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Abstract
We propose new methods to evaluate variable subset relevance with a view to variable selection.
Relevance criteria are derived from Support Vector Machines and are based on weight vector
‖w‖2 or generalization error bounds sensitivity with respect to a variable. Experiments on linear
and non-linear toy problems and real-world datasets have been carried out to assess the effective-
ness of these criteria. Results show that the criterion based on weight vector derivative achieves
good results and performs consistently well over the datasets we used.
Keywords: support vector machines, kernels, variable selection, sensitivity.

1. Introduction

Nowadays, many practical pattern recognition tasks infer knowledge from example data. This
knowledge is then used to make predictions about new data or to get a deeper understanding of the
system or “concept” that generated the data. Data typically consist of measurements (also referred
to as attributes, variables or features) characterizing the system to be modelled. Each example may
be represented as a vector inR

n whose components correspond to such measurements. In a pattern
recognition or discrimination problems each example vector is associated with a label specifying
the category the example belongs to. Machine learning algorithms estimate dependencies between
the examples and their label during a learning process. Progresses made in sensor technology
and data management allow researchers to gather data sets of ever increasing sizes, particularly
with respect to the number of variables. However, the incremental informative content of such
variables is not always significant. This problem may undermine the success of machine learning
that is strongly affected by data quality: redundant, noisy or unreliable information may impair
the learning process.

The purpose of feature or variable selection is to eliminate irrelevant variables to enhance the
generalization performance of a given learning algorithm. The selection of relevant variables may
also be useful to gain some insight about the concept to be learned. Other advantages of feature
selection include cost reduction of data gathering and storage (in medical applications for instance)
and computational speedup.

In this paper we investigate the efficiency of criteria derived from support vector machines
(SVMs) for variable selection in application to classification problems. This work can be seen as
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an extension of the SVM-RFE algorithm (Guyon et al., 2000). Extensive experiments are con-
ducted to compare various methods. The paper is organized as follows: In Section 2 we review
SVMs and give details on how variable relevance criteria are derived from the SVM methodol-
ogy. The associated variable selection algorithm is then presented. Numerical experiments on
toy problems and real-world data showing the strength and weakness of different criteria are de-
scribed in Section 3. Discussions about the questions that have arisen from this work are reported
in Section 4.

2. Variable Selection with SVM Criterion

In this section, we explore some possible methods of variable selection using support vector
machines. After reviewing the so-called soft margin SVM classifier, we present ranking criteria
derived from SVM and an associated algorithm for feature selection. Finally, relationships with
other SVM-based feature selection methods are given.

2.1 SVM Classifier

The support vector machine classifier is a binary classifier algorithm that looks for an optimal
hyperplane as a decision function in a high-dimensional space (Boser et al., 1992, Vapnik, 1998,
Cristianini and Shawe-Taylor, 2000). Consider one has a training data set{xk,yk} ∈R

n×{−1,1}
wherexk are the training examples andyk the class labels. The method consists in first mappingx
into a high dimensional space via a functionΦ, then computing a decision function of the form:

f (x) = 〈w,Φ(x)〉+b

by maximizing the distance between the set of pointsΦ(xk) to the hyperplane parameterized by
(w,b) while being consistent on the training set. The class label ofx is obtained by considering the
sign of f (x). For the SVM classifier with misclassified examples being quadratically penalized,
this optimization problem can be written as:

min
w,ξ

1
2
‖w‖2 +C

m

∑
k=1

ξ2
k

under the constraint∀k, yk f (xk) ≥ 1− ξk. The solution of this problem is obtained using the
Lagrangian theory and one can prove that vectorw is of the form:

w =
m

∑
k=1

α∗
kykΦ(xk)

whereα∗
k is the solution of the following quadratic optimization problem:

max
α

W(α) =
m

∑
k=1

αk− 1
2

m

∑
k,`

αkα`yky`

(
K(xk,x`)+

1
C

δk,`

)
(4)

subject to∑m
k=1 ykαk = 0 and∀k,αk ≥ 0, whereδk,` is the Kronecker symbol andK(xk,x`) =

〈Φ(xk),Φ(x`)〉 is the Gram matrix of the training examples.
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The interesting point of SVMs is that they are provided with many statistics that allow to
estimate their generalization performance from bounds on theleave-one-outerror L . The leave-
one-out error is the number of classification error produced by theleave-one-outprocedure which
consists in learning a decision function fromm− 1 examples, testing the remaining one and re-
peating until all elements have served as test example. Theleave-one-outerror is known to be
an unbiased estimator of the generalization performance of a classifier trained onm− 1 exam-
ples. One of the most commonL error bounds for SVMs is the radius/margin bound (for decision
function with non-zero biasb) (Vapnik, 1998):

L ≤ 4R2‖w‖2

whereR is the radius of the smallest sphere that contains all the mapped dataΦ(xk). A tighter
bound named “span estimate” is also available and is based on the distanceSp between a mapped
support vectorΦ(xp) and the span of all other support vectors (Vapnik and Chapelle, 2000). The
following equation holds:

L ≤∑
p

α∗
pS2

p

whereS2
p, for SVM with quadratic slack variablesξ, is related to the extended matrix of the dot

product between support vectors
∼
KSV =

(
K 1
1T 0

)

by the equationS2
p = 1/(

∼
K
−1

SV)pp

2.2 SVM-RFE Algorithm

The SVM-RFE algorithm has been recently proposed by Guyon et al. (2000) for selecting
genes that are relevant for a cancer classification problem. The goal is to find a subset of size
r amongd variables (r < d) which maximizes the performance of the predictor. The method is
based on a backward sequential selection. One starts with all the features and removes one feature
at a time (in their paper, due to the large amount of genes, they remove chunks of features) untilr
features are left. The removed variable is the one whose removal minimizes the variation of‖w‖2.
Hence, the ranking criterionRc for a given variablei is:

∣∣∣‖w‖2−‖w(i)‖2
∣∣∣= 1

2

∣∣∣∣∣∑k, j α∗
kα∗

j ykyjK(xk,x j)−∑
k, j

α∗(i)
k α∗(i)

j ykyjK
(i)(xk,x j)

∣∣∣∣∣ (8)

whereK(i) is the Gram matrix of the training data when variablei is removed (K(i)
k, j = 〈Φ(x(i)

k ),Φ(x(i)
j )〉)

andα∗(i)
k is the corresponding solution of Equation (4). For the sake of simplicity and to reduce

computational complexity of this algorithm, theα∗(i)
k is supposed to be equal toα∗

k even if a vari-
able has been removed. The authors also stated that in order for RFE to work variable scaling is
needed. From Equation (8), one can consider that the removed variable is the one which has the
least influence on the weight vector norm. Hence, this method is similar to those employed in
neural networks in the sense that the ranking criterion is the sensitivity of‖w‖2 with respect to a
variable.
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2.3 Algorithm for Variable Ranking with SVM

Variable selection algorithms require a ranking criterion to rank variables. In many papers,
bounds on theL error have been used for model selection (Duan et al., 2002) and recently We-
ston et al. (2001b) used the radius/margin bound for feature selection using a gradient descent
algorithm. This idea can therefore be extended to other bounds of the generalization error. In
this paper, we will investigate three criteriaCt which are either the weight vector‖w‖2, the ra-
dius/margin boundR2‖w‖2 or the span estimate. These criteria give either an estimation of the
generalization performance (the bounds) or an estimation of the dataset separability. Furthermore,
similarly to neural-networks based variable selection (Leray and Gallinari, 1999), two approaches
can be proposed for each criterion:

• Zero-order method: in this case, the criterionCt is directly used for variable ranking, and
the methods consists in identifying the variable that produces the smallest value ofCt when
removed. The ranking criterion then becomesRc(i) =C(i)

t with C(i)
t being the criterion value

when variablei has been removed.

• First-order method: one uses the derivatives of the criterionCt with regards to a variable. In
other words, this approach differs from the previous one since a variable is ranked according
to its influence on the criterion which is measured with the absolute value of the derivative.
In this case, the ranking criterion isRc(i) = |∇Ct |.

The zero-order criteria based on bounds have already been used for feature selection associated
with different search space algorithm (Weston et al., 2001b) whereas the first-order ones are rather
new for the purpose of feature selection.

Similarly to SVM-RFE, the problem of searching the “best”r variables is solved by means of
a greedy algorithm based on backward selection (Kohavi and John, 1997). A backward sequential
selection is used because of its lower computational complexity compared to randomized or expo-
nential algorithms and its optimality in the subset selection problem (Couvreur and Bresler, 2000).
Hence, the algorithm starts with all features and repeatedly removes a feature untilr features are
left or all variables have been ranked (see Figure 1). In the zero-order method, one suppresses
the feature whose removal minimizes the criterion whereas in first-order methods, one removes
the variable to which the criterion is less sensitive. For instance, in the zero-order‖w‖2 case, the
ranking term is:

Rc(i) = ‖w(i)‖2 = ∑
k, j

α∗(i)
k α∗(i)

j ykyjK
(i)(xk,x j) (9)

whereK(i) is again the Gram matrix of the training data when the variablei has been removed.
Note that in this case, the criterion should be evaluated with the appropriateα∗(i)

k . Similarly
to SVM-RFE and to reduce time complexity we consider that these parameters are equal toα∗

k
during the evaluation ofRc(i). However, it would still be interesting to consider how the SVM

retraining at each subset evaluation affects the results and some experiments using the trueα∗(i)
k

will be carried out.
In the first-order case, the ranking term for‖w‖2 case criterion would be:

Rc(i) =
∣∣∇‖w‖2

∣∣
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1. Initialization: Ranked= []; Var = [1, . . . ,N]

2. repeat

(a) Train a SVM classifier with all the training data and the variablesVar

(b) for all variables inVar, do evaluate the ranking criterionRc(i) of variablei endfor

(c) best= argmini Rc

(d) rank the variable that minimizesRc: Ranked= [best Ranked];

(e) remove the variable that minimizesRc from the selected variables set:Var =
[1, . . . ,best−1,best+1, . . . ,N]

3. until Var is not empty

Figure 1: Outline of the SVM-based feature selection algorithm.

2.4 Calculating the Gradient with Regards to a Scaling Factorν

For the first-order criterion, our aim is to measure the sensitivity of a given criterion with
respect to a variable. A possible approach is to introduce a virtual scaling factor and to compute
the gradient of a criterion with respect to that scaling factorν. The latter acts as a componentwise
multiplicative term (whose value is 1) on the input variables and thusk(x,x′) becomes:

k(ν ·x,ν ·x′)
where · denotes the componentwise vector product. Consequently, one obtains the following

derivatives for a Gaussian Kernelk(ν ·x,ν ·x′) = e−
‖ν·x−ν·x′‖2

2σ2 :

∂k
∂νi

=− 1
σ2(νixi −νix

′
i)

2k(x,x′) =− 1
σ2(xi −x

′
i)

2k(x,x′)

where we used the fact thatνi = 1. Then, one needs to evaluate the gradient of the bounds with
regards to a variableνi and for a given criterionCt the ranking term becomes :

Rc(i) =
∣∣∣∣∂Ct(α,b)

∂νi

∣∣∣∣ (11)

whereCt is either‖w‖2, R2w2 or ∑pα∗
pS2

p and depends on the solution of Equation (4) and the
bias b. Details of the derivatives computation for a given criterion are presented in the report
of Rakotomamonjy (2002), and they have been obtained using the results of Bengio (2000) and
Chapelle et al. (2002). Here, we only give the final results:

• weight vector gradient:

Rc(i) =

∣∣∣∣∣∑k, j α∗
kα∗

j ykyj
∂k(ν ·xk ,ν ·xj )

∂νi

∣∣∣∣∣
1361



RAKOTOMAMONJY

• radius/margin gradient:

Rc(i) =

∣∣∣∣∣‖w‖2∑
k, j

(βkβ j −βkδk, j)
∂k(ν ·xk ,ν ·xj )

∂νi
+R2∑

k, j

α∗
kα∗

j ykyj
∂k(ν ·xk ,ν ·xj )

∂νi

∣∣∣∣∣
whereR2 is the optimal objective function of the following problem:

maxβ ∑k βkk(ν ·xk,ν ·xk)−∑k, j βkβ j k(ν ·xk ,ν ·xj )
s.t ∑k βk and βk ≥ 0 ∀k

• span estimate gradient:

Rc(i) =

∣∣∣∣∣∣
`

∑
p=1

2

(
−H−1∂H

∂νi
α∗
)

pp
S2

p + α∗
pS4

p

(
∼
K
−1

SV
∂
∼
KSV

∂νi

∼
K
−1

SV

)
pp

∣∣∣∣∣∣
whereH is the following matrixH =

(
KY Y
YT 0

)
andKY

k j = ykyjk(ν ·xk ,ν ·xj )

As noticed previously all these gradients are computed forν = (1, ..,1). In what follows, we use
the notation∇Ct to denote these first order criteria whereCt is either‖w‖2, R2w2 or ∑p α∗

pS2
p.

2.5 Relation to Other SVM-Based Feature Selection Methods

In addition to SVM-RFE, several algorithms for feature selection based on SVM are already
available. For instance, Weston et al. (2001b) propose a method based on finding the best variable
subset which minimizes theR2w2 bound. For this criterion, their method differs from ours in the
variable space search algorithm. In fact instead of using a greedy algorithm, they use a gradient
descent to minimize the bound with respect to a scaling vector associated to variables.

In the linear case, an interesting relation links SVM-RFE and our method when using the
derivatives of‖w‖2 with respect to a virtual scaling factor. The RFE criterion for a variablei is
Rc(i) = w2

i whereas the gradient of‖w‖2 with respect toνi givesRc(i) = | −w2
i | (νi being the

scaling factor associated to variablei). Thus, SVM-RFE and gradient of‖w‖2 are identical as they
have the same ranking criterion.

In addition, one should note that SVM-RFE and the zero-order‖w‖2 criterion are identical
since the first sum in Equation (8) is constant during the evaluation ofRc(i). For this reason,
results concerning SVM-RFE are not reported in the experimental section.

3. Numerical Experiments

The experiments that we report here use artificial and real-world datasets. We have compared
the classification performance of the different ranking criteria for feature selection associated to a
SVM classifier with quadratic slack variablesξi as a predictor. In addition, in all experiments the
results of a stand-alone SVM classifier are presented along with another SVM associated with a
method for feature selection based on correlation coefficients.
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Training set size
Methods 10 20 30 40 50

SVM 36.58%±2% 30.89%±2% 25.46%±2% 22.22%±2 % 19.40%±2%
Corr 32.33%±13% 17.00%±7% 14.30%±4% 14.69%±2 % 14.76%±2%

‖w‖2 35.63%±15% 14.79%±13% 5.99%±5% 4.40%±3% 4.19%±3%
R2w2 32.83%±15% 13.60%±12% 5.82%±5% 4.53%±3% 4.04%±2%

S2
p Est. 38.92%±13% 21.14%±15% 14.22%±12% 10.68%±9% 7.34%±6%

‖wi‖2 32.39%±15% 13.05%±11% 7.14%±6% 6.30%±5% 5.11%±4%
R2

i w2
i 31.21%±15% 19.13%±12% 14.55%±9% 14.10%±9% 13.13%±9%

S2
pi Est. 50.02%±0.5% 50.02%±0.5% 49.44%±2% 49.83%±2% 49.49%±2%

∇‖w‖2 32.39%±15% 13.05%±11% 7.14%±6% 6.30%±5% 5.11%±4%
∇R2w2 33.50%±15% 36.87%±16% 43.69%±17% 46.28%±10% 46.81%±9%
∇S2

pEst 41.51%±12% 23.85%±13% 15.91%±10% 13.76%±9% 13.16%±7%

Table 1: Mean and standard deviation of test error for feature selection on a synthetic linear prob-
lem using different criteria and different training set sizes. The methods are: (a) SVM:
standard SVM,(b) Corr: SVM with correlation coefficients feature selection algorithm,
(c) ‖w‖2, R2w2 and S2

p Est zero-order criterion with retraining, (d)‖wi‖2, R2
i w2

i and
S2

pi Est zero-order criterion. (e)∇‖w‖2, ∇R2w2 and∇S2
p Estfirst-order criterion.

3.1 Toy Experiments

For toy experiments, we used the datasets described in the work of Weston et al. (2001a,b),
which allows comparing the results obtained with our criteria to those described in these refer-
ences. A precise description of these synthetic data can be found in Weston et al. (2001b). In the
2-class linear problem, the input data are composed of 202 variables from which only 6 are rele-
vant whereas, in the nonlinear one, 52 variables are available and only the first two are relevant.
In both cases, 10000 points have been generated. Only a randomly-chosen small proportion of
them are used as a training set and the rest are included in a test set. The training set has been
normalized to get zero mean and unit standard deviation. The test set is normalized according to
the training set normalization parameters.

For both feature selection and classification, we used a linear SVM for the linear problem and
a Gaussian kernel withσ = 3 for the nonlinear problem. In both linear and non-linear cases, the
hyperparameterC has been set sufficiently high (respectivelyC = 100000 andC = 1000) in order
to keep training error low. After feature selection has been performed, only the two top-ranked
variables are provided to the predictor.

Table 1 and Table 2 present the mean and the standard deviation of the test error over 100
trials for each training set size. For both datasets, SVM without feature selection overfits. When
considering the baseline feature selection method based on correlation coefficients, the test error
becomes significantly lower in the linear case but does not decrease in the nonlinear problem. This
is simply due to the incapability of this feature selection method to represent variable correlation
in a nonlinear context.

Retraining a SVM at each step should increase the capacity of a zero-order criterion to select
the relevant features because the trueα∗ are used (e.g. see Equation 9) . This is clear in the
linear case particularly when the number of training points increases but it is not so obvious in
the nonlinear case. In fact for‖w‖2 andR2w2 criterion, the test errors are always higher when
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Training set size
Methods 10 20 30 40 50 100

SVM 49.20%±1% 48.39%±1% 47.84%±1% 47.52%±1 % 46.81%±1% 45.54%±1 %
Corr 49.43%±3% 49.45%±4% 49.07%±5% 48.80%±6 % 48.78%±6% 49.48%±5 %

‖w‖2 49.24%±3% 43.12%±13% 33.31%±18% 20.82%±19% 9.56%±10% 4.21%±0.7%
R2w2 49.22%±3% 42.78%±14% 32.46%±19% 20.39%±19% 8.71%±10% ∗
S2

p Est. 48.82%±4% 44.08%±12% 33.15%±17% 20.86%±17% 11.26%±12% ∗
‖wi‖2 48.29%±5% 37.18%±15% 24.42%±19% 17.75%±18% 8.79%±12% 6.08%±8%
R2

i w2
i 48.58%±4% 34.59%±18% 21.50%±19% 13.64%±16% 8.61%±11% 4.21%±0.7%

S2
pi Est. 49.86%±2% 49.96%±0.5% 49.21%±4 % 48.67%±6 % 49.37%±4% 47.07%±10%

∇‖w‖2 48.62%±5% 32.62%±17% 18.57%±16% 12.53%±13% 9.43%±12% 9.41%±12%
∇R2w2 48.22%±6% 33.67%±17% 19.15%±17% 13.61%±15% 11.62%±14% 17.75%±19%
∇S2

pEst 48.92%±5% 43.65%±12% 44.91%±12% 44.42%±12% 46.12%±15% 50.00%±1%

Table 2: Mean and standard deviation of test error for feature selection on a synthetic non linear
problem using different criteria and different training set sizes. The methods are: (a)
SVM: standard SVM,(b) Corr: SVM with correlation coefficients feature selection algo-
rithm, (c) ‖w‖2, R2w2 andS2

pEst zero-order criterion with retraining, (d)‖wi‖2, R2
i w2

i

andS2
piEst zero-order criterion, (e)∇‖w‖2, ∇R2w2 and∇S2

pEst first-order criterion. An
asterisk∗ indicates that full experiments had not been carried out because of excessive
time.

retraining is performed. The span estimate criterion does well only with retraining. This is merely
explained by the tight relation of this span estimate with the value ofα∗ (Vapnik and Chapelle,
2000) and thus keepingα∗ fixed during the evaluation ofRc(i) leads to a wrong estimation of
variable relevance.

Without retraining, in the linear case the∇‖w‖2 (which is identical to the‖w‖2 criterion)
outperforms other methods. For the nonlinear problem,∇‖w‖2 andR2w2 criteria share the best
performance depending on the size of the training set.

3.2 Real-World Data

In order to assess the effectiveness of the proposed criteria, experiments on real-world datasets
have also been performed.

3.2.1 BENCHMARK DATASETS

At first, we compared performances on some of the real-world benchmark datasets used by
Rätsch et al. (2001). The methodology we followed consisted for each realization of the datasets
in: (1) performing a variable ranking and (2) measuring the test error of an SVM classifier when
this predictor is provided with an increasing number of ranked variables. The hyperparameters
of the SVM have been set to the values found by R¨atsch et al. (2001) with their cross-validation
procedure. A mean test error is then obtained by averaging the results over the 100 realizations.
Figures 2 and 3 represent this mean test error for an increasing number of ranked features used
for learning. They show that for these problems, one can achieve better or similar performance
using fewer variables and that the span estimate criterion gives poor results and seems not to be
able to rank variables appropriately without retraining. Error bars of standard deviation have not
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Figure 2: Mean of test error for a feature selection problem on a real-world problem. Mean test er-
rors for Breast Cancer Datavs. the number of ranked variables used for training (C=15,
σ = 5). (left) ‖wi‖2, R2

i w2
i andS2

piEst zero-order criterion. (right)∇‖w‖2, ∇R2w2 and
∇S2

pEst.
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Figure 3: Mean of test error of feature selection on real-world problem. Mean test error for Heart
Datavs. to the number of ranked variables used for training (C=3.16,σ = 7.7) (left)
‖wi‖2, R2

i w2
i andS2

piEstzero-order criterion. (right)∇‖w‖2, ∇R2w2 and∇S2
pEst.

been plotted for the sake of clarity. However, we can state that for the Breast Cancer dataset the
standard deviation is rather stable with regards to the number of features used for classification
(around 5%) whereas for the Heart dataset it tends to decrease from 7% to 4%.
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Number of variables
Methods 20 50 100 250 500 1000

Corr 21.58%±11% 22.08%±10% 20.83%±11% 17.83%±9 % 18.42%±9% 16.75%±9%

R2
i w2

i 19.67%±11% 17.33%±9% 16.17%±9% 16.66%±9% 16.53%±8% 15.91%±8%
S2

pi Est. 22.66%±12% 34.25%±14% 30.50%±12% 23.83%±10% 18.91%±9% 17.67%±9%

∇w2 17.67%±9% 15.66%±9% 15.17%±10% 16.50%±9% 16.08%±9% 16.25%±9%
∇R2w2 20.33%±13% 17.83%±10% 16.41%±9% 15.58%±9% 16.16%±9% 16.16%±8%
∇S2

pEst 20.50%±11% 17.00%±10% 16.33%±9% 16.75%±8% 16.66%±8% 16.41%±9%

Table 3: Mean and standard deviation of test error for a feature selection problem on a microarray
Colon Cancer Dataset. The methods are: (a) Corr: SVM with correlation coefficients
feature selection algorithm, (b)R2

i w2
i andS2

piEstzero-order criterion, (c)∇‖w‖2, ∇R2w2

and∇S2
pEstfirst-order criterion.

3.2.2 MICROARRAY DATA

Experiments on DNA microarray analysis have also been performed. The data we used con-
cerned two classification problems, the first one dealing with normal and cancerous colon tissue
and the second one with a lymphoma problem. These datasets have already been used for bench-
marking feature selection algorithms (for example, see Weston et al., 2001a).

The colon cancer tissue problem is composed of 62 observations (22 normal and 40 cancerous)
described by 2046 features. Following the step of Weston et al. (2001a), the training set and the
test set are obtained by splitting the dataset into two groups of respectively 50 and 22 elements,
while ensuring that the proportions of positive and negative classes are similar in both sets. 100
trials are carried out with random splitting of dataset. In order to speed up the feature selection
procedure, half of the variables are removed at each step until 100 variables remain still to be
ranked. Then variables are removed one at a time. The predictor is a linear SVM (withC = 106)
and it achieves an average test error of 16.4%±8%. Results with an increasing number of features
provided to the predictor are described in Table 3. The performances are in the same range but
one can see that the criterion∇‖w‖2 slightly outperforms the others. Again, retraining does not
improve all that much the ability of ranking relevant variables for any of the zero-order criteria.

The lymphoma problem is based on 4026 variables describing 96 observations (62 and 34 of
which are respectively considered as abnormal and normal). The data is split into two sets of sizes
60 and 36 with similar proportions of abnormal and normal examples. The same methodology
as in the colon cancer problem is followed and a linear SVM (withC = 106) gives a test error
of 7.25%± 4.1%. Results obtained with a different number of features and criteria for feature
selection are given in Table 4. It seems that the∇S2

p Est criterion performs better than other
criteria and achieves the best performance with 5.58% test error with only 250 variables. However,
it should be noted that with the∇‖w‖2 criterion good performance can be achieved using only 20
variables.

4. Discussions

So far, we have presented different criteria for feature selection and compared them experi-
mentally. In this section, we discuss some points that naturally arise from this work.

1366
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Number of variables
Methods 20 50 100 250 1000 2000

Corr 21.58%±11% 13.30%±5.7% 9.11%±5.0% 7.50%±4.8% 6.89%±4.6% 6.92%±4.4 %

R2
i w2

i 8.83%±4.4% 6.86%±4.3% 6.44%±4.1% 6.33%±4% 6.58%±4.1% 6.94%±4.2%
S2

piEst 28.58%±8.3% 27.25%±8.2% 19.94%±7.4% 11.47%±5.4 % 6.94%±3.9% 6.39%±4.2%

∇w2 7.72%±4.0% 6.58%±4.6% 6.11%±4.6% 6.67%±4.2% 6.97%±4.2% 7.22%±4.2%
∇R2w2 12.25%±5.4% 8.08%±5.0% 6.36%±4.4% 6.16%±4.2% 6.91%±4.1% 7.14%±4.2%
∇S2

pEst 12.05%±5.5% 7.64%±4.6% 6.13%±4.0% 5.58%±4.1% 6.63%±4.0% 7.00%±4.3%

Table 4: Mean and standard deviation of test error for a feature selection problem on a microarray
Lymphoma MicroArray Dataset. The methods are: (a) Corr: SVM with correlation
coefficients feature selection algorithm, (b)R2

i w2
i and S2

piEst zero-order criterion, (c)
∇‖w‖2, ∇R2w2 and∇S2

pEstfirst-order criterion with respect to a scaling factor.

4.1 How Many Ranked Features Must be Used?

Up to now, the question of how many ranked features must be provided to the predictor has
not been addressed. Our aim is not to investigate this point completely but rather to suggest some
possible solutions.

• The most straightforward idea is to use aleave-one-outprocedure or a validation set to esti-
mate the generalization error with regards to the number of features and choose the number
of variables which minimizes the test error. However, this method is computationally ex-
pensive.

• Another approach is to use one of the SVM upper bound of theL error (for instance,R2w2)
for selecting the best model. The drawback is that these bounds are usually loose bounds
and they do not always reflect the generalization performance behavior.

• A classical approach already described in feature selection literature for backward elim-
ination is to stop removing variables when the ranking term increases significantly as a
variable is removed. Typically, one measures the ranking termRc(i) and keeps on eliminat-
ing variables as long asRc(i) is below a threshold. For instance, this means that when using
first-order criterion one can keep on removing variables as long as the derivative norm is
below a given threshold.

Figure 4 shows how these stopping techniques work on the toy nonlinear dataset problem.
In this problem there are only two relevant variables. As expected, the validation error is the best
method and because of their looseness, upper bounds of theL error perform poorly. These findings
are similar to those obtained for model selection or hyperparameters tuning (Duan et al., 2002).
Figure 4 (right) plots the criterion value when a given feature has been removed with respect to
the number of features that still have to be ranked (note that we use a logarithmic scale and thus
values below 0 correspond to very small ranking term values). Supposing that the chosen threshold
is 100, this method would have kept around 10 variables regardless of the criterion used. However
another hyperparameter (the threshold) must be tuned, which limits the advantage of the method.
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Figure 4: Different ways of choosing the number of ranked features to be provided to the predic-
tor. Results for‖w‖2, ∇‖w‖2 andR2w2 are depicted. (left) Validation error. (middle)L
error Estimation with1

mR2w2. (right) Criterion value when variable has been removed.

4.2 Influence of SVM Hyperparameters

SVMs involve several hyperparameters (e.g. Gaussian kernel parameterσ, degreed of a poly-
nomial kernel, slack variables penalizationC ) that have to be tuned to achieve the best general-
ization performance. This is a crucial issue that is usually solved by minimizing a validation error,
a leave-one-out error or an upper bound on the generalization error (Duan et al., 2002, Chapelle
et al., 2002, Bengio, 2000). In our feature selection algorithm, these hyperparameters play an
important role as they are related to a criterion value through Equation (4). An example of the
influence of these hyperparameters on the test error is depicted in Figure 5. The plots represent the
mean test error of the nonlinear toy problem using 3 different criteria. The settings are the same
as in the experiment involving this data but onlyC or σ is varying over a range of values. These
figures clearly show that the problem of model selection is a crucial issue that must be addressed
accurately. This point is beyond the scope of this paper but the most intuitive way of solving this
problem is by minimizing a validation error. However, this model selection phase can be compu-
tationally very expensive since it involves the SVM hyperparameters as well as the choice of the
number of features to be used as stated in the previous section.

5. Conclusion

This paper has presented different criteria for variable selection algorithms. These criteria are
derived from generalization error bounds of the SVM theory: weight vector norm‖w‖2 and upper
bounds of theleave-one-outerror. Drawing inspiration from the neural networks community, we
have derived zero-order and first-order criteria. The former employ directly the original bounds
as criteria whereas the latter employ a derivative of zero-order criteria. Hence, in some sense,
first-order methods measure the sensitivity of a zero-order criterion to a variable. The heuristics
underlying our selection methods is that “variables relevant to the concept should affect gener-
alization error bounds more than irrelevant ones.” We have investigated the performance of the
proposed criteria through experimental comparisons. The main conclusions are:
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Figure 5: Plots of the influence ofC and σ on the test error (averaged over 100 realizations)
using the nonlinear toy dataset (training set size is 50). (left) Feature selection and
classification error withσ = 3 vs C. (right) Feature selection and classification error
with C = 100 vsσ.

• The∇‖w‖2 criterion performs consistently well over all the datasets we used. In addition,
it implements a criterion similar to the SVM-RFE criterion in the sense that SVM-RFE
measures the sensitivity of‖w‖2 to a variable by computing the change in‖w‖2 when this
given variable has been removed. In the linear case, these two methods become identical.
Lastly, as it has the lowest time complexity (Rakotomamonjy, 2002), it may be the most
useful one for practical applications.

• When a large number of training examples is available, retraining significantly improves
the ability of zero-order criterion to select relevant variables at the expense of increased
time complexity. Surprisingly, retraining does not always improve the ability of SVMs to
select these relevant variables regardless of the criterion used. In cases in which the training
set size is small, using the exactα∗(i) in the processing of the ranking termRc(i) tends to
decrease the performance. Intuitively, one may justify this behavior by the overfitting effects
occurring due to the small number of data and the large number of variables. However, this
point is far from being clear and some further analysis is needed in order to fully understand
this issue.

Examples on real-world data demonstrate the usefulness of the proposed criteria. The perfor-
mance obtained without variable selection is either closely matched or improved using far fewer
variables selected with the proposed algorithms.

Our algorithms rely on a backward feature selection, which is computationally tractable but
not necessarily optimal. We may improve the performance of our algorithms by using an alternate
search strategy or by combining the feature selection process and the learning process into an over-
all optimization problem. More work should also be devoted to the problem of hyperparameter
selection in conjunction to that of feature selection. Finally, further investigations should focus on
the theoretical analysis of the algorithm, as well as making comparisons with other methods.
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