Computer Science ›› 2017, Vol. 44 ›› Issue (12): 304-309.doi: 10.11896/j.issn.1002-137X.2017.12.055
Previous Articles Next Articles
LI Rui and SHENG Chao
[1] SU Z,WANG W,XU C.Optical correlation detection technology of moving target under low contrast environment [J].Chinese Journal of Scientific Instrument,2013,34(2):319-325. [2] XIN Y,HOU J,DONG L,et al.A self-adaptive optical flowmethod for the moving object detection in the video sequences [J].Optik-International Journal for Light and Electron Optics,2014,125(19):5690-5694. [3] YUAN G W,CHENG Z Q,GONG J,et al.A moving object detection algorithm based on a combination of optical flow and three frame difference[J].Journal of Chinese Computer Systems,2013,34(3):668-671.(in Chinese) 袁国武,陈志强,龚健,等.一种结合光流法与三帧差分法的运动目标检测算法[J].小型微型计算机系统,2013,34(3):668-671. [4] FAN J,WANG R,ZHANG L,et al.Image sequence segmentation based on 2D temporal entropic thresholding [J].Pattern Recognition Letters,1996,17(10):1101-1107. [5] CHEN C H,LIANG,et al.Frame difference energy image for gait recognition with incomplete silhouettes [J].Pattern Recognition Letters,2009,30(11):977-984. [6] DOLL R P,ZITNICK C L.Fast Edge Detection Using Structured Forests [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(8):1558-1570. [7] CANNY J.A Computational Approach to Edge Detection-Readings in Computer Vision [J].IEEE Transactions on Pattern Analysis & Machine Intelligence ,1986,PAMI-8(6):679-698. [8] LIU X,ZHAO G,YAO J,et al.Background Subtraction Based on Low-rank and Structured Sparse Decomposition [J].IEEE Transactions on Image Processing,2015,24(8):2502-2514. [9] EBADI S E,ONES V G,IZQUIERDO E.Approximated Robust Principal Component Analysis for Improved General Scene Background Subt- raction [J].arXiv:1603.05875. [10] STAUFFER C,GRIMSON W E L.Adaptive Background Mixture Models for Real-Time Tracking [C]∥IEEE Computer Society.1999:22-46. [11] HUANG W L,FAN Y,LI H Z,et al.Improved mixture Gaus-sian algorithm[J].Computer Engineering and Design,2011,32(2):592-595.(in Chinese) 黄文丽,范勇,李绘卓,等.改进的混合高斯算法 [J].计算机工程与设计,2011,32(2):592-595. [12] LIU W J,LI L.Moving objects detection algorithm of improved mixture Gaussian model based on entropy theory[J].Application Research of Computers,2015,32(7):2226-2229.(in Chinese) 刘万军,李琳.基于熵理论改进混合高斯模型的运动目标检测算法[J].计算机应用研究,2015,2(7):2226-2229. [13] WANG B Z,HU Y,GUO Z T,et al.New method for mixtureGaussian background model and moving object detection based on wronskian function[J].Application Research of Computers,2016,33(12):1-5.(in Chinese) 王宝珠,胡洋,郭志涛,等.基于朗斯基函数的混合高斯模型运动目标检测 [J].计算机应用研究,2016,33(12):1-5. [14] LI Y,FAN X P.A new image threshold segmentation algorithm[J].Computer Simulation,2008,25(1):229-232.(in Chinese) 黎燕,樊晓平.Renyi熵与Tsallis熵的等价关系 [J].计算机仿真,2008,25(1):229-232. [15] PAL N R,PAL S K.Object-background segmentation using new definitions of entropy [J].Computers & Digital Techniques Iee Proceedings E,1989,136(4):284-295. |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|