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Abstract
We address the problem of categorising documents using kernel-based methods such as Support Vector Ma-
chines. Since the work of Joachims (1998), there is ample experimental evidence that SVM using the standard
word frequencies as features yield state-of-the-art performance on a number of benchmark problems. Re-
cently, Lodhi et al. (2002) proposed the use ofstring kernels, a novel way of computing document similarity
based of matching non-consecutive subsequences of characters. In this article, we propose the use of this
technique with sequences ofwordsrather than characters. This approach has several advantages, in particular
it is more efficient computationally and it ties in closely with standard linguistic pre-processing techniques.
We present some extensions to sequence kernels dealing with symbol-dependent and match-dependent decay
factors, and present empirical evaluations of these extensions on the Reuters-21578 datasets.
Keywords: Kernel machines, text categorisation, linguistic processing, string kernels, sequence kernels

1. Introduction

The application of machine learning techniques to classification of documents is a rich and challenging re-
search area with many related tasks, such as routing, filtering or cross-lingual information retrieval. Since
Joachims (1998) and other researchers like Yang and Liu (1999) have shown that Support Vector Machines
(SVM) perform favourably compared to competing techniques for document categorisation, kernel machines
have been a popular choice for document processing. In most reported works, however, documents were rep-
resented using the standard vector space, akabag-of-wordmodel (Salton and McGill, 1983)—that is, more
or less, word frequencies with various added normalisations—in conjunction with general purpose kernels
(linear, polynomial, RBF, etc.).

Recently, Watkins (1999) and Lodhi et al. (2001, 2002) proposed the use ofstring kernels, one of the first
significant departures from the vector space model. In string kernels, the features are not word frequencies
or an implicit expansion thereof, but the extent to which all possible ordered subsequences of characters are
represented in the document. In addition, Lodhi et al. (2001) proposed a recursive dynamic programming
formulation allowing the practical computation of the similarity between two sequences of arbitrary symbols
as the dot-product in the implicit feature space of all ordered, non-consecutive subsequences of symbols. Al-
though it allows to perform the kernel calculation without performing an explicit feature space expansion, this
formulation is extremely computationally demanding and is not applicable (with current processing power)
to large document collections without approximation (Lodhi et al., 2002).

In this document, we propose to extend the idea of sequence kernels to process documents as sequences of
words. This greatly expands the number of symbols to consider, as symbols are words rather than characters,
but it reduces the average number of symbols per document. As the dynamic programming formulation used
for computing sequence matching depends only on sequence length, this yields a significant improvement
in computing efficiency. Training a SVM on a dataset of around 10000 documents like the Reuters-21578
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corpus becomes feasible without approximation. In addition, matching sequences of words allows to work
with symbols that are expected to be more linguistically meaningful. This leads to extensions of the word
sequence kernels that implement a kind of inverse document frequency (IDF) weighting by allowing symbol-
varying decay factors. Words may also be equivalent in some context, and we show how to implement soft
word matching in conjunction with the word-sequence kernel. This allows the use of this kernel in a multi-
lingual context, an application that was not possible with the string kernel formulation.

In Section 2 we offer a brief self-contained introduction to kernel methods, after which we will proceed
with the presentation of sequence kernels (Section 2.2). Section 3 formulates and verifies a hypothesis that
helps explain why string kernels perform well, even though they are based on processing entities (characters)
which are essentially meaningless from a linguistic point of view. Section 4 presents our extension of se-
quence kernels to word-sequences, which we test empirically in Section 4.2. Finally, we present in Section 5
some extensions of word-sequence kernels to soft-matching and cross-lingual document similarity.

2. Kernel Methods

Kernel methods are a research field in rapid expansion. Based on theoretical work on statistical learning
theory (Vapnik, 1995) and reproducing kernel Hilbert spaces (Wahba, 1990), kernel machines were first
popular as SVM (Boser et al., 1992, Cortes and Vapnik, 1995). In this section we will briefly introduce
kernel-based classifiersandsequence kernels. For additional information, the reader may refer to general
introductions such as Cristianini and Shawe-Taylor (2000), Sch¨olkopf and Smola (2002) or Herbrich (2002).

2.1 Kernel Classifiers

A binary classifier is a function from some input spaceX into the set of binary labels{−1,+1}. A supervised
learning algorithm is a function that assigns, to each labeled training setS∈ (X ×{−1,+1})l , a binary
classifierh : X → {−1,+1}. For computational reasons and in order to limit overfitting, learning algorithms
typically consider only a subset of all classifiers,H ⊂ {h|h : X → {−1,+1}}, the hypothesis space. In
the common case in whichX is a vector space, one of the simplest binary classifiers is given by the linear
discriminant:

h(x) = sign(〈w,x〉+b)
where〈·, ·〉 denotes the standard dot-product. Learning the linear classifier amounts to finding values of
w andb which maximise some measure of performance. Learning algorithms for linear classifiers include
e.g. Fisher’s linear discriminant, the Perceptron and SVM. All linear classifiers will naturally fail when the
boundary between the two classes is not linear. However, it is possible to leverage their conceptual simplicity
by projecting the data fromX into a differentfeature spaceF in which we hope to achieve linear separation
between the two classes. Denoting the projection into feature space byφ : X → F , the generalised linear
classifier becomes:

h(x) = sign(〈w,φ(x)〉+b) (1)

The separating hyperplane defined byw andb is now in the feature spaceF , and the corresponding classifier
in the input spaceX will generally be non-linear. Note also that in this setting,X need not even be a vector
space as long asF is. This is a crucial observation for the rest of this article, as we will be dealing with the
case in whichX is the associative monoid of the sequences over a fixed alphabet, which is not a vector space.

In the case of SVM, the optimal weightŝw can be expressed as a linear combination of the data:

ŵ =
l

∑
i=1

yi αi φ(xi) (2)

whereαi ∈ R is theweightof the i-th training example with inputxi ∈ X and labelyi ∈ {−1,+1}. Accord-
ingly, by combining (1) and (2), the SVM classifier can be written in itsdual form:

h(x) = sign

(
l

∑
i=1

yi αi〈φ(x),φ(xi)〉+b

)
(3)
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Notice that the projectionφ only appears in the context of a dot product in (3). In addition, the optimal
weights(αi) are the solution of a high dimensional quadratic programming problem which can be expressed
in terms of dot products between projected training data〈φ(xi),φ(x j)〉. Rather than use the explicit mapping
φ, we can thus use akernel function K: X ×X → R such thatK(x,y) = 〈φ(x),φ(y)〉. As long asK(x,y) can
be calculated efficiently, there is actually no need to explicitly map the data into feature space usingφ —this
is thekernel trick. It is especially useful when the computational cost of calculatingφ(x) is overwhelming
(e.g., whenF is high dimensional) while there is a simple expression forK(x,y). In fact,Mercer’s theorem
(see, e.g. Cristianini and Shawe-Taylor, 2000, Section 3.3.1) states that any positive semi-definite symmetric
function of two arguments corresponds to some mappingφ in some spaceF and is thus a valid kernel. This
means that in principle a kernel can be used even if the nature of the corresponding mappingφ is not known.

This article addresses the application of kernel methods to the well known problem of document cate-
gorisation. So far, most of the kernel-based work in this area used a standardbag-of-wordsrepresentation,
with word frequencies as features, ieX = R

n. Although these vector representations have proved largely suc-
cessful, we will here investigate the use of representations which are intuitively closer to the intrinsic nature
of documents, namely sequences of symbols. This representation does not form a vector space, but the use
of appropriate kernels will allow us to leverage the discriminative power of kernel-based algorithms. As we
will see, the kernels we are going to consider will also allow us to test basic factors (e.g., order or locality of
multi-word terms) in the context of document categorisation.

2.2 Sequence Kernels

The assumption behind the popularbag-of-wordsrepresentation is that the relative position of tokens has
little importance in most Information Retrieval (IR) tasks. Documents are just represented by word frequen-
cies (and possibly additional weighting and normalisation), and the loss of the information regarding the
word positions is more than compensated for by the use of powerful algorithms working in vector space.
Although some methods inject positional information using phrases or multi-word units (Perez-Carballo and
Strzalkowski, 2000) or local co-occurrence statistics (Wong et al., 1985), the underlying techniques are based
on a vector space representation.

String kernels(or sequence kernels) are one of the first significant departures from the vector-space rep-
resentation in this domain. String kernels (Haussler, 1999, Watkins, 1999, Lodhi et al., 2001, 2002) are
similarity measures between documents seen assequencesof symbols (e.g., possible characters) over an al-
phabet. In general, similarity is assessed by the number of (possibly non-contiguous) matching subsequences
shared by two sequences. Non contiguous occurrences are penalized according to the number of gaps they
contain.

Formaly, letΣ be a finite alphabet, ands= s1s2 . . .s|s| a sequence overΣ (i.e. si ∈ Σ,1≤ i ≤ |s|). Let
i = [i1, i2, . . . , in], with 1≤ i1 < i2 < .. . < in ≤ |s|, be a subset of the indices ins: we will indicate ass[i] ∈ Σn

the subsequencesi1si2 . . .sin. Note thats[i] does not necessarily form a contiguous subsequence ofs. For
example, ifs is the sequenceCARTandi = [2,4], thens[i] is AT. Let us writel(i) the length spanned bys[i]
in s, that is: l(i) = in− i1 +1. The sequence kernel of two stringssandt overΣ is defined as:

Kn(s, t) = ∑
u∈Σn

∑
i:s[i]=u

∑
j :t[j ]=u

λl(i)+l(j) (4)

whereλ ∈]0;1] is a decay factor used to penalise non-contiguous subsequences and the first sum refers to all
possible subsequences of lengthn. Equation 4 defines a valid kernel as it amounts to performing an inner
product in a feature space with one feature per ordered subsequenceu∈ Σn with value:

φu(s) = ∑
i:s[i]=u

λl(i) (5)

Intuitively, this means that we match all possible subsequences ofn symbols, even when these subse-
quences are not consecutive, and with each occurrence “discounted” according to its overall length.
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A direct computation of all the terms under the nested sum in (4) becomes impractical even for small
values ofn. In addition, in the spirit of the kernel trick discussed in Section 2, we wish to calculateKn(s, t)
directly rather than perform an explicit expansion in feature space. This can be done using a recursive
formulation proposed by Lodhi et al. (2001), which leads to a more efficient dynamic-programming-based
implementation. The derivation of this efficient recursive formulation is given in appendix A, together with
an illustrative example. It results in the following equations:

K′
0(s, t) = 1, for all s, t,

for all i = 1, . . . ,n−1:

K′′
i (s, t) = 0, if min(|s|, |t|) < i (6)

K′
i (s, t) = 0, if min(|s|, |t|) < i (7)

K′′
i (sx, ty) = λK′′

i (sx, t) iff y 6= x (8)

K′′
i (sx, tx) = λK′′

i (sx, t)+ λ2K′
i−1(s, t) otherwise (9)

K′
i (sx, t) = λK′

i (s, t)+K′′
i (sx, t) (10)

and finally:

Kn(s, t) = 0, if min(|s|, |t|) < n (11)

Kn(sx, t) = Kn(s,t)+ ∑
j :t j =x

λ2K′
n−1(s, t[1 : j −1]) (12)

The time required to compute the kernel according to this formulation isO(n|s||t|). In some situations, it
may be convenient to perform a linear combination of sequence kernels with different values ofn. Using the
recursive formulation, it turns out that computing all kernel values for subsequences of lengths up ton is not
significantly more costly than computing the kernel forn only. In order to keep the kernel values comparable
for different values ofn and to be independent from the length of the strings , it may be advisable to consider
the normalised version:

K̂(s, t) =
K(s, t)√

K(s,s)K(t, t)
(13)

This is a generalisation of the “cosine normalisation” which is widespread in IR and corresponds to the
mappingφ̂(s) = φ(s)

‖φ(s)‖2
(where‖.‖2 is the 2-norm).

3. The Noisy-Stemming Hypothesis

Text categorisation using string kernels operating at the character level has been shown to yield performance
comparable to kernels based on the traditional bag-of-words representation (Lodhi et al., 2001, 2002). This
result is somewhat surprising, considering string kernels use only low-level information. A possible expla-
nation of the effectiveness of the string kernel, supported by the observation that performance improves with
n, is that subsequences most relevant to the categorisation may correspond to noisy versions of word stems,
thus implicitly implementing some form of morphological normalisation. Furthermore, as gaps within the
sequence are allowed —although penalized— string kernels could also pick up stems of consecutive words,
as illustrated in Figure 1. This is known to help in IR applications (Salton and McGill, 1983).

In order to test thisnoisy stemminghypothesis, the following experiment was conducted. An SVM using
a string kernel was trained on a small subset of the Reuters-21578 corpus,1 using the labels for theacq topic.
A sample of features—subsequences of a fixed lengthn—was randomly chosen. In order to avoid a vast
majority of irrelevant low-weight features, we restricted ourselves to possibly non-contiguous subsequences
appearing in the Support Vectors. For each sampled featureu, its impact on the categorisation decision was
compared to a measure ofstemnessσu. The impact on the categorisation decision is measured by the absolute

1. Available at http://www.daviddlewis.com/resources/testcollections/reuters21578/. The subset is built from the first 114 documents
with theacq label and the first 266 documents not inacq .
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I  E  O F C O  N EP R X P O R AC R T

H  A  J O I N T E V NI S T U R E W

4−GRAMS

5−GRAMS

Figure 1: The noisy-stemming hypothesis.N-grams may be able to pick parts of words/stems (top, with
n = 4) or even pick parts of stems of consecutive words (bottom,n = 5).

weightwu in the linear decision:

wu =

∣∣∣∣∣∑j
α j yjφu(xj)

∣∣∣∣∣
In order to assess thestemnessof a feature, ie the extent to which a feature approximates a word stem, a

simplifying assumption was made by considering that stems are the initial characters in a word. Moreover,
in order to verify that a feature may span two consecutive stems, a measure of stemness was devised so as
to consider pairs of consecutive tokens. Lett = {t1, ...,tm}, with 1= t1 < t2 < ... < tm < tm+1 = |s|+1, be a
tokenisationof the strings (the tokenisation is the segmentation process that provides the indices of the first
symbol of each token). Letm(k,u) be the set of all matches for the subsequenceu in the pair of consecutive
tokens starting intk−1 andtk respectively, with 2≤ k≤ m:

m(k,u) =
{(

i′, i′′
) |u = s[i′]s[i′′], tk−1 ≤ i′1 ≤ i′|i′| < tk ≤ i′′1 ≤ i′′|i′′| < tk+1

}
In a matching pair wherei′ = /0, the constrainttk−1 ≤ i′|i′| < tk is considered automatically satisfied. In

addition,i′′ is forced to be different from/0, in order to avoid double counting of single word matches, and
an empty symbol is added at the beginning of the string to allow one-word matching on the first token. The
stemness of a subsequenceu with respect tos is then defined as:

σu(s) = avgk:m(k,u) 6= /0

(
λminm(k,u)

(
i′ |i′ |−tk−1−|i′|+i′′ |i′′|−tk−|i′′|

))
In other words, for each pair of consecutive tokens containing a match foru, a pair of indices(i′, i′′) is selected
such thats[i′] matches into the first token,s[i′′] matches in the second and each component is found as compact
and close to the start of the corresponding token as possible. The stemness ofu with respect to the whole
training corpus is then defined as the (micro-)average of the stemness in all documents in the corpus. This
experiment was performed with a sample of 15000 features of lengthn = 3, and a sample of 9000 features of
n = 5, with λ = 0.5 in both cases. Under the noisy-stemming hypothesis, we expect relatively few features
with high weight and low stemness. The outcome of our experiment, presented in Table 1, seems to confirm
this. Forn=3, among features with high weight (> 0.15) about 92% have high stemness, whereas among
features with low weight the fraction of features with high stemness is of 73%. Similar results were found
for n = 5 (90% and 46% respectively).

For each non-empty set of matchesm(k,u) 6= /0, stemness is calculated by first finding the most compact
match(i′c, i′′c) = argmin(i′,i′′)∈m(k,u)

(
i′|i′| − tk−1−|i′|+ i′′|i′′| − tk−|i′′|). It is interesting to check how often

this “minimal” subsequence matches on two tokens, as opposed to single-token match. For that purpose, we
defineg(k,u) = 1 if the most compact match is on one token (i.e.i′c = /0) andg(k,u) = 2 otherwise. The
multigramness of a subsequenceu on sequences is then:

γu(s) = avgk:m(k,u) 6= /0 (g(k,u))
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n = 3 wu

σu low high
low 3622 125
high 9877 1376

n = 5 wu

σu low high
low 4413 86
high 3686 815

Table 1: Contingency tables for weight against stemness. Left (n = 3, ie trigrams): Weights are split at 0.15
to separate the lowest 90% and highest 10% values, whereas stemness is split at 0.064 to separate
the 25% lowest and 75% highest values. Right (n = 5): Weights are split at 0.0066 to separate the
lowest 90% and highest 10% values, whereas stemness is split at 0.029 to separate the 50% lowest
and 50% highest values. Theχ2 values for the tables are 247 (left) and 655 (right), which suggests
a highly significant departure from independence in both cases (1 d.o.f.).
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Figure 2: Density of “Multigramness” for high weight features,n = 3 andn = 5.

Using the same feature samples as above, we estimate the distribution ofγu(s) for features with high
weights (the most interesting features). Figure 2 shows that the mass of each distribution is close to 2,
indicating that matching occurs more often on more than one word. This effect is even clearer for larger
n: high weight features of lengthn = 5 are concentrated nearγu = 2. This is reasonable considering longer
subsequences are harder to match on a single word. On the other hand, a significant amount of high weight,
high stemness features of lengthn = 3 are clearly single stem features. In addition, features with high weight
but low stemness have a tendency to spread on two stems (right column vs. left column in Figure 2).

This suggests that multiple word matching really does occur and is beneficial in forming discriminant,
high weight features. This is also in agreement with results on SVM using traditional kernels (Joachims,
1998) showing that polynomial kernels consistently outperform the linear kernel.
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4. Word-Sequence Kernels

The seeming validity of the noisy-stemming hypothesis suggests that sequence kernels operating at the word
(possibly word-stem) level might prove more effective than those operating at the character level. In this
section, we describe the impact of applying sequence kernels at the word level, and extend the original kernel
formulation so as to take into account additional information.

4.1 Theory

The direct application of the sequence kernel defined above on an alphabet of individual words raises some
significant issues. First, the feature space on which documents are implicitly mapped has one dimension for
each of the|Σ|n orderedn-tuples of symbols in the alphabet: going from characters to words, the order of
magnitude of|Σ| increases from the hundreds to the tens of thousands, and the number of dimensions of the
feature space increases accordingly. However, the average length in symbols of documents decreases by an
order of magnitude. As the algorithm used for computing sequence kernels depends on sequence length and
not on alphabet size, this yields a significant improvement in computing efficiency: word-sequence kernels
can be computed on datasets for which string kernels have to be approximated.

Nevertheless, the combination of the two effects (increase in alphabet size, decrease in document average
length) causes documents to have extremely sparse implicit representations in the feature space. This in turn
means that the kernel-based similarity between any pair of distinct documents will tend to be small with
respect to the “self-similarity” of documents, especially for larger values ofn. In other words, the Gram
matrix tends to be nearly diagonal, meaning that all examples are nearly orthogonal. In order to overcome
this problem, it is convenient to replace the fixed-length sequence kernel with a combination of sequence
kernels with subsequence lengths up to a fixedn. A straightforward formulation is the following 1-parameter
linear combination:

K̄n(x,y) =
n

∑
i=1

µ1−i K̂i(x,y) (14)

Considering the dynamic programming technique used for the implementation, computing the sequence ker-
nel for subsequences of length up ton requires only a marginal increase in time compared to the computation
for subsequences of lengthn only. Notice that kernel values for different subsequence lengths are normalised
independently before being combined. In this way it is possible to control the relative weight given to differ-
ent subsequence lengths directly by means of the parameterµ. Theµ parameter, or possibly the parameters
of a general linear combination of sequence kernels of different orders, can be optimized by cross-validation,
or alternatively bykernel alignment(Cristianini et al., 2001).

In its original form, the sequence kernel relies on mere occurrence counts, or term frequencies, and lacks
feature weighting schemes which have been deemed important by the IR community. We want to present
now two extensions to the standard sequence kernel. The first uses different values ofλ to assign different
weights to gaps, and allows the use of well-established weighting schemes, such as the inverse document
frequency (IDF). It can also be used to discriminate symbols according to, say, their part-of-speech. The
second extension consists in adopting different decay factors for gaps and for symbol matches, and generalises
over the previous extension in the sense that informative symbols are treated differently depending on whether
they are used in matches or gaps.

4.1.1 SYMBOL -DEPENDENTDECAY FACTORS

The original formulation of the sequence kernel uses a unique decay factorλ for all symbols. It can well be
the case, however, that sequences containing some symbols have a significantly better discriminating power
than sequences containing other symbols. For example, a sequence made of three nouns is more likely to be
more informative than a sequence made of a preposition, a determiner and a noun. A way to leverage on this
non-uniform discriminative power consists in assigning different decay factors to distinct symbols. We thus
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introduce a distinctλx for eachx∈ Σ. This induces the following new embedding:

φu(s) = ∑
i:s[i]=u

∏
i1< j<in

λsj

The value of the featureu = gas injectionin the sequences= gas assist plastic injectionis then:

φu(s) = λgasλassistλplasticλinjection

The corresponding weighted sequence kernelKw is thus defined as follows:

Kwn(s, t) = ∑
u∈Σn

φu(s)φu(t) = ∑
u∈Σn

∑
i:u=s[i]

∑
j :u=t[j ]

∏
i1≤k≤in

∏
j1≤l≤ jn

λskλtl .

A recursive formulation analogous to the one for the original sequence kernel can be derived. We can define
functionsKw

′ andKw
′′ to store intermediate results (see Appendix A):

Kw
′
i(s, t) = ∑

u∈Σi
∑

i:u=s[i]
∑

j :u=t[j ]
∏

i1≤k≤|s|
∏

j1≤ j≤|t|
λskλt j , for i = 1, . . . ,n−1

Kw
′′
i (sx, t) = ∑

j :t j =x
Kw

′
i−1(s, t[1 : j −1])λx ∏

j≤l≤|t|
λtl ,

and use the general recursion equations given in Section 2.2, with the following modifications: replaceλ by
λy in Equation 8, and byλx in Equations 9, 10 and 12.

Using different values ofλ is one way of incorporating prior knowledge into the sequence kernel. In
the case of word-sequence kernels, for instance, symbols (i.e. words) could be grouped according to their
part-of-speech. By doing so it is possible, for instance, to penalize more heavily occurrences with extraneous
nouns, such asgas assist plastic injection, than occurrences with extraneous adverbs, asgas only injection.
The rationale behind this is that the latter sequence is semantically closer togas injectionthan the former
(indeed, theplastic, and not thegas, is the main substance being injected in the former sequence).

This same extension can be useful—in the case of word-sequence kernels—in order to integrate informa-
tion on the inverse document frequency of terms. A broadly used formula for taking IDF into account in term
weighting schemes is:

idfc = log

(
N
Nc

)
(15)

whereN is the number of documents in the collection andNc is the number of documents containing termc.
This formula yields a value between 0 andlog(N) (only terms occurring in the collection are given non-zero
weight), and need be normalised to be used as a decay factor:

λc =
log( N

Nc
)

log(N)
(16)

However, one can notice that there is a tension between the different types of information which can be
integrated. On the one hand, words pertaining to certain parts-of-speech tend to be non discriminative when
inserted in sequences (asonly in the example above), and should thus be assigned highλ’s. But at the same
time, the very same words tend to appear in many different documents, thus leading to lowλ’s when an IDF
based weighting scheme is used. The second extension we propose solves this problem.

4.1.2 INDEPENDENTDECAY FACTORS FORGAPS AND MATCHES

The previous section introduced variable decay factors for different symbols, and mentioned the inclusion of
part-of-speech information and of inverse document frequency as background knowledge that could be added
using this extension. However, one would like gaps containing highly relevant symbols (e.g.: nouns) to be
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strongly penalized (i.e.:λc small), but highly relevantmatchingsymbols to be rewarded (i.e.:λc large). This
requirement cannot be met with the previous formulation.

One way to obtain the desired behaviour is to introduce two separate sets of decay factors for gaps and
for matches. Theu coordinate of the feature vector for the sequences is now defined by

φ̂u(s) = ∑
i:u=s[i]

∏
1≤ j≤|u|

λm,uj ∏
i1<k<i|u|,k6∈i

λg,sk (17)

whereλg,x is the discount factor for the symbolx when it occurs as a gap, andλm,x is the discount factor for
the same symbol when it occurs as a matching symbol. With this definition one could, for instance, discount
gaps according to part-of-speech and weight matching symbols according to inverse document frequency
information. The value of the featureu = gas injectionin the sequences= gas only injectionwould thus be:

φu(s) = λm,gasλg,onlyλm,injection

and we now have a way to consideronly as unimportant when it appears in a gap (λg,only close to 1), and
uninformative when it appears in a match (λm,only close to 0.). We now define the weighted sequence kernel
Kdw of two sequencessandt as

Kdwn(s, t) = ∑
u∈Σn

φ̂u(s)φ̂u(t) (18)

= ∑
u∈Σn

∑
i:u=s[i]

∑
j :u=t[j ]

∏
1≤ j≤|u|

λ2
m,uj ∏

i1<k<i|u|,k6∈i
λg,sk ∏

j1<l< j|u|,l 6∈j
λg,tl

As for the evaluation ofKdw, we defineKdw
′ andKdw

′′ as:

Kdw
′
i(s, t) = ∑

u∈Σi
∑

i:u=s[i]
∑

j :u=t[j ]

i

∏
k=1

λ2
m,ui ∏

i1<l≤|s|,l 6∈i

λg,sl ∏
j1<r≤|t|,r 6∈j

λg,tr ,

Kdw
′′
i (sx, t) = ∑

j :t j =x
Kdw

′
i−1(s, t[1 : j −1])λ2

m,x

|t|
∏

l= j+1

λg,tl , for i = 1, . . . ,n−1.

and use the general recursion equations given in Section 2.2, with the following modifications: replaceλ by
λg,y in Equation 8, replace Equation 9 with

Kdw
′′
i (sx, tx) = λg,xKdw

′′
i (sx, t)+ λ2

m,xKdw
′
i−1(s, t)

replaceλ by λg,x in Equation 10 and replaceλ by λm,x in Equation 12.
This formulation shows that considering separate sets of decay factors for matching symbols and for gaps

does not impact the computational complexity of the kernel. In the remainder of the paper, we will refer to the
extension corresponding to Equation 17, as the word-sequence kernels withsymbol-dependent matching
scores and decay factors.

4.2 Experiments

Word-sequence kernels generalise over previously introduced methods in several respects:

• Forn= 1, individual terms are matched. This amounts to performing the usual cosine measure between
document vectors (once the kernel is normalised). If symbol-dependent matching scores and decay
factors are adopted, IDF based weighting schemes can be enforced;

• Forλ = 1, gaps between symbols in a subsequence are not penalised, and the sequence kernel becomes
similar to a polynomial kernel withd = n in which unordered tuples of terms are replaced with ordered
tuples; this suggests a way to test the importance of order in multi-word terms;
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• For λg = 0, only contiguous sequences are matched, and the sequence kernel amounts to computing
a similarity between documents based on the number ofn-grams (more precisely on the number of
1-gram, 2-grams, ... up ton-grams) they share;

• With varyingλg, the constraint on the contiguity of sequences can be relaxed, which suggests a way to
test whether locality of multi-word terms (i.e. the fact that words of a sequence appear relatively close
to each other) is an important factor or not.

As we see, word-sequence kernels define a paradigm from which it is possible to test the importance of
different, basic factors for the document categorisation task. Assessing the validity of these factors, as well
as the performance of word-sequence kernels, is the goal of the experiments we designed. More precisely,
we want to answer the following questions:

1. Does the knowledge of the order in which the matched terms of a sequence occur improve the quality
of the similarity measure? In other words, does a word-sequence kernel withλ = 1 perform better than
the corresponding polynomial kernel?

2. Does the knowledge of the distance at which the matched terms of a sequence occur improve the quality
of the similarity measure? That is, does a word-sequence kernel withλ < 1 perform better than the
same one withλ = 1? Similarly, how does the version withλg = 0 (i.e. then-gram version) compare
to a more flexible word-sequence kernel in which the contiguity constraint is partially removed?

3. What relative importance should be given to individual words and to combination of words as indexing
features? In other words, how does the parameterµ affect performance?

4. Do results improve if combination of more and more words are considered? How is performance
affected by the value ofn?

5. Is it actually useful to use symbol-dependent matching scores and decay factors? Related to this point
is the questioning: is the word-sequence kernel sensitive to IDF based weighting schemes?

6. Finally, how does the word-sequence kernel compare to other kernels for text categorisation?

In order to answer these questions we performed a series of experiments using a standard benchmark for
text categorisation systems: the Reuters-21578 corpus. We adopted the so-called “ModApte split”, which
leads to a training set of 9603 documents and a test set of 3299. Although computationally far more tractable
than sequence kernels operating at the character level (note that the standard string kernels cannot be directly
computed on this collection, and need be approximated, as mentioned in Lodhi et al. (2002)), word-sequence
kernels are still somewhat resource-demanding.2 We thus decided to limit our attention to the ten most
frequent categories. Some characteristics of the composition of the training and test set relative to these
categories are summarised in Table 2.

Documents were preprocessed by performing lemmatisation and resolving ambiguities by means of a
part-of-speech tagger. Xerox tools were used to this effect. Lemmatisation maps different morphological
variants of a same word (e.g. singular/plural forms of nouns, present/past tenses of verbs) onto the same
feature (thelexeme). The underlying assumption is that the “inflected” form does not bring extra useful infor-
mation compared to the “normalised” form. Notice however that many words are ambiguous (e.g. “saw”) and
determining the correct lemma (in our example, “saw” as noun, “saw” as verb or “see” as verb) for each is
non-trivial. This is the reason why a part-of-speech (POS) tagger is used: the tagger model is able to choose
(i.e. disambiguate) one POS category according to the word’s context. After preprocessing, the number of
features is about 53,000 and the average document length is 141 (when stopwords are removed, the average
length drops to 77).

2. In the order of 103 kernel computations per second for sequences of this length andn = 2 on a Ultra SPARC II processor.
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Category # in training set Neg/Pos ratio # in test set

earn 2877 3 1087
acq 1650 6 719
money 538 18 179
grain 433 22 149
crude 389 25 189
trade 369 26 117
interest 347 28 131
ship 197 49 89
wheat 212 45 71
corn 181 53 56

Table 2: Number of positive examples in the ten most frequent categories of the Reuters-21578 corpus
(ModApte split).

Experiments were conducted using the SVMlight (Joachims, 1999) package,3 version 3.50, appropriately
adapted for using sequence kernels.4 Training sets for all categories are all more or less unbalanced in favour
of negative examples. This is a well known problem with the SVM algorithms, which implicitly tends to
maximise accuracy, thus leading to learning overly conservative classifiers. SVMlight provides a parameter,
however, to weight the relative importance of positive and negative examples in the training set. As a heuristic
rule, all experiments were run with this parameter set at the integer value closest to the ratio between negative
and positive examples in the training set. While there is no evidence that this setting optimises any of the
measures usually adopted in IR, this seemed a reasonable choice to at least reduce the impact of the lack of
balance in the training set.

PERFORMANCE EVALUATION

In the following experimental results, we use standard IR performance measures. From the test categorisation
results, we calculate the true positives TP (number of documents the model correctly identifies as positives),
the false positives FP (number of documents the model falsely identifies as positives) and the false negatives
FN (number of documents the model fails to identify as positives). From these counts, we calculate the
following performance measures:

Precision: the ratio of true positives among all retrieved documents,p = TP
TP+FP.

Recall: the ratio of true positives over all positives,r = TP
TP+FN .

F-score: the harmonic mean of precision and recall,F1 = 2pr
p+r .

Note that these measures depend on the threshold that is applied to the decision function in order to decide
whether a document is relevant. In order to provide a threshold-independent measure, we also compute the
break-even point, which is the performance obtained at the threshold for whichp = r. By definition, at the
break-even point, precision, recall and F-score are equal.

In the remainder of this section, most experimental results are centered around a “reference” setting of
µ = 0.5, in which the weight of terms of sizen is double that of terms of ordern−1. We will see that this
setting does not in general yield optimal performance. Note, however, that we study the impact of factors,
such as order, locality or multi-term length, which control the way in which single-word terms interact with
multi-word terms. In that context, using such a small value ofµ gives more importance to longer terms,
making this impact more visible.

3. Available at http://svmlight.joachims.org/
4. The adaptation mainly consisted in extending the processing of data structures different from the traditional one (vector), in mod-

ifying some I/O functions and in enhancing computing time performance by precomputing the Gram matrix only once for all
categories.
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micro-average macro-average
p r F1 BP p r F1 BP

Stopwords not removed 91.98 87.62 89.75 90.21 85.20 74.30 78.92 80.86
Stopwords removed 93.01 88.09 90.52 91.46 85.37 76.71 80.64 83.09

Table 3: The effect of removing stopwords on Precision (p), Recall (r),F1 score and Break-even Point (BP).
These results are obtained withn = 2, λ = 0.5 andµ= 0.5.

The performance measures presented above are calculated for each category. In order to present a
synthetic measure of performance over all categories, we present the micro-averaged and macro-averaged
performance. Macro-averaging consists in simply averaging the results obtained on each category, while
micro-averaging averages over individual decisions made on each document for each category. In effect,
micro-averaging is dominated by the performance of “large” categories, while macro-averaging gives equal
influence to all categories. In all our experiments, both methods give consistent results. However, as micro-
averaging is dominated by the large categories which are relatively easy to learn, the effect of different
parameter settings is usually more visible on the macro-averaged performance.

STOPWORD REMOVAL

Stopword removal is a common practice in document categorisation and filtering. In the context of word-
sequence kernels, it has the favourable side effect of reducing the average sequence length by about 50%, and
correspondingly reducing kernel computation time by 75%.

Preliminary to any further experiment, we verified whether stopword removal would be beneficial in the
case of word-sequence kernels as well. The results in Table 3 show that performance improves significantly
for all performance measures after stopword removal. Accordingly, all subsequent experiments were per-
formed on sequences from which stopwords had been removed.

ORDER

Word-sequence kernels of length 2 use implicit features which are the ordered combinations of two words.
The quadratic kernel on the bag-of-word representation uses the same kind of features, but does not take word
order into account. Using word order allows to differentiate between documents containing the same words
in different orders, potentially yielding a higher precision. On the other hand, when the order information is
not considered, recall may increase because such documents are considered similar.

The aim of the first experiment is therefore to evaluate the impact of the order of word combinations on the
accuracy of the similarity measure. To that effect, we compared the performance of the word-sequence kernel
defined in Equation 14 withn = 2, λ = 1 andµ = 0.5 with that of the polynomial kernel of degreed = 2. In
both cases, the SVM margin parameterC was set to the default 1/avg(K(x,x)). In order to ensure that only
the effect of order is being measured, we used the same preprocessing for both kernels, ie lemmatisation and
stopword removal. In addition, in order to ensure that single terms and multiple terms were given the same
relative influence in the similarity, we computed a normalised version of the quadratic kernel, using the same
normalisation as Equations 13 and 14:

K̄p2(x,y) =
〈x,y〉√〈x,x〉〈y,y〉 +

1
µ

〈x,y〉2
〈x,x〉〈y,y〉 (19)

The first three rows of Table 4 display the results obtained without IDF in the polynomial kernels, and
using a fixedλ = 1 in the word-sequence kernel. The word-sequence kernel performs slightly worse than
the normalised polynomial, by a small but consistent margin, indicating that taking into account the word
order does not help in the categorisation task. The results obtained by the standard quadratic kernelK(x,y) =
(〈x,y〉+1)2 are largely inferior to those of the other two kernels. This is because when no IDF is applied, the
un-normalised quadratic kernel is dominated by the products of frequencies of very common words, which
tend to be poor discriminators.
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micro-average macro-average
p r F1 BP p r F1 BP

WSK, n=2, λ=1, µ= 1
2 93.49 88.09 90.71 91.25 86.26 76.86 81.11 82.35

K̄p2, 93.73 88.55 91.06 91.49 87.36 76.78 81.44 83.44
Polynomial,d = 2 81.45 84.20 82.80 87.00 78.50 70.50 73.65 76.72

WSK, n=2, varλm, λg=1 95.37 84.97 89.87 91.64 90.71 72.00 79.99 84.39

K̄p2, IDF 94.97 85.46 89.96 91.56 90.23 72.90 80.36 84.34
Polynomial,d = 2, IDF 93.91 88.08 90.90 91.74 89.03 77.29 82.52 84.82

Table 4: The impact of taking word order into account on Precision (p), Recall (r),F1 score and Break-even
Point (BP). We compare word-sequence kernels (WSK), normalised polynomial (Kp2) and standard
polynomial kernel, with and without IDF.

micro-average macro-average
p r F1 BP p r F1 BP

varλm, λg = 0 95.45 85.07 89.96 91.60 91.01 71.92 79.98 84.23
varλm, λg = 0.5 95.45 84.97 89.90 91.57 91.12 71.95 80.05 84.17
varλm, λg = 1 95.37 84.97 89.87 91.64 90.77 72.00 79.99 84.39

varλm, λg = 1−λm 95.66 85.32 90.20 91.75 91.71 72.30 80.45 84.50

Table 5: The impact of locality on Precision (p), Recall (r),F1 score and Break-even Point (BP). We compare
the performance obtained for symbol-dependant decay factors withλg = 0 (no gaps allowed),λg =
0.5, λg = 1 (any gap allowed) andλg = 1−λm (IDF-dependent). All results are for word-sequence
kernels withn = 2 andµ= 0.5.

The last three rows of Table 4 display the results obtained with IDF (eq. 15) in the polynomial kernels,
and with corresponding variableλm (eq. 16) in the word-sequence kernel. By taking word order into account,
the word-sequence kernel yields a better precision, but this does not offset the large gain in recall observed
for the standard polynomial kernel, which now performs best overall. These results suggest that taking word
order into account does not benefit categorisation performance.

LOCALITY

The decay factorλ allows to control the extent to which “gaps” are allowed in matching subsequences. For
λ = 1, gaps will have no effect on the sequence similarity, while forλ → 0, any gap within a subsequence
will drive the corresponding feature value (and hence the similarity) towards 0 (cf. eqs. 4 and 5).

The aim of our second experiment is therefore to check the importance of taking into account the distance
at which matched words occur, ie whether matches should be local (smallλ) or whether they may occur
accross the entire document (largeλ). Note that for symbol-dependent decay factors,λg = 0 corresponds to
a puren-gram model, whileλg = 1 is similar to polynomial kernels (with an additional order constraint).

For fixedλ, Figure 3 shows that the setting ofλ has little effect on the performance, suggesting that
locality is not overly important for our categorisation task. Table 5 displays similar results for the symbol-
dependent decay factors and different settings forλg.

All results suggest that locality does not seem to have a strong impact on our categorisation task. This
does not mean, however, that the setting ofλ is irrelevant. Indeed, using symbol-dependent decay factors for
both gaps and matches (last line in Table 5) yields the overall best performance, with a small but consistent
edge over all alternatives presented here.
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Impact of λ for n=2, µ=0.5
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Figure 3: The effect of locality (varying decay factorλ) on the performance. All experiments are withn = 2
andµ= 0.5. The decay factor and hence the number of gaps within a matching subsequence seems
to have little impact on performance.

micro-average macro-average
p r F1 BP p r F1 BP

µ= 0.5, varλm 95.45 84.97 89.90 91.57 91.12 71.95 80.05 84.17
µ= 2, varλm 94.28 88.16 91.12 91.50 89.71 77.27 82.78 83.87

Table 6: The impact ofµ on Precision (p), Recall (r),F1 score and Break-even Point (BP). We compare the
performance obtained for symbol-dependent decay factors withµ= 0.5 (more weight to multi-word
matches) andµ= 2 (more weight to single-word matches).

INFLUENCE OFµ

Parameterµ gives the relative weight of multi-word terms compared to single words. In our experimental
results, we focus onµ = 0.5, which forn = 2 corresponds to giving double weight to matches on two words
compared to single-word matches. As mentionned earlier, this allows to emphasize the effect of multi-word
matches, but is not necessarily optimal. Indeed, some results in IR suggest that it usually helps to give more
weight to single terms with respect to multi-word terms (Gaussier et al., 2000).

The aim of the third experiment is to check the impact ofµ on the performance. Figure 4 shows that asµ
increases (i.e. the influence of multi-word matches decreases), precision decreases. This is because matches
on several words are a more certain indicator of similarity than matches on single words. On the other hand,
forcing the similarity to consider mostly multi-word matches (for smallµ), one may fail to identify as similar
two related documents if they only share single words, hence a lower recall. Figure 4 shows that indeed recall
increases greatly with largerµ. This more than compensates for the loss in precision and the overall F-score
increases. The same effect is observed for symbol-dependentλ, as illustrated in Table 6. Despite a clear and
consistent impact ofµ on precision and recall for both the fixedλ and variableλ cases, the break-even point
seems relatively insensitive to this parameter. Note also that larger values ofµ seem to favour theF-score on
this categorisation task, a result that is consistent with findings in IR (Gaussier et al., 2000).
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Impact of µ for n=2, λ=0.5

µ

M
ic

ro
−

av
er

ag
ed

 p
er

fo
rm

an
ce

0.25 0.5 1 2

86
88

90
92

94 p

p
p

p

r

r

r

r
F

F
F

F

p
r
F
x

Precision
Recall
F1 score
Break−even point

Impact of µ for n=2, λ=0.5

µ

M
ac

ro
−

av
er

ag
ed

 p
er

fo
rm

an
ce

0.25 0.5 1 2

74
76

78
80

82
84

86

p
p

p

p

r

r

r

r

F

F
F

F

p
r
F
x

Precision
Recall
F1 score
Break−even point

Figure 4: The effect of varying the relative weight of multi-termsµ on the performance. All experiments are
with n = 2 andλ = 0.5.
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Figure 5: The effect of varying the subsequence lengthn on the performance. All experiments are with
µ= 0.5 andλm = λg = 0.5.

INFLUENCE OFn

All previous experiments considered only single words and word pairs (n = 2). We also performed experi-
ments to assess the impact ofn on performance. Results are displayed in Figure 5. When longer multi-terms
are taken into account precision improves. However, the corresponding loss in recall more than compensates
this increase, so that both the F1 score and the breakeven point decrease.
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INFLUENCE OF SYMBOL-DEPENDENT MATCHING SCORES AND DECAY FACTORS

All experiments show that using symbol-dependentλ’s for matching symbols has a positive influence on
performance. As mentioned in Section 4.1, symbol-dependentλ’s allow us to make use of an IDF-based
weighting scheme. The fact that this weigthing scheme improves the results comes as no surprise as the
importance of IDF based term weighting is well known from the IR literature.

We observe, however, that word-sequence kernels are less sensitive to term weighting than quadratic
kernels. Table 4 shows that the performance of the kernel improves when an IDF based weighting scheme is
used (fourth line), in particular for the macro-average, but the improvement remains marginal for the micro-
average. On the contrary, using IDF yields a significant improvement for the quadratic kernel, both on the
micro- and macro-average: the break-even point increases from 87% to 91.74% in micro-average, and from
76.72% to 84.82% in macro-average (Table 4, lines 3 and 6).

COMPARISON OF WORD-SEQUENCE KERNELS WITH OTHER KERNELS

The best performance obtained with word-sequence kernels of length 2 (last line of Table 5) are comparable
to the best performance obtained with a polynomial kernel of degree 2 (last line of Table 4). In addition, our
results are comparable with state-of-the-art results on this collection using SVM and various bag-of-word
kernels.5 Experimental results also show that word-sequence kernels perform better than string kernels on
the complete set of documents, when string kernels must be approximated (Lodhi et al., 2002).

Compared to polynomial and RBF kernels, word-sequence kernels have the disadvantage of being com-
putationally more demanding. However, as we have seen, word-sequence kernels allowed us to test the
importance of different factors for text categorisation, an approach which was not possible before. Lastly,
word-sequence kernels rely on several parameters which have been fixed in our experiments, but can in theory
be optimised for a specific collection. We will investigate such a tuning in future work.

EXPERIMENTAL RESULTS SUMMARY

In summary, our experiments seem to show the following:

1. Taking word order into account (Table 4) has very little effect on performance. When IDF is applied
precision is slightly increased and recall is slightly reduced;

2. Locality per se(Figure 3 and Table 5) has virtually no impact. Some improvement can be obtained
by penalising more heavily those non-contiguous word combinations which are obtained by skipping
terms with low document frequency;

3. Giving more relative importance to word combinations in the similarity measure increases precision at
the expenses of recall (Figure 4 and Table 6);

4. Similarly, considering the combination of more words as indexing terms increases precision at the
expenses of recall (Figure 5);

5. Weighting matches according to IDF-basedλm’s improves performance;

6. Finally, the results obtained with word-sequence kernels are comparable to state-of-the-art results on
the same collection.

5. New Directions in Word-Sequence Kernels

In the previous section, we defined and illustrated the use of word-sequence kernels, and their extension
to symbol-dependent decay factors. We introduce here two additional natural extensions of word-sequence

5. On the same 10 categories, Joachims (1998) reported micro-averaged break-even points of: 89.85 ford = 1 (linear), 91.13 ford = 2
(quadratic), 91.89 ford = 3, 92.06 ford = 4, 92.00 ford = 5 and 92.29 for the RBF kernel.
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kernels. These extensions address two linguistically motivated problems: estimating the similarity between
documents containing different words with similar meanings (synonyms), or between documents in different
languages (cross-lingual).

5.1 Soft Matching

In the standard definition of word-sequence kernels (Sections 2.2 and 4), only exact symbol matches con-
tribute to the similarity. One shortcoming of this approach is that synonyms or words with related meanings
will never be considered similar. We address this problem by considering soft-matching of symbols, ie match-
ing equivalentas well as identical symbols, ensuring that matching equivalent symbols contributes less to the
similarity than an exact match.

Several IR techniques implement some kind of soft-matching. For example, the Generalised Vector Space
Model (GVSM, cf. Wong et al., 1985, Sheridan and Ballerini, 1996) uses the document-term matrix to esti-
mate a term-term similarity on the basis of co-occurrences of terms in documents. Similarly, in the context
of sequence kernels, we can define a soft-matching extension by invoking a similarity matrix in the implicit
feature space:

Ksoft(s, t) = φ(s)>Aφ(t) = ∑
u,v

φu (s)φv (t)Auv (20)

SettingAuv = 1 iff u = v, we recover the original formulation. Equation 20 expresses a valid kernel as

long as the similarity matrixA = [Auv] is positive definite. Note thatA ∈ (R+
0

)Σn×Σn

is indexed on the feature
space dimensions, ie ordered subsequences of lengthn. In order to simplify the processing and be able to
calculate the kernel value without feature space expansion, it may be convenient to express the similarity at
subsequence level as a product of similarities at the symbol level:Auv = ∏n

k=1aukvk. In that case, sinceA is

then-fold tensor product of thesymbolsimilarity matrixa= [axy]∈
(
R

+
0

)Σ×Σ
, A is positive definite whenever

a is. The soft-matching word-sequence kernel may be calculated recursively using Equations 6 to 7, 10 and
11, replacing Equations 8 and 9 by the single equation:

K′′
i (sx, ty) = λK′′

i (sx, t)+ λ2axyK′
i−1(s, t), ∀x,y,

and modifying Equation 12 to:

Kn(sx, t) = Kn(s, t)+
|t|
∑

j
λ2axtj K′

n−1(s, t[1 : j −1])

Soft matching can be combined with the use of distinct decay factors for gaps and matches:

Kdsn(s, t) = φ̂(s)>Aφ̂(t)

= ∑
u∈Σn

∑
v∈Σn

∑
i:u=s[i]

∑
j :v=t[j ]

λ2n
m

n

∏
k=1

auk,vk ∏
i1<l<in,l 6∈i

λg,sl ∏
j1<p< jn,p6∈j

λg,tp (21)

and the recursion formulas can be adapted accordingly.

5.2 Cross-Lingual Document Similarity

Once soft matching between different symbols is introduced, it is actually possible to define a similarity
between sequences from different alphabets. In the context of word-sequence kernels, this means that words
may be from different languages. Indeed, the kernelKsoft(s, t) from (21) can be directly applied, with a
symbol similarity matrix encoding weighted translation between words in the two languages, derived from
bilingual dictionaries or corpora. Several vector models developed for monolingual IR have been extended to
the multi-lingual case using a parallel corpus. We will now see how the word-sequence kernel relates to two
models previously proposed for cross-language IR, namely the Generalised Vector Space Model (GVSM)
and Latent Semantic Indexing (LSI).
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Let Σ1 andΣ2 be two alphabets corresponding to the dictionaries of the two languages under consideration
(|Σ1| = m, |Σ2| = q, Σ = Σ1∪Σ2). As a “document” in the parallel collection is actually a pair of aligned
documents, we will designate it as ap-documentfor clarity. In the following, we decompose the p-document-
term matrixD into language specific partsD1 andD2, such thatD = [D1 D2].

5.2.1 GENERALISED VECTORSPACE MODEL

The use of the GVSM in cross-language IR amounts to substitute the original documents with their projection
into a dual space, the dimensions of which are induced from clusters of p-documents. In the case where each
such cluster contains only one p-document, and using the standard cosine measure, one gets:

KGVSM(d,d′) = cos(D1d,D2d′) =
d>D1

>D2 d′

‖D1d‖ ‖D2d′‖ (22)

with d in language 1 andd′ in language 2. Assuming that raw frequencies are used as term frequencies in the
document representation, we can expand the numerator of (22) in the following way:

d>D1
>D2 d′ = ∑

u∈Σ1

∑
v∈Σ2

∑
s:d[s]=u

∑
t:d′ [t]=v

(D1>D2)uv

whered[s] corresponds to the term occurring at positions in d (and similarly ford[t]). Lastly, considering the

(m+q) square matrixA = D>D =
[

D1>D1 D1>D2
D2>D1 D2>D2

]
, we obtain the following symmetric expression:

d>D1
>D2d′ = ∑

u∈Σ
∑
v∈Σ

∑
s:d[s]=u

∑
t:d′[t]=v

(A)uv (23)

which corresponds to the soft-matching word-sequence kernel (eq. 21) withn = 1 andλ2
mauv = (A)uv. The

complete cosine similarity is then obtained through standard length normalisation.

5.2.2 CROSS-LINGUAL LSI

The cross-language Latent Semantic Indexing model (Dumais et al. (1996)) is similar to the monolingual
setting (Deerwester et al. (1990)), except that it is based on the singular value decomposition of the combined
p-document-term matrixD. Assuming that we select the dimensions with the highestk singular values, the
similarity is calculated after projecting documents usingUk , the (m+ q)× k matrix containing the firstk
columns ofU. Accordingly, the cosine similarity measure for cross-language LSI is given by:

KLSI(d,d′) = cos(Uk
>d,Uk

>d′) (24)

where documentsd andd′ are appropriately zero-padded into(m+q) dimensional vectors. In a way similar to
how we derived a word sequence kernel for GVSM from Equation 22, we can derive a word-sequence kernel
with n = 1 for cross-language LSI, provided once again that raw frequencies are used as term frequencies. In
this case, the similarity coefficients areλ2

mauv = (Uk Uk
>)uv. Once again, the complete equivalence with the

cosine measure relies on length normalisation.
Note that, to be used in cross-language IR, both GVSM and LSI need a parallel corpus, which is not

the case for word-sequence kernels, which can be computed based on a bilingual lexicon derived from a
comparable corpus for example.

6. Conclusions

Kernel methods allow the use of efficient learning algorithms in cases where the document representation is
not necessarily a vector. For example, the sequence kernels (string kernel, syllable kernel, word-sequence
kernel) represent one of the first competitive alternatives to the traditional bag-of-words representation.
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In this paper we first tried to analyse why sequence kernels operating at the character level, with no
higher level information, have been so successful. We formulated thenoisy stemminghypothesis, according
to which sequence kernels perform well because they implicitly select relevant word stems as indexing units.
We showed that this hypothesis is supported by empirical observations. Moreover, our observations suggest
that the subsequences which are more discriminant are essentially distributed on more than one word stem,
and therefore contribute to the effectiveness of the categorisation by indexing pairs of consecutive words.

In this paper we focussed on the word-sequence kernels, where documents are considered as sequences
of words. One advantage over the string kernel is that we use more semantically meaningful indexing units.
In addition, word-sequence kernels are significantly less computationally demanding. Finally, they lend
themselves to a number of natural extensions. We described the use of symbol-dependent decay factors and
independent decay factors for gaps and matches in the context of word-sequence kernels. This allows the use
of linguistically motivated background knowledge, and of traditional weighting schemes. We showed that the
use of independent IDF-based decay factorsλm andλg yields better performance than fixedλ.

The flexibility of word-sequence kernels allowed us to test a number of hypotheses regarding the impact
of word order, locality or multi-term matches on the categorisation performance. Our results suggest that
order and locality have essentially no effect on the performance, while the length of multi-term matches and
their weight in the similarity measure has a clear influence on the precision, recall andF-score.

Finally, we envisioned the possibility of using soft-matching of symbols in order to take into account a
similarity between different but related words. This opens up the possibility of using word-sequence kernels
in the context of multi-lingual document processing, and apply kernel methods to documents from different
languages.

Word-sequence kernels are a particular case ofconvolution kernels, and our work contributes to the in-
vestigation of document representations that are more structured than the bag-of-words model, in the context
of IR and document categorisation.
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Appendix A. Recursive Formulation of Sequence Kernels

This appendix gives an intuitive description of the basic sequence kernel, as well as a derivation of an efficient
recursive formulation based on dynamic programming.

We first recall some basic notation and definitions:
Let Σ be a finite alphabet, and lets= s1s2 · · ·s|s| be a sequence over such alphabet (i.e.si ∈ Σ,1≤ i ≤ |s|).

Let i = [i1, i2, ..., in], with 1≤ i1 < i2 < ... < in ≤ |s|, be a subset of the indices ins: we will indicate as
s[i] ∈ Σn the subsequencesi1si2 . . .sin. Let us writel(i) the valuein− i1 +1, i.e. the length of the window ins
spanned bys[i].

The basic Sequence Kernel works in the feature space of all possible subsequences of lengthn, where the
value associated with the featureu is defined by:

φu(s) = ∑
i:u=s[i]

λl(i) (25)

whereλ ∈]0;1] is a decay factor used to penalise non-contiguous subsequences. Actually, as extensively
explained and exploited in Section 4.1.2, this decay factor is applied not only to the “gaps”, but also to the
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matching symbols. For instance, ifλ is given the value 1, the gaps are not taken into account when computing
the value of the featureφu(s). Whenλ is given the value 0.5, each gap symbol contributes to dividing the
feature value by 2 (without gap,φu(s) = (0.5)n).

The sequence kernel of two stringssandt overΣ is defined as the inner product:

Kn(s, t) = ∑
u∈Σn

φu(s) ·φu(t) = ∑
u∈Σn

∑
i:u=s[i]

λl(i) ∑
j :u=t[j ]

λl(j) = ∑
u∈Σn

∑
i:u=s[i]

∑
j :u=t[j ]

λl(i)+l(j) (26)

Intuitively, this means that we match all possible subsequences ofn symbols, with each occurrence
“discounted” according to the size of the window that it spans. Consider for example the alphabetΣ =
{A,C,G,T}, and the two elementary sequences:

s= CATG and t = ACATT

Forn = 3, the weights of all subsequences (or features) for sequencessandt are, according to (25):

u φu(s) φu(t) u φu(s) φu(t)
AAT 0 λ4 + λ5 CAG λ4 0
ACA 0 λ3 CAT λ3 λ3 + λ4

ACT 0 λ4 + λ5 CTG λ4 0
ATG λ3 0 CTT 0 λ4

ATT 0 λ3 + λ5 others 0 0

where for instance the value of the featureu =AAT for sequencet =ACATT is λ4+λ5 because there are two
occurrences of AAT in ACATT. The first spans a window of width four (first, third and fourth symbols) and
the second spans a window of width five (first, third and fifth symbols). The similarity score is then:

K3(CATG,ACATT) = 〈φ(s),φ(t)〉 = ∑
u

φu(s)φu(t) = λ3(λ3 + λ4)

as the only feature for which both sequences have a non-null value is CAT.
A direct computation of all the terms under the nested sum in (26) becomes impractical even for small

values ofn. In addition, in the spirit of the kernel trick discussed in Section 2, we wish to calculateKn(s, t)
directly rather than to perform an explicit expansion in feature space. This can be done using a recursive
formulation proposed by Lodhi et al. (2001), which leads to a more efficient dynamic-programming imple-
mentation. The recursive formulation is based on the following reasoning. Suppose that we already know the
value of the kernel for two stringss andt: what do we need to compute the value of the kernel forsxandt,
for somex∈ Σ? Notice that:

1. All subsequences common tosandt are also common tosxandt.

2. In addition, we must consider all new matching subsequences ending inx which occur int and whose
(n-1)-symbol prefix occur ins (possibly non-contiguously).

For the latter point, consider the example in Figure 6. Letu′ andu′′ be two distinct sequences of length
n−1. They occur in boths andt and, as occurrences can contain gaps, each occurrence spans, in principle,
a window of different length. Let’s focus, for instance, on the occurrence ofu′′ in s marked asa. If ia is the
set of indices of the occurrence, i.e. ifu′′ = s[ia], then the length of the window spanned by the occurrence
is ian−1− ia1 + 1. The occurrencea will give raise to two new matches of lengthn for the subsequenceu′′x
betweensxandt, due to the presence of the occurrence ofu′′ marked asb in t and to the two occurrences of
x to the right ofb in t. These two matches will contribute to the kernel according to their lengths:

λ2(λ|s|−ia1+1λ jl1− jb1 + λ|s|−ia1+1λ jl2− jb1)

wherejb is the set of indices ofb in t, and jl1 and jl2 are the indices of the relevant occurrences ofx in t, as
indicated in the figure. Note theλ2 factor, which is the contribution of the matching x’s themselves, the rest
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Figure 6: Contributions from different occurrences of common subsequences in two stringssandt.

being the contribution of the gaps to the kernel. Similar inputs will be given by all occurrences ofu′, u′′ and
all other subsequences of lengthn−1 in the two strings.

We thus rewrite the kernel forsxandt as:

Kn(sx, t) = Kn(s, t)+ ∑
u∈Σn−1

∑
i:s[i]=u

∑
j :t j =x

∑
l:t[l]=u,ln−1< j

λ|s|+1−i1+1λ j−l1+1

= Kn(s, t)+ ∑
j :t j =x

λ2 ∑
u∈Σn−1

∑
i:s[i]=u

∑
l:t[l]=u,ln−1< j

λ|s|−i1+1λ j−1−l1+1 (27)

Notice that the part of the second term within the three innermost sums looks quite similar to the definition of
the kernel for sequences of lengthn−1, although the contribution decays over|s|− i1 +1 and j −1+ l1+1
rather thanin−1− i1 +1 andln−1− l1 +1 as in (26). Defining:

K′
n−1(s, t) = ∑

u∈Σn−1
∑

i:u=s[i]
∑

j :u=t[j ]
λ|s|−i1+1λ|t|− j1+1

Equation 27 can be rewritten as:

Kn(sx, t) = Kn(s, t)+ ∑
j :t j=x

λ2K′
n−1(s, t[1 : j −1])

wheret[1 : j −1] refers to the firstj −1 symbols oft. Intuitively, K′
n−1(s, t) counts matching subsequences

of n− 1 symbols, but instead of discounting them according to the length of the window they span as in
Kn−1(s, t), it discounts them according to the distance from the first symbol in the subsequence to the end of
the complete sequence. In the example used above we have, forK′

2(s, t):

u s t u s t
AA 0 λ5 GA 0 0
AC 0 λ5 GC 0 0
AG λ3 0 GG 0 0
AT λ3 2λ3+2λ5 GT 0 0
CA λ4 λ4 TA 0 0
CC 0 0 TC 0 0
CG λ4 0 TG λ2 0
CT λ4 2λ4 TT 0 λ2
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Figure 7: Illustration of the recursion to calculate the similarity between GATTACA and ACTAGTT.

where the value for the featureu =CT for sequencet=ACATT is 2λ4 because both occurrences of CT start
on the second symbol C which is 4 symbols away from the end oft. Hence:

K′
2(CATG,ACATT) = λ3(2λ3 +2λ5)+ λ4λ4 + λ4(2λ4) = 2λ6 +5λ8

The values ofK′
n can be calculated recursively as:

K′
n(sx, t) = ∑

u∈Σn
∑

i:u=s[i]
∑

j :u=t[j ]
λ(|s|+1)−i1+1λ|t|− j1+1

+ ∑
v∈Σn−1

∑
i:v=s[i]

∑
j :t j =x

∑
j :t[j ]=v, ji−1< j

λ(|s|+1)−i1+1λ|t|− j1+1

= λ ∑
u∈Σn

∑
i:u=s[i]

∑
j :u=t[j ]

λ|s|−i1+1λ|t|− j1+1

+ ∑
j :t j =x

∑
v∈Σn−1

∑
i:v=s[i]

∑
j :t[j ]=v, jn−1< j

λ|s|−i1+1λ( j−1)− j1+1λ|t|− j+2

= λK′
n(s, t)+ ∑

j :t j=x
K′

n−1(s, t[1 : j −1])λ|t|− j+2 (28)

For some additional insight, an example can be useful (Figure 7). Given two sequencesp andq, a binary
matrixM can be defined such that:

Mi j =
{

1 if pi=qj

0 otherwise

The valueK′
n(sx, t) (K′

2(ACTA,GATTA) in the figure) counts the number of matches of sequences of length
n (of length 2 in the figure) appropriately discounted from the first element of the match to the end of the two
sequences. In the example in the figure, two 2-matches are taken into account by the termK′

2(ACT,GATTA)
(one given by〈p1 = q2 = A , p3 = q3 = T〉, a second given by〈p1 = q2 = A , p3 = q4 = T〉), appropriately
discounted byλ for the additional distance to the end of the sequencesxcaused by the finalx= A. In addition,
three more 2-matches, appropriately discounted as well, are taken into account by the termK′

1(ACT,GATT)
(one given by〈p3 = q3 = T , p4 = q5 = A〉, a second by〈p3 = q4 = T , p4 = q5 = A〉 and a third by
〈p1 = q2 = A , p4 = q5 = A〉). Notice that the contribution of the termK′

1(ACT,G) is null, as none of the
symbols in ACT matches the symbol G.

Intuitively, K′
n−1(s, t) is used by the algorithm to store, as an intermediate result, the total discounted

“mass” of matches of lengthn− 1 ready to be turned into matches of lengthn should the next symbol in
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s match some of the symbols int. This “mass” is propagated according to the recursive formulation in
Equation 28. In terms of the matrix in Figure 7, this means that values ofK′

n are percolated from left to right
along the rows, discounting them by an additionalλ for each new step. Moreover, if the position at which the
value is computed corresponds itself to a symbol match, then the value is accrued by the masses of sequences
of lengthn−1 stored in the immediately previous column and in the rows from 1 to one less than the current
position.

To summarise, the recursive formulation inclusive of the base steps is given by:

K′
0(s, t) = 1, for all s, t,

K′
i (s, t) = 0, if min(|s|, |t|) < i, (i = 1, . . . ,n−1)

Kn(s, t) = 0, if min(|s|, |t|) < n,

K′
i (sx, t) = λK′

i (s, t)+ ∑
j :t j=x

K′
i−1(s, t[1 : j −1])λ|t|− j+2 (i = 1, . . . ,n−1)

Kn(sx, t) = Kn(s, t)+ ∑
j :t j=x

λ2K′
n−1(s, t[1 : j −1]),

The time required to compute the kernel according to this formulation isO(n|s||t|2). This can be seen by
observing that the outermost recursion is for increasing values of subsequence lengths (i = 1, . . . ,n−1), and
that for each length and each additional symbol insand int a sum over the whole prefix oft up to the position
being considered is required. Notice however that complexity can be reduced by storing intermediate values
of the latter sum. We can define the additional function:

K′′
i (sx, t) = ∑

j :t j =x
K′

i−1(s, t[1 : j −1])λ|t|− j+2 (i = 1, . . . ,n−1)

Intuitively, K′′
i (sx, t) stores the sum of the discounted masses of matches of subsequences of lengthi − 1

ending somewhere in the column just before the one being considered in the matrix and in some previous
row. It is easy to see that:

K′′
i (sx, ty) = ∑

j :t j =x
K′

i−1(s, t[1 : j −1])λ(|t|+1)− j+2

= λK′′
i (sx, t)

if x 6= y and

K′′
i (sx, tx) = ∑

j :t j =x
K′

i−1(s, t[1 : j −1])λ(|t|+1)− j+2

+ K′
i−1(s, t)λ

(|t|+1)−(|t|+1)+2

= λK′′
i (sx, t)+ λ2K′

i−1(s, t)

otherwise.K′ can thus be expressed as function ofK′′ as:

K′
i (sx, t) = λK′

i (s, t)+K′′
i (sx, t) (i = 1, . . . ,n−1)

Having introducedK′′, for each new element insandt a single sum for updatingK′′ is sufficient, instead
of a sum over all values forj : t j = x, and the overall time complexity is reduced toO(n|s||t|).

References

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. InFifth
Annual Workshop on Computational Learning Theory, pages 144–152, 1992.

1081



CANCEDDA, GAUSSIER, GOUTTE AND RENDERS

C. Cortes and V. Vapnik. Support-vector networks.Machine Learning, 20(3):273–297, 1995.

N. Cristianini and J. Shawe-Taylor.Support Vector Machines. Cambridge University Press, Cambridge, UK,
2000.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. Technical Report
2001-099, NeuroCOLT, 2001. http://www.neurocolt.com/techreps/2001/01099.ps.

S. C. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. A. Harshman. Indexing by latent
semantic analysis.Journal of the American Society for Information Science, 41(6):391–407, 1990.

S. T. Dumais, T. K. Landauer, and M. L. Littman. Automatic cross-linguistic information retrieval using
latent semantic indexing. InProceedings of the ACM SIGIR Conference on Research and Devlopment in
Information Retrieval (SIGIR’96), 1996.

E. Gaussier, G. Grefenstette, D. Hull, and C. Roux. Recherche d’information en franais et traitement automa-
tique des langues.Traitement Automatique des Langues, 41(2), 2000. Hermes.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, Department of
Computer Science, University of California at Santa Cruz, Santa Cruz, CA, 1999.

R. Herbrich.Learning Kernel Classifiers: Theory and Algorithms. The MIT Press, Cambridge, Mass., 2002.

T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In
Proceedings of the European Conference on Machine Learning (ECML98), number 1398 in Lecture Notes
in Computer Science, pages 137–142. Springer Verlag, 1998.

T. Joachims. Making large-scale svm learning practical. In Bernhard Sch¨olkopf, Chris Burges, and Alex
Smola, editors,Advances in Kernel Methods — Support Vector Learning. MIT Press, 1999.

H. Lodhi, N. Cristianini, J. Shawe-Taylor, and C. Watkins. Text classication using string kernel. InAdvances
in Neural Information Processing Systems 13. MIT Press, 2001.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string
kernels.Journal of Machine Learning Research, 2:419–444, 2002.

J. Perez-Carballo and T. Strzalkowski. Natural language information retrieval: progress report.Information
Processing and Management, 36(1):155–178, 2000.

G. Salton and M. McGill.Introduction to Modern Information Retrieval. McGraw-Hill, New York, 1983.

B. Schölkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, Mass., 2002.

P. Sheridan and J.-P. Ballerini. Experiments in multilingual information retrieval using the SPIDER system.
In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’96), pages 58–65, 1996.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

G. Wahba. Spline Models for Observational Data. Number 59 in CBSM-NSF Regional Conf. Ser. Appl.
Math. SIAM, 1990.

C. Watkins. Dynamic alignment kernels. Technical Report CSD-TR-98-11, Department of Computer Sci-
ence, Royal Holloway University of London, 1999.

S. K. M. Wong, W. Ziarko, and P. C. N. Wong. Generalized vector space model in information retrieval.
In Proceedings of the ACM SIGIR Conference on Research and Devlopment in Information Retrieval (SI-
GIR’85), pages 18–25, 1985.

Y. Yang and X. Liu. A re-examination of text categorization methods. InProceedings of the 22nd ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 42–49, 1999.

1082


