianaposlis,USA,2010:39-50
[22] Bao Y,Chen M,Ruan Y,et al.HMTT:A platform independent full-system memory trace monitoring system[J].ACM SIGMETRICS Performance Evaluation Review,2008,36(1):229-240

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!