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Abstract

A family of gradient descent algorithms for learning linear functions in an online setting is
considered. The family includes the classical LMS algorithm as well as new variants such as
the Exponentiated Gradient (EG) algorithm due to Kivinen and Warmuth. The algorithms
are based on prior distributions defined on the weight space. Techniques from differential
geometry are used to develop the algorithms as gradient descent iterations with respect to
the natural gradient in the Riemannian structure induced by the prior distribution. The
proposed framework subsumes the notion of “link-functions”.
Keywords: Gradient descent, exponentiated gradient algorithm, natural gradient, link-
functions, Riemannian metric

1. Introduction

The LMS (least mean-square or Widrow-Hoff algorithm) (Clarkson, 1993) is very widely
used in signal processing and various learning problems (Duda, Hart, and Stork, 2001).
Recently some interesting variants of this algorithm including the Exponentiated Gradient
(EG) algorithm have been developed by Kivinen and Warmuth (1997). The EG algorithm
has been shown (both theoretically and experimentally) to have better performance in sit-
uations where the target weight vector is sparse. The theoretical framework used in that
analysis is also relatively new (the so called mistake-bounded framework). An alternative
analysis (Hill and Williamson, 1999, 2001) (analogous to more traditional ways of view-
ing LMS) essentially reproduces the conclusion that EG works well with a sparse target.
More recently Grove et al. (1997), Warmuth and Jagota (1997), Kivinen and Warmuth
(2001, 1998), Gentile and Littlestone (1999) and Gordon (1999a,b) have analyzed a range
of general families of gradient descent algorithms inspired by the EG algorithm for both
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classification and regression problems. There are several different viewpoints taken in these
works, analyzing the algorithms in terms of Bregman divergences, matching loss functions
and conjugate priors (for example). In general, such algorithms perform better on a partic-
ular class of problems related to prior knowledge of the target weight vector. It is natural to
study the relationship between prior information and numerical learning algorithms in order
to design effective learning algorithms for new classes of problems. Kivinen and Warmuth
(1998) introduced the concept of ‘link functions’ in order to generalize the derivation of
the EG algorithm. An alternative is the natural gradient learning framework developed by
Amari (1998). Such a learning algorithm is well motivated as a stochastic gradient descent
algorithm derived with respect to the maximally non-informative (or Fisher) information
metric; see Amari (1985), Barndorff-Nielsen (1988), Murray and Rice (1993), Douglas and
Amari (2000). These algorithms correspond to assuming a maximally non-informative (or
Jeffery) prior distribution on the target weight vector.

In this paper we present a new method to derive stochastic gradient algorithms that is
closely linked to Bayesian prior information. The approach taken is to link prior distribu-
tions to a Riemannian structure on weight space that is called a preferential structure. In
the case of product prior distributions the connection between a preferential structure and a
Bayesian prior distribution may be made relatively precise. The framework proposed leads
to a constructive method to design stochastic gradient descent algorithms that are adapted
to perform well under certain prior assumptions. Once a stochastic gradient descent algo-
rithm has been designed for a certain application the numerical cost of its implementation
is of the same order as that of the LMS algorithm. A theorem is proved showing that
(subject to some technical conditions) a stochastic gradient algorithm designed according
to the framework proposed is, on average and when the prior assumptions hold true, lo-
cally the most efficient stochastic gradient descent algorithm. The preferential structure
proposed provides an interpretation of the EG algorithm in terms of a product prior dis-
tribution that heavily weights zero against non-zero weight vector entries. The intuition
associated with the prior weighting fits with the observed numerical advantages of the EG
algorithm. Using the framework of prior distributions and preferential structures several
new numerical learning algorithms are derived based on prior distributions of particular
interest. Simulations are given comparing relative performance of the algorithms proposed.
The proposed framework also provides an interpretation of the role played by link functions
in the development of Kivinen and Warmuth (1998). The key contribution of the paper is
in providing a new tool in the optimization of stochastic gradient descent algorithms for
real world applications.

Section 2 of the paper reviews the learning problem considered and relates the approach
taken to the previous work of Amari (1997, 1998). In Section 3 general preferential struc-
tures are motivated and defined. Section 4 concentrates on the special case where the prior
distribution in parameter space is a product distribution. The preferential (natural) gra-
dient descent algorithm is introduced in Section 5. In Section 6 existing algorithms (such
as the EG algorithm) are interpreted in terms of prior distributions and preferential struc-
ture. Section 7 shows the connection between “link functions” and the proposed framework.
Some examples of different algorithms are presented in Section 8. An analysis of local per-
formance of different learning algorithms is provided in Section 9. Results of simulation
experiments for the examples considered in Section 8 are given in Section 10.
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Finally, in order to aid readers unfamiliar with Riemannian geometry, in Appendix A
we have presented a gentle introduction to the basic ideas used in this paper.

2. Problem Formulation

In this section the framework for the learning problem considered is presented. The con-
ceptual difference between the proposed approach and that based on recent developments
in statistical geometry (cf. Amari (1998)) is outlined. The gradient descent (or LMS)
algorithm and the exponentiated gradient algorithms are presented.

Consider the class of linear model relationships with inputs in RN and outputs in R;
the set of maps

x 7→ 〈w, x〉, x ∈ RN ,

where w ∈ RN and 〈w, x〉 = wTx. For a sequence of data {x1, x2, ...} assume that there are
associated outputs

yk = 〈w∗, xk〉+ ηk, (1)

generated by an unknown “true” system x 7→ 〈w∗, x〉 perturbed by noise ηk. Depending on
the problem setting and the type of analysis to be attempted, different assumptions can be
made on the noise. We do not make any assumptions here, but merely mention that there
usually is noise because it will ultimately govern the tradeoff between convergence speed
of the algorithms considered and their steady-state error (how much the estimates “jiggle
about” the true weight vector w∗).

The problem considered is to learn the unknown w∗ for the incoming data stream

Sk := {(x1, y1), (x2, y2), . . . , (xk, yk)}. (2)

In this paper we make no assumptions about the sequence (xk) except in Section 9. (This is
because apart from in that section we are not actually making a performance analysis.) This
problem is known as a supervised learning problem since to obtain the training sequence
Sk one needs both a set of trial data points {xk} and the measured outputs {yk} which
would in practice be supplied by a “supervisor” (human or machine). In the presence of
the noise ηk this problem becomes one of parametric statistical inference, that of finding
the statistical model pw∗ which best explains the observed data.

A learning rule is a method of determining a sequence of estimates {w1, w2, . . . , wk},
where wk depends on Sk, which “learns” the parameter w∗, that is wk → w∗. Many
practical learning algorithms proposed in the literature are based on stochastic gradient
descent schemes; see for example Fine (1999), Hassoun (1995), Duda et al. (2001). Let

ŷk := 〈wk, xk〉. (3)

denote the estimated output. The instantaneous loss function

L(yk, ŷk) :=
1
2

(yk − ŷk)2, (4)
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measures the mismatch between the training sample yk and the estimated output ŷk.
The Gradient Descent GD learning rule updates the present estimate wk in the direction

of steepest descent of the cost L(yk, ŷk)

wk+1 = wk − sk
∂L

∂w
(yk, ŷk). (5)

Here ∂L
∂w (yk, ŷk) is the column vector of partial differentials ∂L

∂wi
, for i = 1, . . . , N . The

scalar sk ∈ R is a step-size scaling factor (or learning rate) which is chosen to control
how large an update to wk is made. In most current learning applications the update
is kept constant. The noise in (1) will locally perturb the convergence of the stochastic
gradient algorithm, although, as long as the measurements are drawn from a non-degenerate
distribution, the estimate wk converges asymptotically to a neighbourhood of w∗ (Solo and
Kong, 1995). More specifically, it can be shown that under mild assumptions the stochastic
gradient descent algorithm will follow a trajectory “close” to the trajectory of an “averaged
equation”. The exact meaning of “close” depends on the details of the analysis (Solo and
Kong, 1995), but the important point is that they are closer as the step size gets smaller and
the noise gets smaller. Thus it is common practice in analysing or developing stochastic
gradient descent algorithms to pretend at first there is no noise present, but afterwards
check performance with noise. This is exactly the route we will adopt in the present paper.
Thus we we assume that the measurement

yk = 〈w∗, xk〉

is unperturbed by noise. This assumption simplifies the presentation of the principal contri-
bution of the paper: a geometric interpretation of a preferential structure on the parameter
space.

Recent developments in statistical geometry (Amari, 1985, Murray and Rice, 1993,
Barndorff-Nielsen, 1988, Douglas and Amari, 2000) are based on providing a geometric
interpretation of the problem of parametric statistical inference, the problem of computing
one model among a parametrized set of statistical models which best describes an observed
set of noisy measurements. The underlying paradigm is to find an intrinsic geometry for the
problem (based on statistical precepts) which is independent of the particular parametriza-
tion of the statistical model. The key developments in statistical geometry revolve around a
geometry on the space of conditional probabilities derived from a likelihood function and the
associated affine action of the set of random variables acting on the space of probabilities.
The Riemannian metric used is typically the Fisher metric (also known as the maximally
non-informative metric). This metric is derived from cross-correlation of random variables
and leads to an associated prior distribution known as the Jeffery prior or maximally non-
informative prior. The more sophisticated geometry developed (involving parallel transport
and affine connections) is related to invariance of various statistical divergence measures
under the action of covariant differentiation.

In the present paper we take a different approach. We assume that there is significant
prior information available and that this information is coded directly in terms of the
weight vectors for the learning problem. As a conseqeunce, the given parametrization (in
this case the linear weight vector) of the problem contains important information. It is
clear that the maximally non-informative geometry (generated by the Fisher metric) is not
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a suitable structure for analysis of the learning problem considered. To further simplify
the development we restrict our analysis to the deterministic learning problem where the
only statistical information that needs to be considered is the prior information. This
perspective on the problem considered is quite different from that proposed by Amari (1998)
and appears to provide a means to understand a number of known learning algorithms in a
generic manner.

Variations on the classical gradient descent or LMS algorithm (5) have been recently pro-
posed as prototype learning algorithms. Of particular interest is the exponentiated gradient
(EG) algorithm (Kivinen and Warmuth, 1997)

wk+1 = diag(wk) exp .(−sk
∂L

∂w
(yk, ŷk)), (6)

where the exponential function exp . of a vector is the vector of the exponentials of the
separate entries, and diag(wk) is the diagonal matrix with diagonal entries given by the
entries of wk. Thus the ith entry of wk+1 is given by

wik+1 = wik exp
(
−sk

∂L

∂wi
(yk, ŷk)

)
.

It is known that the EG algorithm performs better than the GD algorithm if the true
parameter w∗ contains relatively few non-zero entries (Kivinen and Warmuth, 1997). It
is not surprising that it performs worse than the GD algorithm if the true parameter has
many non-zero entries. Thus, to choose the most efficient learning algorithm for a given
application one would exploit any prior knowledge available regarding the nature of the true
weight vector to choose between the GD or the EG algorithm.

The above discussion leads one to pose the question: How is it possible to use prior
knowledge about the true weight vector in a given application to design a more efficient
learning algorithm? The remainder of the paper is devoted to presenting an approach to
answering this question. Before entering into the technicalities it is worth mentioning how
the proposed results may be used in practice. For a real world problem involving a class of
linear model relationships it is often very difficult to understand and model prior information
based on physical arguments. However, it is generally a simple, if time consuming, matter to
acquire data in real world operating environments. An estimate of the distribution of true
weight vectors can then be inferred from the data by running a standard gradient descent
algorithm and recording the weights it converges to and then estimating a distribution
over those weights. The experimental prior distribution can then be used as the basis of
an optimized design using the theory presented in the sequel. In particular, if the prior
distribution obtained is a product distribution the preferential structure is given by (13)
and the algorithm is given by (40) or an approximation of this equation. An example of this
determination and use of an “empirical prior” has been presented by Martin et al. (2001).

3. Preferential Structures and Prior Knowledge

In this section an approach for encoding prior knowledge into learning algorithms by im-
posing a Riemannian geometry on parameter space is proposed. In the context of learning
theory we propose to call this geometric structure a preferential structure.
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3.1 Riemannian Metrics

A Riemannian metric on RN is a bilinear, positive definite inner product on each tangent
space TwRn ∼= R

N which varies smoothly in w. We denote a metric by

〈·, ·〉w : TwRN × TwRN → R
N

that may be represented explicitly in the natural co-ordinates on RN by a positive definite
matrix Gw > 0 at each point. Thus, for tangent vectors X,Y ∈ TwRN

〈X,Y 〉w = XTGwY,

and Gw > 0 is a smooth matrix function on RN . At the point w ∈ RN the metric can be
thought of as a way to measure the length of vectors and angles between vectors in TwRN .

A Riemannian metric 〈·, ·〉w on each TwRN can be used to measure curve length on RN .
Let γ : [0, 1]→ R

N be a smooth curve on RN . Then the length of γ is defined to be

L(γ) :=
∫ 1

0

√
〈γ̇(τ), γ̇(τ)〉γ(τ)dτ. (7)

This extends to a classical metric δ(u,w) measuring distance between two points u,w ∈ RN
via the infimum

δ(u,w) := inf
γ∈H(u,w)

L(γ), (8)

where

H(u,w) := {γ : [0, 1]→ R
N : γ(0) = u, γ(1) = w}.

That is, δ(u,w) is the length of the shortest curve connecting u and w. To avoid confu-
sion between Euclidean RN we will use R̃N to denote RN equipped with a non-Euclidean
geometric structure.

3.2 Encoding Prior Information

By a linearization locally around any point w(0), a Riemannian metric may be written

Gz := diag(µ2
1, . . . , µ

2
N ) + O(‖z − w‖)

for z ∈ U a neighbourhood of w and where µi > 0. Choosing two end points w(0) and
w(1) that only vary in the ith component it is easily verified that the shortest length
curve between these points is the straight line lying along the co-ordinate axis connecting
them. The length of a curve lying along a co-ordinate axis wi is simply µi|wi(0)−wi(1)| =
δ(w(0), w(1)). Thus, taking a unit length step in direction wi with respect to the new
geometry translates into a scaled step of length 1

µi
in the original co-ordinates. That is

δ(w(0), w(1)) = µi|wi(0)− wi(1)| = 1 ⇔ |wi(0)− wi(1)| = 1
µi
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Suppose now that one has some prior knowledge that indicates wi is likely to be a
fairly good estimate of the ith component of the true parameter whereas wj may be a
poor estimate. Then we may choose the metric Gz with µi � µj so that a unit step
(with respect to the new metric) in direction wi results in a relatively small change in the
Euclidean distance while a unit step in direction wj results in a significant change Euclidean
distance.1 Thus even if the instantaneous cost indicates large changes should be made in the
direction wj (perhaps due to noisy data), the prior knowledge (in the form of the chosen
metric) would ensure that only small steps (relative to the Euclidean metric) are made.
Intuitively, if our prior knowledge is good and can be coded in this manner then a learning
algorithm derived with respect to this new geometric structure should perform better than
one which does not incorporate the prior knowledge in any manner. The insight provided
by this example is directly applicable to infinitesimal learning steps at a point w ∈ RN since
Gw is symmetric and can always be diagonalized locally (to O(w) terms in a neighbourhood
of w). In Section 5 we show how to generate practical learning algorithms that respect the
geometric structure generated by an arbitrary Riemannian metric.

Definition 1 Consider a learning problem of the form outlined in Section 2. A preferential
structure is a Riemannian metric on parameter space, called the preferential metric, that
encodes certain prior knowledge for the learning problem. A learning problem along with a
preferential structure is said to have a preferentially structured parameter space.

This definition is clearly inadequate (so far) as a technical tool since it does not provide
any quantitative manner to generate a preferential structure. In Section 4 a connection is
drawn between product prior distributions and diagonal preferential structures that provides
a quantitative connection for a large class of interesting problems.

Remark 2 The definition of preferential structure proposed (Definition 1) makes no ex-
plicit reference to the underlying statistics of the problem (e.g. via the likelihood function).
The information geometric structure presented by Amari (1985), Murray and Rice (1993),
Barndorff-Nielsen (1988) satisfies Definition 1 given prior knowledge of the noise charac-
teristics of the measurements and no prior distribution on the weights (Amari, 1998). The
class of algorithms considered in the present paper follows from the assumption of deter-
ministic measurements and a prior distribution on the weights.

4. Product Distributions and Diagonal Preferential Metrics

In this section we consider the situation when prior knowledge is quantified via a Bayesian
prior probability distribution. There are numerous arguments (Robert, 1994) why this is
a “good” way of encoding prior knowledge. Our goal in the present section is to relate a
prior probability distribution over the parameter space to a preferential metric.

We focus on the particular case where the prior is a product distribution in which case (as
we show) there is a unique preferential metric that naturally recodes the prior distribution
into a preferential structure. The actual application of these structures to gradient descent
learning algorithms is considered in the next section.

1. An illustrative example of this effect is given in Figures 7 and 8 for the particular geometry of the EG
algorithm.
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Suppose a prior distribution (with density φ : RN → R+) for the true parameter w∗ is
given and has the form

φ(w) :=
N∏
i=1

φi(wi), (9)

where each φi : R→ R+ is itself a probability density for wi. Thus given a set Ω ⊆ Rn then
the probability that w∗ ∈ Ω

P (w∗ ∈ Ω) =
∫

Ω
φ(w)dw. (10)

Now suppose there exists a preferential metric (represented by Gw) such that

det(Gw) = φ(w)2. (11)

Once again we can take a set Ω ⊆ Rn (Lesbegue measurable) and compute the area of Ω
with respect to the preferential metric. The area is given by the integral (Boothby, 1986,
pg. 240)

Ap(Ω) :=
∫

Ω

√
det(Gw)dw (12)

(the p denotes “preferential”.) That is, the volume element in the new geometry is scaled
by the factor

√
det(Gw) with respect to Lesbegue integration in the co-ordinates w. Thus,

due to the assumed form of Gw,

Ap(Ω) =
∫

Ω
φ(w)dw = P (w∗ ∈ Ω).

In this sense area with respect to the preferential metric is equivalent to density with respect
to the p.d.f. φ.

If φ is large in a region then the associated metric should also be large, corresponding
to large relative area of the region with respect to the preferential structure. Consequently,
unit step updates (with respect to the preferential structure) in a gradient descent learning
algorithm should translate into small updates of the parameters w. For example, even if the
instantaneous cost indicates large changes should be made to the present estimates (perhaps
due to noisy data), the prior knowledge (in the form of the preferential structure) ensures
that only small steps (relative to the Euclidean metric) are made in areas corresponding
to uniformly high p.d.f. φ. If the actual true parameter is such that it causes the descent
steps to continue to force a change in an unlikely direction with respect to the preferential
structure then convergence of the parameter wk → w∗ will be considerably slower than if
the preferential structure was not present. This corresponds to having made the wrong
prior assumptions about w∗.

We will show below (section 9) that the above intuitive justification is sound in a more
precise sense: modification of a gradient descent algorithms by a preferential metric satis-
fying (11) leads to an algorithm with faster local convergence.
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4.1 Freedom in choosing Gw from φ

Equation 11 will be satisfied by arbitrarily many Riemannian metrics for a given p.d.f. φ.
However, for a product distribution (9) we propose the particular preferential metric

Gw :=


φ1(w)2 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 φN (wN )2

 . (13)

Certainly Gw satisfies (11). Moreover, it generalizes the product distribution structure of
φ. To see this one must consider the probability of sets (events) Ω which have zero measure
in RN . We will restrict our attention to sets Ω which are embedded submanifolds of RN . In
general, let M be an embedded submanifold of RN and let Ω ⊆M be a subset of M . With
respect to the p.d.f. φ on RN then for any event Ω of this form P (Ω) = 0. However, the
conditional probability P (Ω|M) should not be zero. Moreover, this should be related to an
area integral on M relative to the geometric structure inherited on M via the embedding
M ↪→ R

N from the preferential structure.
We will say that a preferential structure agrees with a prior distribution φ if for any

embedded submanifold of RN then

P (Ω|M) = AMp (Ω)

where

AMp (Ω) :=
∫

Ω

√
det(GMw )dw

where GMw is the metric projected onto the manifold M ; see (15) below. If this is true then
the concept of length defined by the preferential metric (which is important for generat-
ing learning algorithms) agrees with conditional probability distributions in the particular
case of 1-dimensional subspaces. Computing conditional probabilities for arbitrary lower
dimensional sets is difficult and we shamelessly dodge this problem in the next lemma by
restricting our attention to embedded manifolds lying orthogonal to the co-ordinate axis
and exploiting the structure of the product measure.

Lemma 3 Let φ be a product p.d.f. of the form (9) and let Gw be the preferential metric
given by (13). Then for any embedded manifold M ↪→ R

N which is orthogonal to a subset
of the co-ordinate axes and any subset Ω ⊆M one has

P (Ω|M) = AMp (Ω). (14)

Furthermore, Gw is the unique metric for which this identity holds.

Proof If an m-dimensional manifold M ↪→ R
N is orthogonal to the co-ordinate axes

then locally one can choose m co-ordinates z = (wi1 , . . . , wim)T ∈ Rm which act as local
co-ordinates on M . Note that M is characterised locally by holding the remaining N −m
co-ordinates constant (Boothby, 1986, pg. 75). Due to the nature of the product distribution
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the conditional p.d.f. on M is given by integrating out φ with respect to the N −m ‘non-
active’ co-ordinates to obtain

φM (wi1 , . . . , wim) :=
m∏
k=1

φik(wik)

Thus, written in terms of the local co-ordinates z the probability of Ω conditioned on M is
the Lesbegue integral

P (Ω|M) =
∫

Ω
φM (z)dz.

We deliberately avoid the rigorous approach to dealing with conditional probabilties when
the conditioning event has probability is zero; see for example (Shiryaev, 1996, Section II.7)
or (Hoffmann-Jorgensen, 1994, Chapter 10). Chang and Pollard (1997) have presented an
alternative formal approach.

Think of the local co-ordinates as maps into RN via the correspondence wi : R→ R
N ,

wik(zk) := (0, . . . , 0, zk, 0, . . . , 0)T

where zk occurs in the ikth entry of the vector. Thus, the local co-ordinate map around a
point w0 ∈M can be written as a vector function wM : Rm → R

N

wM (x) := wi1(z1) + · · ·+ wim(zm) + w0.

We write wM = (w1
M , . . . , w

N
M )T ∈ RN for the co-ordinates of wM ∈ RN . The induced

preferential metric on M with respect to the local co-ordinates is

GMw = dwTM Gw dwM =


φi1(z1)2 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 φiN (zm)2

 . (15)

Here dwM ∈ RN×m with entries (dwM )pq = ∂wpM
∂zq , p = 1, . . . , N , q = 1, . . . ,m. Now observe

that

det(GMw ) =
m∏
k=1

φik(zk)2 = (φM (z))2.

It follows from the definition of area on a Riemannian manifold (12) that P (Ω|M) = AMp (Ω).
To show uniqueness assume that Gw > 0 (with entries gij) is an arbitrary preferential

structure that satisfies (14). Observe firstly that the diagonal elements of Gw are uniquely
defined by considering the case of one-dimensional manifolds orthogonal to the co-ordinate
axis. This follows since the induced preferential metric is just the diagonal element gii while
the conditional probability is φM (wi).

Consider an arbitrary two-dimensional submanifold orthogonal to the co-ordinate axis
with local co-ordinates wi and wj . Then

GMw =
(
gii gij
gji gjj

)
.
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To ensure that (14) holds on all subsets Ω then locally on M one must have φM (wi, wj)2 =
det(GMw ) where φM (wi, wj) = φi(wi)φj(wj) is the product measure induced on the subspace
spanned by the i and j co-ordinates. Computing the determinant yields

det(GMw ) = giigjj − gijgji
= φi(wi)2φj(wj)2 − g2

ij

= φM (wi, wj)2 − g2
ij ,

where we have used symmetry of Gw as well as the identification of the diagonal elements
with φi(wi)2. Since M and Ω are arbitrary it follows that gij = 0 for all i 6= j.

Remark 4 It should be noted that except for some changes in notation the development
undertaken above is valid for any p.d.f. of the form

φ(w) =
N∏
i=1

φi(w)

where each φi(w) is a probability distribution for wi on R but may depend on all the variables
w. This is important since product measures φi(w) := φi(wi) induce a preferential structure
which is isometric to Euclidean space (cf. Section 7) whereas a more general product distri-
bution, even though it induces a diagonal preferential metric, will not induce a Euclidean
preferential structure.

4.2 General Improper Priors

In this subsection we explore the implications of φ(w) being an improper distribution (i.e.
one for which

∫
Ω φ(w)dw 6= 1 and may in fact be infinite). There are two key reasons for

doing this:

1. The two main example algorithms we consider (standard Gradient Descent where
φ(w) = 1 and the EG algorithm where φ(w) = 1/|w|) correspond to improper priors;

2. In practice only a local comparison between performance of stochastic gradient descent
learning algorithms is possible (a global comparison seems analytically intractable; cf.
Section 9) and consequently only conditional probabilities, in a neighbourhood of a
given point are considered. Thus, the question of improper or proper priors does not
truly affect the conclusions of the paper.

The above development has been undertaken for proper probability distributions φ and
has looked for Riemannian metrics which correspond to these probability distributions.
However, one may look at the problem in the opposite direction and ask the question, given
a Riemannian metric g(w), then does the distribution

φ(w) :=
√

det(g(w)) (16)
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mean anything in a probabilistic sense? Below we will argue that it does. Note that for
an arbitrary Riemannian metric Gw the distribution φ generated is not in general a proper
probseeability distribution; it is highly unlikely that

A =
∫
RN

√
Gwdw = 1.

It can be interpreted as an improper distribution. Bayesian statisticians often deal with im-
proper prior distributions; the most obvious one is the uniform measure over R. Whilst there
are undoubtably technical difficulties arising from such improper priors (see e.g. Robert,
1994), one can generally get away with their use as long as the posterior distributions are
well defined. Furthermore, it is possible to reformulate the basis of Bayesian statistics
to handle improper priors in a rigorous manner (Hartigan, 1983) albeit at the expense of
considerable technicalities.

Of course if A is finite then simply rescaling Gw provides a direct analogy of the de-
velopment given above. However if A is infinite then a different argument is needed. If
one wanted to compare the one event Ω ⊆ RN with respect to a uniform distribution (an
improper distribution on RN ) or a non-uniform distribution φ then one could look at the
ratio

R(φ,1)(Ω) :=

∫
Ω φ(w)dw∫

Ω 1dw
.

Thus, R(φ1,φ2)(Ω) is a ratio of likelihoods rather than an absolute probability. As long as
the events considered always have finite non-zero weight with respect to the set Ω, then
the ratio R(φ1,φ2)(Ω) is well defined. We will call distributions φ of the form (16) relative
probability distributions. Such a distribution should always be thought of relative to a second
distribution; in the sequel unless otherwise mentioned the relative distribution will always
be the uniform distribution. Thus, in this context the ratio of φ(w)/1 can be thought of as
the relative likelihood of the point w compared to the uniform distribution. We shall see
in subsection 7.1 that rescaling φ(w) by multiplication by a scalar is equivalent to a simple
change in the step size used.

The machinery associated with improper distributions and relative probability distri-
butions is natural in the analysis undertaken in this paper since the basic GD learning
algorithm can be thought of a being associated with the uniform prior distribution. This
can be seen heuristically by observing that the direction of update for the GD algorithm is
totally unbiased by any modification of the direct steepest descent direction. In a proba-
bilistic sense this is saying that w∗ ∈ RN is equally likely to be any point in RN and hence
the best estimate of w∗ is based on minimizing the loss associated with the latest received
data. By contrast, the EG algorithm update step is approximately taken in the direction
of steepest descent for very small update steps, but the larger the update step then the
more the distortion of the exponential tends to change the next estimate. We interpret this
as taking account of prior information in the update step. (An explicit form for the prior
associated with the EG algorithm is determined in section 6.2).

In the sequel we will always be dealing with the performance of a given algorithm relative
to the performance of some other algorithm. We will relate this relative performance back to
relative probability densities and then to certain associated Riemannian metrics. Since the
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entire analysis is relative we will choose to adopt the following premise:2 The GD algorithm
is the “best” or most approrpriate learning algorithm given that one has no prior knowledge
of the true parameter. The GD algorithm is associated with the uniform improper prior and
the Euclidean preferential metric.

5. Learning Algorithms on Preferentially Structured Parameter Space

In this section a method for generating learning algorithms is proposed based on a given
preferential structure.

Both the GD and EG learning algorithms (5) and (6) are stochastic gradient descent
algorithms and use only first order differential information of L and a step size (learning
rate) sk at each update. Consider a general learning algorithm of the form

wk+1 = F (sk,
∂L

∂w
,wk), (17)

where F : R×RN ×RN → R
N . To make the learning algorithm sensible one would expect

that if either sk = 0 or ∂L
∂w (yk, ŷk) = 0 then F (sk, ∂L

∂w , wk) = wk and that F is a locally
continuous (or even differentiable) function of its arguments. If F is differentiable in the
first variable then

γ̃(τ) := F (τ,
∂L

∂w
,wk),

is a C1 curve in RN which passes through wk for τ = 0. This leads one to study the class
of curves

γ(wk,Vk) : [0, sk]→ R
N

such that γ(wk,Vk)(0) = wk, γ̇(wk,Vk)(0) = Vk and Vk is a function of the derivative information
∂L
∂w .

Ignoring for the moment the question of how to choose sk and Vk, then one may ask
exactly what is the best “curve” γ(wk,Vk)(·) to choose given a known preferential structure.
For stochastic gradient descent algorithms, the aim is to converge as fast as possible to a
neighbourhood of w∗ and then stay there. Setting wk+1 = γ(wk,Vk)(sk) for fixed sk and Vk
then one would like to maximise the distance

δ(wk, wk+1)

taken at every step (cf. (8)) measured relative to the preferential structure!

2. The term “best” in this definition is certainly dependent on the context of what constitutes a learning
algorithm. Certainly if one were to consider simply the optimization problem of minimizing the loss over
all target parameters then some more sophisticated update method (for example a Newton update) would
tend to display better performance. Here we will restrict ‘learning algorithms’ to be effectively the class
of algorithms which we generate in the sequel. Though this may appear to be a circular definition it is
effectively the set of linear descent algorithms with respect to general Riemannian geometry. Only direct
first order derivatives of the cost are used to generate the update information. Further modification of
the update step is entirely due to prior information. The key point is not which sense GD is best in, but
rather how we can modify GD simply taking it as the starting point — the appropriate algorithm for a
uniform prior.
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Given that the vectors Vk and the scaling factors sk are chosen together to guarantee
the learning algorithm is well behaved (for example in the sense that the sequence {wk} will
converge to w∗ for reasonable data samples) then the curve γ should be chosen to maximise
the distance traveled in the ‘direction’ Vk. By measuring distance relative to the preferential
structure, prior information is directly incorporated into the update step.

To derive a curve that generates an efficient learning algorithm it is important that the
length of the curve is directly related to the step size sk and to the size of the vector Vk.
This is natural for the step size since it is the path length parameter of the curve. However
to ensure that length of the update curve is properly related to the size of the vector Vk
then it is necessary to further require that the update curve γ evolves at a constant speed
with respect to the preferential metric:√

〈γ̇(τ), γ̇(τ)〉γ(τ) = 〈Vk, Vk〉wk , τ ≥ 0. (18)

By this argument, the ‘best’ curve to choose for the purpose of generating a learning algo-
rithm is one that satisfies (18) whilst maximising δ(wk, wk+1) for given sk and Vk. Thinking
of the question in reverse, then given two points wk and wk+1 one is searching for a curve
γ of minimum length and constant velocity (with respect to the preferential structure) that
connects the two points. Such length minimizing curves on a general Riemannian manifold
are known as geodesics and are the analogues of straight lines in Euclidean space.

5.1 Geodesics

Geodesic curves on a Riemannian manifold can be defined as the solution of a ODE (Or-
dinary Differential Equation) in local co-ordinates which essentially ensures straightness of
the solution curve with respect to the metric (Lee, 1997, pg. 68).

Denote the ijth entry of Gw by gij and the ijth entry of G−1
w by gij where the base

point w of gij (resp. gij) is inferred from context. Define

Γkij =
1
2

N∑
s=1

gks
(
∂gsi
∂wj

− ∂gij
∂ws

+
∂gjs
∂wi

)
. (19)

The functions Γkij are known as the Christoffel symbols (Boothby, 1986, Lee, 1997). A
geodesic curve γ := γ(wk,Vk)(τ) satisfies the set of coupled second order ODEs (Lee, 1997,
pg. 58)

d2γk

dτ2
+

N∑
i,j=1

Γkij
dγi

dτ

dγj

dτ
= 0, (20)

with initial conditions

γ(0) = wk,
dγ

dτ
= Vk.

Uniqueness and well definedness (at least for small τ) follows from the classical theory of
ODEs.
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Generating the geodesic requires knowledge of tangent direction Vk. It seems natural to
choose Vk equal to the derivative −∂L

∂w . Formally, however, this derivative is not actually an

element of the tangent space of RN . Rather, DwL =
(
∂L
∂w

)T
is the differential of L and is

a row vector (co-tangent vector) and not a column vector (tangent vector). There is a one
to one correspondence between tangent vectors V ∈ TwRN ≈ RN×1 and cotangent vectors
W ∈ T ∗wRN ≈ R1×N induced by the Riemannian metric via the unique correspondence of
linear maps

〈V,X〉w = WX, for any X ∈ TwRN ≈ RN×1.

For W = DwL, the corresponding tangent vector is known as the gradient and is given in
local co-ordinates by

gradL = G−1
w

∂L

∂w
. (21)

When the metric is simply the identity matrix then one obtains the classical Euclidean
gradient gradL = ∂L

∂w . As Amari (1997, 1998) has shown (in a slightly different setting)
there are advantages to using Vk = −gradL where the gradient is taken with respect to the
preferential structure. Of course the negative Euclidean gradient −∂L

∂w will always provide
a descent direction for the cost L and will generate a sensible learning algorithm. Indeed,
for any positive definite matrix Q > 0

Vk = −Q−1 ∂L

∂w
,

generates a descent direction. The general form of the learning algorithms studied in the
remainder of the paper may now be presented.

Let L be an instantaneous loss function associated with the learning problem given in
Section 2. Let Gw be a preferential metric and let sk be a sequence of scalars which can be
thought of as the effective learning rate. Then the learning algorithm studied is given by

wk+1 = γ(wk,−gradL)(sk),
(22)

where γ(wk,−gradL) is a geodesic curve with respect to the preferential structure (confer (20)).

6. Preferential Structures for Two Common Learning Algorithms

In this section some common learning algorithms are analyzed in terms of preferential struc-
tures. The gradient descent (GD) algorithm has an interpretation based on the standard
Euclidean (or unbiased) preferential structure on Rn while the exponential gradient algo-
rithm is related to a preferential metric of the form (13).

6.1 Gradient Descent Algorithm

Consider the un-biased or Euclidean preferential structure given by

Gw = IN
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the Euclidean metric. This metric is associated with a uniform (improper) prior product
distribution. The Christoffel symbols are zero, since the metric entries are constant, and
geodesics are given by solutions

d2γk

dτ2
= 0, (23)

which are of course just straight lines

γ(wk,Vk)(τ) := wk + τVk.

The gradient of the loss L is simply gradL = ∂L
∂w Thus, comparing with (5) it is easily

verified that the GD algorithm is simply

wk+1 = γ(wk,−gradL)(sk)

= wk − sk
∂L

dw
(yk, ŷk).

6.2 Exponentiated Gradient Algorithm

In this subsection the EG (Exponentiated Gradient) algorithm is derived within the frame-
work of preferential structures.

Previous work (Kivinen and Warmuth, 1997, Hill and Williamson, 2001) has shown that
the EG algorithm tends to perform well in the situation where only a few entries of the true
parameter w∗ are non-zero. Considering the question in reverse one would heuristically wish
to choose a preferential structure that emphasises regions where only a few co-ordinates are
non-zero. We will choose such a structure and show the EG algorithm (almost) follows from
such a choice.

Let RN∗ denote the positive cone in RN

R
N
∗ = {u ∈ RN : u > 0}. (24)

Consider the following preferential metric defined on RN∗

Gw =


1

(w1)2 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · 0 1
(wN )2

 (25)

According to Section 4.2 this metric is associated with an improper product distribution on
R
N
∗ of the form

φ(w) :=
N∏
i=1

φi(w),

where each φi(w) is given by

φi(w) :=
1
wi
.
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Thus, each component prior distribution is weighted more heavily near wi = 0 and thus
the overall product density is weighted strongly near w = 0. (Some graphs illustrating this
metric are given in Section A.)

The diagonal structure of the preferential metric Gw makes it particularly easy to com-
pute the Christoffel symbols. Recalling (19) the Christoffel symbols are

Γpij =
{ −1

wp if i = j = p.
0 otherwise.

Finally, recalling (20) the equation for the geodesic is

d2γp

dτ2
− 1
γp

(
dγp

dτ

)2

= 0, for p = 1, . . . , N, (26)

with initial conditions γ(0) = w and γ̇ = V for arbitrary w ∈ RN and V ∈ TwRN . The
particular structure of the Riemannian metric ensures that the N second order ODEs for
the co-ordinates of γ are decoupled. It is easily verified by substitution that the solution of
this equation for each co-ordinate is

γi(τ) = wi exp
( τ
wi
V i
)
. (27)

Consider the descent direction

Vk = −diag(wk)
∂L

∂w
(yk, ŷk) = −G−1/2

w

∂L

∂w
. (28)

where wk denotes the kth iteration of the learning algorithm. Note that Vk 6= −gradLk with
respect to the preferential structure Gw, however, Vk is certainly a descent direction since
diag(w) > 0 is a positive definite matrix for w ∈ RN∗ . Along with the geodesic equation
obtained above for the preferential structure chosen this choice of descent direction in (22)
leads to the EG algorithm (6)

wk+1 = γ(wk,−diag(wk) ∂L
∂w

)(sk) = diag(wk) exp .
(
−sk

∂L

∂w
(yk, ŷk)

)
= (6).

Although Vk is not actually the negative gradient −gradL it is, however, closely related.
According to the development undertaken in Section 5 it may be preferable to choose

wk+1 = γ(wk,−gradL)(sk).

which would be equivalent to choosing

Vk = −gradL = −G−1
w

∂L

∂w
.

This choice results in a the learning algorithm that we will call the ‘natural EG algorithm’

wk+1 = γ(wk,−gradL)(sk) = diag(wk) exp .
(
−skdiag(wk)

∂L

∂w
(yk, ŷk)

)
.

(29)
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This raises the question: what is the effective difference between (6) and (29), or is one
to be preferred somehow. One remark we can offer in this regard is that (29) might be
preferred in so far as it allows a comparison with other gradient algorithms which use the
natural gradient and thus differ only in the choice of φ. It is also apparent by inspecting
the two algorithms and their behaviour in simulation that (29) pays more attention to the
prior.

7. Link Functions and Flat Preferential Structures

In this section the general properties of product preferential structures are studied. It is
shown that the link function analysis used in recent literature (Kivinen and Warmuth,
1998) to analyse the EG algorithm can be obtained as a direct generalization of normal
co-ordinates with respect to the preferential structure (25).

Consider a product preferential metric of the form

Gw =


φ1(w1)2 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · 0 φN (wN )2

 , (30)

where φi : R → R are positive definite functions φi > 0. Note that each φi := φi(wi)
is chosen to depend only on its associated variable. This is the situation where Gw is a
preferential metric associated with a product prior

φ(w) =
N∏
i=1

φi(wi).

This structure has some special consequences for the geometry of learning algorithms derived
according to the procedure outlined in Section 5. To distinguish between the preferential ge-
ometry and the classical Euclidean geometry on RN we denote the preferentially structured
space by R̃N .

Denote the ijth entry of Gw by gij and the ijth entry of G−1
w by gij where the base

point w is inferred from context. Thus, gij = 0 = gij except when i = j and

gii = φi(wi)2, gii =
1

φi(wi)2
.

Recalling (19) the Christoffel symbols are easily verified to be

Γpij =

{
1

φi(wi)
dφi
dwi

(wi) if i = j = p.

0 otherwise.
(31)

Thus the Christoffel symbols for a product preferential metric always have a diagonal struc-
ture. Recalling (20) the general equation for a geodesic curve, then it is easily shown that
the general geodesic equation in this case is a set of N decoupled second order ODEs

γ̈i +
1

φi(γi)
dφi(γi)
dγi

(
γ̇i
)2 = 0. (32)
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As a consequence the general geodesics are made up of independent evolution equations in
each of the co-ordinates.

Equation 32 can be simplified to obtain a set of simple first order, single variable ODEs.
Note that

dφi(γi)
dγi

γ̇i =
dφi(γi)
dt

=: φ̇i

where we now think of φi(t) = φi(γi(t)) as a function of t. Thus, the above equation for
the geodesic becomes

γ̈i +
φ̇i

φi
γ̇i = 0.

Let zi = φiγ̇
i (i.e. zi(t) = φi(γi(t))γ̇i(t)). Then

żi = φ̇iγ̇ + φiγ̈
i = φi

(
φ̇i

φi
γ̇i + γ̈i

)
= 0,

where the factorization by φi is always possible since the φi are positive definite functions.
Substituting back into the definition of zi and rearranging terms yields the ODE

γ̇i =
zi(0)
φi(γi)

(33)

zi(0) = φi(γk(0))γ̇i(0); γi(0) = wi; γ̇i(0) = V i (34)

Lemma 5 Suppose φi(w) > 0 for all w ∈ R. Then the solution of (33,34) is

γi(t) = Φ−1
i (tV iφi(wi) + Φi(wi)) (35)

where Φi =
∫
φi (the indefinite integral of φ).

Proof We write φ = φi for simplicity. The condition on φ implies Φ is invertible and
thus (35) implies

Φ(γ(t)) = tV φ(w) + Φ(w).

Differentiating both sides we obtain

∂

∂t
Φ(γ(t)) =

∂

∂t
(tV φ(w) + Φ(w)) (36)

⇒ φ(γ(t))γ̇(t) = V φ(w) (37)

⇒ γ̇(t) =
V φ(w)
φ(γ(t))

=
φ(γ(0))γ̇(0)
φ(γ(t))

. (38)

Furthermore γ(0) = Φ−1(Φ(w)) = w and γ̇(0) = V φ(w)
φ(γ(0)) = V .
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One can readily check (by replacing Φ(w) by Φ(w) + c and Φ−1(x) by Φ−1(x− c)) that
the constant of integration c effectively omitted in the definition of Φ does not change the
solution γ(t).

By setting V = −gradL, and since

gradL = G−1
w

∂L

∂w
= diag(φ−2

1 (w1), . . . , φ−2
N (wN ))

∂L

∂w

(22) takes the general form

wik+1 = Φ−1
i

(
−sk

∂L

∂wi

∣∣∣∣
wi=wik

1
φi(wik)

+ Φi(wik)

)
(39)

When L is the squared loss (4), ∂L
∂wi

= −xik(yk − ŷk) one obtains

wik+1 = Φ−1
i

(
skx

i
k(yk − ŷk)
φi(wik)

+ Φi(wik)
)

(40)

7.1 Rescaling of φ(w)

As a sanity check, now consider what happens if we replace φ(w) by

φ̃(w) := βφ(w) (41)

for some β > 0. Clearly we have

Φ̃(w) = βΦ(w) (42)

and

Φ̃−1(x) = Φ−1(x/β) (43)

Substituting (41), (42) and (43) into (40) we see that we recover the orginial algorithm by
setting s̃k = β2sk. This makes sense when one recalls (see (30)): clearly G̃w = β2Gw.

This simple analysis shows there is no intrinsic reason to insist that the distributions
φ(w) are normalized as proper probability distributions.

8. Examples of Possible New Learning Algorithms

In this section we examine some examples of learning algorithms generated by certain
specific preferential structures. In all cases the underlying learning problem is that presented
in Section 5 (cf. (22)). The algorithms are in fact simply (40) for different choices of φ(w).
The resulting φ, Φ and Φ−1 are collected together in table 1.
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8.1 EG (natural)

Choose φ(w) = 1/w and thus from (40) and Table 1 one obtains the algorithm:

wik+1 = exp
(
skx

i
k(yk − ŷk)/wik + ln(wik)

)
= wik exp

(
skx

i
k(yk − ŷk)/wik

)
which is equivalent to (29) with L being squared loss.

This is the EG algorithm utilizing the natural gradient. It is only valid for w > 0. In
order to use this algorithm to learn targets u that are not componentwise sign definite, the
± trick as presented by Kivinen and Warmuth (1997) could be used.

8.2 EG(α)

Choose φ(w) = 1/wα (α 6= 1) and thus from (40) and Table 1 one obtains the algorithm:

wik+1 =
1

1− α

(
skx

i
k(yk − ŷk)(wik)α +

1
1− α

(wik)
α−1

) 1
1−α

(44)

Like the EG (natural) algorithm, this algorithm is only valid for wik > 0. It is easily verified
that this algorithm approaches the behaviour of the GD algorithm as α→ 0.

Numerically implementing the algorithm it turns out that weights can tunnel through
the infinite barrier at the origin due to the non-infintesimal step size used. In order to avoid
problems which this causes (more likely for larger values of s), we have found it necessary
to modify the algorithm to

tk = sgn(wik)|wik|1−α + (|wik|+ ε)αxiksk(yk − ŷk)
wik+1 = sgn(tk)|tk|1/(1−α).

Here ε is some small number; we have used ε = 2× 10−13.

8.3 EGclipped(c)

In order to avoid the difficulties of the singularity at the origin with φEG, one can simply
clip φ to c > 0 giving

φc(w) = min
(
c,

1
|w|

)
. (45)

One can show that

Φc(w) =
{
cw |w| ≤ 1

c
sgn(w)(1 + ln(c|w|)) |w| > 1

c .
(46)

Φ−1
c (w) =

{ x

c
|x| ≤ 1

sgn(x)e|x|−1

c |x| > 1
(47)

Observe that on a bounded domain, for all c < ∞, φc(w) can be made into a proper
distribution (by rescaling). The limit as c → ∞ is improper though. This is analogous
to how improper priors are sometimes treated in the Bayesian literature, as the limit of a
sequence of proper priors (Akaike, 1980).
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8.4 exp(α)

Choose φα(w) = exp(−α|w|), α > 0. By considering positive and negative cases separately
one show

Φα(w) =
sgn(w)
α

ln
(

1− e−α|w|
)

(48)

Φ−1
α (x) =

−sgn(x)
α

ln (1− α|x|) , |x| < 1
α

(49)

8.5 Cauchy Product Distribution

Choose

φi(wi) :=
1

1 + (wi)2

which is the Cauchy distribution (unnormalized). The variance of the Cauchy distribution
is not defined and it is a classic example of a distribution with heavy tails. The product
distribution φ(w) :=

∏N
i=1 φi(w

i) is a proper p.d.f. on RN . Since the Cauchy distribution
does not have a singularity at wk = 0 then the preferential structure is defined on all RN

and there is no need to use ± algorithms like those developed for the EG algorithm (Kivinen
and Warmuth, 1997).

From (40) and Table 1 we obtain the algorithm:

wik+1 = tan
(
skx

i
k(yk − ŷk)(1 + (wik)

2) + arctan(wik)
)
. (50)

8.6 Elementwise Link Functions and Flat Preferential Structures

Let E1, E2, . . . , EN be the unit vectors in RN . Let γ(w,V )(s) denote the particular geodesic
curve obtained as a solution of (33) for initial conditions γ(w,V )(0) = w and γ̇(w,V )(0) = V .
Then one can define a map

f : RN → R̃
N

f(x) := γ(w,
∑N
i=1 x

iEi)(1)

The map f(x) provides a set of local co-ordinates for R̃N known as normal co-ordinates
(Boothby, 1986). As we show below the map f is closely related to the concept of link
functions commonly used to analyse learning algorithms such as the EG algorithm. The
local co-ordinate frames induced are denoted

∂

∂xi
:= df |x (Ei), i = 1, . . . , N,

For any two vector fields X,Y on R̃N then let ∇XY denote the action of the Levi-Civita
connection of X on Y (Boothby, 1986, pp. 317). Since f is constructed from solutions to
the geodesic equations then it follows directly that

∇ ∂

∂xi

∂

∂xi
= 0, i = 1, . . . , N.
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In fact, using the structure of Γkij it is easily verified that

∇ ∂

∂xi

∂

∂xj
= 0. i, j = 1, . . . , N.

This property is not true of general Riemannian manifolds and is important since it implies
that the underlying geometry of R̃N is effectively Euclidean. In particular, taking a straight
line xk + skVk on RN which is a geodesic in the Euclidean geometry then f maps this to a
geodesic

γ(s) = f(xk + skVk)

on R̃N . The fact that the base point xk need not be 0 is crucial in this relationship since it
implies that the structure is unchanged for translations in RN . This will only occur if the
intrinsic ‘curvature’ of R̃N is zero.

A further consequence of the flatness of R̃N is that the normal co-ordinate mapping f
is an isometry. That is that for any two vectors X,Y ∈ TxRN then

XTY = 〈X,Y 〉 = 〈dfX, dfY 〉f(x) = (dfX)TGf(x)dfY.

Conseqeuntly, the mapping f preserves the metric distance given by length of curves. Since
f is an isometry one may as well take a standard learning algorithm on the simple Euclidean
space R̃N given in local Euclidean co-ordinates x ∈ RN (cf. Subsection 6.1)

xk+1 = xk + skṼk (51)

and obtain its associated learning algorithm on the desired space directly by the mapping
wk = f(xk). Of course the descent direction Ṽk is the descent direction in local co-ordinates
x and must map via df to a chosen descent direction Vk ∈ Tf(xk)R̃

N . Thus,

df(Ṽk) := Vk.

The function f is serving the same role as the link functions commonly used to analyse and
extend the EG algorithm (Kivinen and Warmuth, 1998).

For example consider the EG algorithm where f = exp ., the vector exponential, is the
standard link function used. Direct computations show df = diag(wk) exp .(X) = w and

hence Ṽk = diag(w)−1Vk. Choosing Vk = −G−
1
2

w
∂L
∂w according to (28) then it follows that

Ṽk = −∂L
∂w . The learning algorithm obtained on R̃N = R

N
∗ from (51) is

wk+1 = f(xk+1) = f(xk + skṼk)

= exp .
(
xk + skṼk

)
= diag(exp .(xk)) exp .(skṼk)

= diag(wk) exp .(−sk
∂L

∂w
).

Comparing with (6) it is seen that this is another to way to derive the EG algorithm.
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Remark 6 In some recent literature (Warmuth and Jagota, 1997) the concept of link func-
tion has been developed in a co-ordinate by co-ordinate context. Thus, a link function is
considered to be a map

f i : R→ R,

where the same function f i := g is generally used for each co-ordinate. The development
here is closely related since the product preferential structure ensures that the normal co-
ordinates can always be decomposed into independent co-ordinate functions f i := f i(xi)
obtained as solutions to the decoupled geodesic equations (33). The unified view presented
in this paper provides a way of generalizing the link function results to obtain a better
understanding of learning algorithms.

Remark 7 Gordon (1999a, section 3.9.2) has also presented a (quite different) interpre-
tation of algorithms such as GD and EG via Bayesian priors. He makes use of conjugate
priors (see Robert, 1994) and his framework is rather different to ours. We have been un-
able to draw a formal connection between his work and ours. Furthermore, the machinery of
conjugate priors is intrinsically restricted — it can not cover the range of prior distributions
we can deal with. Whether there is a useful connection is left as an open problem.

9. Comparing the Performance of Stochastic Descent Learning
Algorithms.

In this section the relative performance of two stochastic gradient descent learning algo-
rithms derived with respect to diagonal preferential structure (associated with product
distributions) are compared. The algorithms are compared for a target weight vector w∗

drawn from the true product prior distribution that we assume is associated with one of
the algorithms.

The relative performance of two learning algorithms must be compared according to
some criterion that is both computable and relevant to the desired qualitative behaviour of
the algorithms. Kivinen and Warmuth (1997) proposed the ‘mistake-bounded framework’
for analysing the EG algorithm. A more traditional analysis based on classical LMS anal-
ysis techniques has also been considered for the EG algorithm (Hill and Williamson, 1999,
2001). Both approaches attempt to quantify the global performance of the algorithm con-
sidered. In this paper generic algorithms based on the stochastic gradient descent concept
are considered. A stochastic gradient descent algorithm may be considered to be a sequence
of Bayesian estimates of the true weight vector conditioned on a local neighbourhood of the
previous estimate and based on the most recent data. That is, at each step one searches
for the parameter wk+1 ∈ Br(wk) that best describes the latest data received. The learn-
ing rate sk of a stochastic gradient algorithm is linked directly to the radius r of the ball
which is used to condition the new estimate. A consequence of this perspective is that one
should only seek to compare the relative local performance of stochastic gradient descent
algorithms. It is to be hoped, however, that for most sensible classes of prior distributions
good local performance will translate into good global performance. This justification, along
with the practical simplicity and ease of implementation, motivates the use of stochastic
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gradient descent algorithms in learning applications. Conversely, if one wishes to solve the
problem optimally then it is necessary to return to a full Bayesian analysis.3

All stochastic gradient descent algorithms (for sufficiently small learning rate) display
the same qualitative asymptotic convergence properties (Solo and Kong, 1995). The asymp-
totic error may differ depending on the relative sensitivity of the schemes and the particular
learning rate used. High asymptotic sensitivity is usually linked to a fast learning rate and
better transient performance of an algorithm. As a consequence asymptotic error analysis
provides a poor measure of relative performance of two stochastic gradient descent learning
algorithms.

A tempting comparison of the transient performance between two learning algorithms is
to take the expectation (with respect to the given prior distribution) of the rate of decrease
of the loss function for the two algorithms across all possible weight vectors and all target
vectors. Unfortunately, due to the local nature of the Bayesian interpretation of stochastic
gradient algorithms a global average will not provide a suitable comparison, although, in
certain specific cases the global average may well indicate the desired result. In this paper
we will compare the expected decrease of the loss function over possible measurements and
true weight vectors locally around each point in weight space.

Assume that samples xk are drawn from a normalized uniform iid distribution with
density φ and that the measurements yk are deterministic functions of xk. The expected
value of the loss function over possible samples xk is

ψ(w) := Eφxk [L(yk, ŷk)] (52)

=
1
2

∫
RN

(yk − ŷk)2φ(xk)dxk

=
1
2

∫
RN

〈w − w∗, xk〉2φ(xk)dxk

=
1
2

(w − w∗)TEφxk [xkxTk ](w − w∗).

Since φ is normalized uniform iid then

Eφxk [xkxTk ] = IN

where IN is the N ×N identity matrix.
Let p and q be two proper product prior distributions on a compact subset Ω ⊂ RN of

weight space

p(w) =
N∏
i=1

φip(w), q(w) =
N∏
i=1

φiq(w). (53)

Let Gp(w) := diag((φ1
p)

2, . . . , (φNp )2) and Gq(w) := diag((φ1
q)

2, . . . , (φNq )2) be diagonal
preferential structures associated with the product distributions p and q.

We will compare the behaviour of the averaged learning algorithms

wk+1 = γ(wk,−G†(w)−1(wk−w∗))(sk† ), (54)

3. Even if the reader does not completely buy the above argument, we have a backup: “we have performed
a local analysis because a global analysis seems dauntingly difficult!”.
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derived from Eq. 22 for the metric G†(w) equal to either Gp(w) or Gq(w). The step-size sk†
is either skp or skq depending on the algorithm. The step-size scaling factor is chosen to scale
the relative volume induced by each probability distribution to equal a constant

(skp)
N

p(w)
=

(skq )
N

q(w)
=

volBr(wk)
volΩ

= rN
volB1(wk)

volΩ
(55)

where volBr(0) denotes the (Euclidean) volume of a ball of radius r > 0. For r sufficiently
small the probability of the event B†

sk†
(wk) (denoting the ball with respect to the preferential

structure †) under the relevant prior distribution is normalized

Pp(B
p
skp

(wk)) =
∫
Bp
skp

(wk)
p(z)dz ≈

N∏
i=1

skp
(φip)2

p(wk) =
(skp)

N

p(wk)

=
volBr(0)

volΩ
=

(skq )
N

q(w)
≈ Pq(Bq

skq
(wk)).

Thus, the step-size scaling factor is adjusted so that, based on the prior information under
which an algorithm is derived, there is a fixed probability that the true weight vector lies
in the set in which the next update of the algorithm is chosen. The scaling factor r which
is associated with the uniform distribution on the compact set Ω provides a useful ‘knob’
with which to tune the performance of a class of learning algorithms. In the simulations
(cf. Section 10) we compare two new algorithms with standard Gradient Descent (which
has φ(w) = 1) and thus choose sknew = skGD(φnew(w))1/N .

The following approximation of (54) holds for sufficiently small step-size sk†

wk+1 = wk − sk†G†(wk)−1(wk − w∗) + O
(

(sk† )
2||G†||22

)
,

To bound the error due to the approximation it is necessary to reduce the scalar r that
bounds maximum step length. Note that sk† ∝ r (cf. Eq. 55) and the above equation may
be written

wk+1 = wk − sk†G†(wk)−1(wk − w∗) + O
(
r2
)
, (56)

where the constant associated with the O(r2) term scales as supw∈Ω ||G−1
† (w)||22.

Let

∆ψ†(wk) := ψ†(wk+1)− ψ†(wk) (57)

denote the decrease of the averaged loss function at step k+1 with respect to the preferential
structure G†. From (56) we obtain

∆ψ†(wk) =
1
2

(
wk − sk†G†(w)−1(wk − w∗)− w∗

)2
− 1

2
(wk − w∗)2 + O(r2)

= −sk† (wk − w∗)TG†(w)−1(wk − w∗) + O(r2).

Since G†(w) = diag{(φi†)2} is a diagonal preferential structure then we can write

∆ψ†(wk) = −sk†
N∑
i=1

(wi − wi∗)2

(φi†)
2

+ O(r2) (58)
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Theorem 8 Consider the learning problem outlined in Section 2 restricted to a compact
subset Ω ⊂ Rn. Assume that the samples are chosen according to a normalized uniform
iid process and let ψ be the averaged loss function (52). Let p and q be two product prior
distributions (Eqn’s 53) for the true weight vector w∗ with associated diagonal preferential
structures Gp(w) and Gq(w). Assume that supw∈Ω ||G−1

p (w)||2 and supw∈Ω ||G−1
q (w)||2 are

bounded from above. Let ∆ψ† be defined by (57). For any point wk ∈ Ω set

Σp(wk) = diag
(∫

Ω
(wik − wi∗)2p(w∗)dw∗

)
If for all wk ∈ Ω

p(wk) < q(wk) (59)

and

1
N

tr
(
G−1
q (wk)Σp(wk)

)
≤ det

(
G−1
q (wk)Σp(wk)

) 1
N (60)

then there exists r > 0 sufficiently small such that when skp and skq are chosen to satisfy (55)
one has

Epw∗ [∆ψp(wk)] < Epw∗ [∆ψq(wk)] < 0. (61)

Proof For each wk ∈ Ω there exists an r1(wk) > 0 sufficiently small such that both
Epw∗ [∆ψp(wk)] and Epw∗ [∆ψq(wk)] are negative. Since Ω is compact there exists r1 :=
infw∈Ω{r1(w)} > 0. Let

F := Epw∗ [∆ψp(wk)]− Epw∗ [∆ψq(wk)]

= −
∫

Ω
skp

N∑
i=1

(wik − wi∗)2

(φip(wk))2
p(w∗)dw∗ +

∫
Ω
skq

N∑
i=1

(wik − wi∗)2

(φiq(wk))2
p(w∗)dw∗ + O(r2)

=
N∑
i=1

(
skq

(φiq(wk))2
−

skp
(φip(wk))2

)∫
Ω

(wik − wi∗)2p(w∗)dw∗ + O(r2).

To improve readability the superscripts and subscripts k are dropped in the remainder
of the proof and the base point w = wk is used. If no other argument is specified all
probability distributions are evaluated at the point w = wk. Let

µi :=
sq

(φiq)2

∫
Ω

(wi − wi∗)2p(w∗)dw∗

ai :=
sq
sp

(φip)
2

(φiq)2
.

Observe that µi ≥ 0 for all i. Using these definitions then define

F (a) :=
N∑
i=1

µi

(
1− 1

ai

)
.
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where we consider F (a) as a function of the new variables {ai}. The variables ai may in
turn be thought of as functions of the product prior distributions φip. Note that

F (a) = F + O(r2).

The approach taken is to show that for a fixed q =
∏
φiq distribution then the result

holds for all product distributions p =
∏
φip satisfying the theorem conditions. The set of

all such distributions is parameterized by the variables ai > 0, i = 1, . . . , N . By inspection,
it is easily verified that

F (a)→ −∞ for ai → 0, i = 1, . . . , N.

Since we need consider only the set {ai > 0: i = 1, . . . , N} then there are no positive
asymptotes of F (a) and consequently F (a) must have a global supremum.

Note that µi > 0, i = 1, . . . , N are the scaled variances of the wi∗ around the arbitrary
reference point wi. Recalling Eq. 55 one has

N∏
i=1

ai =
sNq
sNp

∏
(φip)

2∏
(φiq)2

=
sNq
sNp

p2

q2
=
p

q
(62)

This is the constraint on the variables ai introduced by the conditioning associated with
the step-size selection. Using this constraint one may write

F (a) =
N−1∑
i=1

µi

(
1− 1

ai

)
+ µN

1− q

p

N−1∏
j=1

aj

 .

Computing the partial derivative of F (a) with respect to ai yields

∂F (a)
∂ai

= µi
1

(ai)2
− µN

q

p

∏N−1
j=1 aj

ai
.

Thus, the critical points of F (a) are characterized by the condition

µi
ai

= µN
q

p

N−1∏
j=1

aj =
µN
aN

, i = 1, . . . , N. (63)

In particular, there is a unique critical point of F (a). It follows that this critical point must
be the global maximum of F (a) on the set {ai > 0 | i = 1, . . . , N}. Evaluating the function
F at the critical point one obtains

Fcrit(w) := F (acrit) + O(r2)

=
N−1∑
i=1

µi − (N − 1)
µN
aN

+ µN −
µN
aN

+ O(r2)

=
N∑
i=1

µi −N
µN
aN

+ O(r2)
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where Fcrit(w) denotes the dependence on the base point w ∈ Ω of each critical value of
F . Premultiplying the constraint in (62) by 1/

∏
µi and evaluating at the critical point one

obtains ∏N
i=1 ai∏N
i=1 µi

=
(
aN
µN

)N
=

p

q
∏N
i=1 µi

.

Consequently, at a critical point one has

1
aN

=
(
q

p

) 1
N

(
N∏
i=1

µi
µN

)1/N

.

It follows that

Fcrit(w) ≤
N∑
i=1

µi −NµN

(
N∏
i=1

µi
µN

)1/N (
q

p

) 1
N

+ O(r2)

=
N∑
i=1

µi −N

(
N∏
i=1

µi

)1/N (
q

p

) 1
N

+ O(r2).

Multiplying condition (60) in the theorem statement by sq and exploiting the diagonal
structure of the metric and the covariance matrix Σp yields

1
N
sqtr

(
G−1
q (wk)Σp(wk)

)
=

1
N

N∑
i=1

sq
(φiq)2

∫
Ω

(wi − wi∗)2p(w∗)dw∗

=
1
N

N∑
i=1

µi

≤ sq det
(
G−1
q (wk)Σp(wk)

) 1
N

=

(
N∏
i=1

sq
∫

Ω(wi − wi∗)2p(w∗)dw∗
(φiq)2

) 1
N

=

(
N∏
i=1

µi

) 1
N

Using this condition the value of Fcrit(w) may be overbounded by

Fcrit(w) ≤
N∑
i=1

µi

(
1−

(
q

p

) 1
N

)
+ O(r2)

Applying Eq. 59 it follows that for all w ∈ Ω there exists a r2(w) > 0 such that Fcrit(w) < 0.
Set r2 = infw∈Ω{r2(w)} > 0. Choose r ≤ min{r1, r2}. It follows that Fcrit(w) < 0 and
Epw∗ [∆ψq(wk)] < 0 for all w < 0. This completes the proof.
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Remark 9 The set Ω used in Theorem 8 need not be the full set on which the probability
distributions p and q are defined. In practice, for ε > 0 sufficiently small, one may choose

Ωp = {w ∈ Ω p(w) < q(w)− ε and Eq. 60 holds}

The set Ωp is then the set of target weight vectors w∗ on which the learning algorithm based
on the prior distribution p outperforms that based on the prior distribution q.

It is of interest to consider in more detail the two Conditions 59 and 60. Equation 59
is a condition on the local value of the prior distribution. Ignoring the other conditions
of theorem then this condition states that if the relative probability that the true weight
vector is close to the present estimate is low then the algorithm designed according to
the true prior distribution out performs its competitor. This should lead the algorithm to
converge more quickly into a region in which the relative probability is comparable. If the
relative probability that the true weight vector is close to the present estimate is high then
nothing may be said about the relative performance of the algorithms. It should be noted
that the reverse implication on performance is not a consequence of the theorem since the
average descent properties of the algorithms are conditioned with respect to the true prior
distribution. The second condition (Eq. 60) provides a link between the global and local
properties of the distribution and the preferential structure. Condition (60) can be replaced
by the underlying condition

q

p
>

(∑N
i=1 µi

)N
NN

∏N
i=1 µi

that is a sufficient condition to ensure that Fcrit is negative (for sufficiently small r > 0).
We do not have a good interpretation of this condition.

10. Simulations

In this section we present some simulation results. In order to do so, it was necessary to
decide on an appropriate way to compare the different algorithms, and in particular how to
choose the step size parameter sk. The options available to choose sk include:

• Following Amari (1998) one may argue that the asymptotic stability of the algorithm
is an adaquate measure of performance. Thus, any sufficiently small step-size selection
is satisfactory.

• Pick the “optimal” sk = s according to Kivinen and Warmuth (1997). The way they
do this depends on knowledge of the sequence of examples and the true weight vector.
Even assuming knowledge of the process generating the examples, and the true weight
vector, this optimal choice will depend on the length of the training sequence. Whilst
there are ways of dealing with the fact that this choice requires knowledge of things
impossible to know (see Kivinen and Warmuth, 1997, Section 5.1), it does seem a
difficult way to proceed. After all, as Kivinen and Warmuth (1997, Section 9.2) say

“In applying a learning algorithm, one is usually not so much concerned
with the cumulative loss as with the quality of the final hypothesis.”
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• Adopt the standard signal processing method of comparison (cf. Hill and Williamson,
1999, 2001): determine steady-state Mean Square Error (MSE) as a function of s,
and then choose s to achieve a fixed steady-state MSE. Then compare algorithms in
terms of their speed of convergence.

• Adopt the choice implied by equation 55. This is in fact what we do in the present
paper.

Figure 1: Comparison of exp(α) (α = 0.9) algorithm with standard Gradient Descent. xk
was drawn independently from a uniform distribution on [−1

2 ,
1
2 ]M , M = 1500.

The step-size for the GD algorithm was sGD = 0.0001. Step size for exp(α)
chosen according to (55) (see text). The target had the non-zero values inferrable
from the diagram (approximately 1.6, 1.3, 1.1, 0.8,0.25, 0.2, -1.5), with all the
remaining values zero (a fraction of 0.005 of the dimensions of w∗ were non-zero).
Gaussian noise of standard deviation 0.06 was added to the yk sequence. Both
algorithms were started from the initial condition ( 1

3000 , . . . ,
1

3000)′. In the graphs,
only the first 100 dimensions of wk have been plotted for the sake of clarity. (The
remaining dimensions all had target values of zero.) The indicated Mean Square
Errors (MSE) were estimated from the final fifth of the run.
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Figure 2: Same as Figure 1 except with α = 0.1

In the experiments reported, we used a fixed step size sGD for the standard Gradient
Descent algorithm and then used (55) to determine sk for the comparison algorithm. The
value of sGD was somewhat arbitrary, but chosen to ensure a clear stability margin for the
GD algorithm.

For the exp(α) algorithm, φ(w) =
∏N
i=1 e

−α|wi|. Thus from (55)(
skexp(α)

)N
∏N
i=1 e

−α|wi|
=

(sGD)N

1
(64)

⇒ skexp(α) = sGDe
− α
N

∑N
i=1 |wik| = sGDe

−α‖wk‖1/N (65)

Similarly for the EGclipped(c) algorithm, with φc(w) =
∏N
i=1 min(c, 1

|wi|) we choose

skEGclipped(c) = sGDφc(wk) (66)

With reference to Figure 1, it can be seen that by 3000 iterations both algorithms have
reached a “steady-state” where each component is being jiggled around the true value by
the added noise. The key difference between the GD algorithm and the Exp(0.9) is that
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Figure 3: Same as Figure 1 except with α = 1.1

the effective step size for the non-zero components is larger; or equivalently, the effective
step size for the zero components is smaller, which is what leads to the smaller steady-state
MSE even though the GD algorithm converges slower (taking around 2500 steps to reach a
steady state, whereas Exp(0.9) reached steady state in around 1000 steps).

The exp(α) and EGclipped(c) algorithms outperform the standard GD algorithm on
the problems considered. This is not surprising given the choice of the prior. One can see
that the convergence speed is qualitatively similar, but that the steady state MSE of the
exp(α) and EGclipped(c) algorithms is rather smaller than that for the GD algorithm. It
can also be seen that increasing c or α, leading to a more extreme prior distribution, leads to
algorithms whose behaviour is noticeably different from the GD algorithm. Letting c→∞
in EGclipped(c) leads to the (natural gradient) EG algorithm. We have observed that the
singularity at the origin in φ∞(w) causes numerical difficulties.

We also observed it was necessary to replace Φ−1
α (x) given by (49) by

Φ̃−1
α (x) = −sgn(x) ln(−α|x|+ ε)/α (67)

where ε was chosen as 10−9 in the experiments reported in order to avoid numerical prob-
lems.
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Figure 4: Comparison of the EGclipped(c) algorithm (c = 3), xk drawn iid uniformly on
[−1

2 ,
1
2 ]M , (M = 300), sGD = 0.005. Step size for EGclipped(c) chosen according

to (55) (see text). The target had the non-zero values inferrable from the diagram,
with all the remaining values zero (a fraction of 0.01 of the dimensions of w∗ were
non-zero). Gaussian noise of standard deviation 0.06 was added to the yk se-
quence. Both algorithms were started from the initial condition ( 1

3000 , . . . ,
1

3000)′.
In the graphs, only the first 100 dimensions of wk have been plotted for the sake of
clarity. (The remaining dimensions all had target values of zero.) The indicated
Mean Square Errors (MSE) were estimated from the final fifth of the run.

These numerical difficulties would be absent for any φ(w) satisfying

c1 ≤ φ(w) ≤ c2

for all w and some 0 < c1 < c2 <∞.

11. Conclusions

We have shown how some new variants on the classical LMS algorithm can be interpreted in
terms of a prior over the parameter space. The tools used to do so were based on a natural
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Figure 5: Same as Figure 1 except with c = 10.

Riemannian structure. The results complement those developed in the area of information
geometry. The simulation experiments illustrate that the interpretation via a prior is easy
to reconcile with the actual behaviour of the algorithms. Previous work (Kivinen and
Warmuth, 1997, Hill and Williamson, 2001) has shown how the EG algorithm can perform
well in real situations where the target weight vector w∗ is sparse. The viewpoint developed
here may well serve as a means for fine tuning the venerable LMS algorithm to better exploit
prior knowledge one may have in a real problem. An advantage of the proposed framework
is that, in the case of product prior distributions, it is a simple matter to generate algorithms
optimized to the prior information available. An example of such an application as well
as a simplified approximation to the algorithms developed in the present paper is given by
Martin et al. (2001).

There are several directions for further research on this topic. The most obvious are
to consider a wider range of loss functions and to see if there is a closer connection with
the work on Bregman divergences for analyzing these algorithms. One can also envisage
combining the framework proposed in the present paper with techniques from information
geometry in order to draw stronger connections with recent work such as that of Amari
(1998). Indeed, it is reasonable to ask if one can derive a suitable geometry and associated
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Figure 6: Same as Figure 1 except with c = 2.

natural gradient algorithms with respect to both a prior distribution on the weights and
the likelihood function associated with measurement noise?

Another direction is to explore the connection (if any) with the prequential approach
Dawid (1984), which studies sequential prediction from a viewpoint associated with Bayesian
statistics.
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Appendix A. Background on Riemannian Geometry

To obtain a better understanding of the subject it is necessary to enter into the details. An
excellent quick overview of differential geometry and the basics of Riemannian metrics is
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given in (Helmke and Moore, 1994, appendix C). Good introductory texts have been written
by Boothby (1986) and Lee (1997). A deeper knowledge can be obtain from Spivak (1979).
Murray and Rice (1993) treat similar material and also discuss the geometry of statistical
inference.

The modern form of Riemannian geometry provides a language in which the structure of
curved spaces can be analysed. Riemann was motivated by the ongoing effort to understand
the significance of Euclid’s fifth postulate during the first half of the nineteenth century.
This question must have been an important topic of discussion amongst all mathematicians
of the time, however, Riemann’s early work was in the field of geometric properties of
analytic functions of complex variables, conformal mappings and connectivity of surfaces.
In 1854 he submitted a dissertation for his Habilitation on representing complex functions
using trigonometric series. He was also required to give a public dissertation and submitted
three possible topics to his examining committee. The first two topics were subjects in
which he was recognized as having made significant contributions. He clearly expected to
be asked to speak on this work and, perhaps in wishing to impress Gauss, a member of
his Habilitation committee, he chose Über die Hypothesen welche der Geometrie zu Grunde
liegen (On the hypotheses that lie at the foundations of geometry)4 as his third topic. Gauss
called his bluff and Riemann had only a few months in which to prepare material that would
impress the Habilitation committee. He had never been one to restrict his claims to those
for which he had a rigorous development and his lecture was a sweeping introduction to
a vague form of a differentiable manifold, the concept of local quadratic forms, a general
connection to the concept of curvature, and finally a discussion of the implications of these
concepts to our understanding of the world we live in. He provided a first vision of modern
differential geometry, Riemannian manifolds and general relativity wrapped up into a single
incoherent view of the world. Fortunately, Gauss was present to grasp the importance of
the material presented. An indication of the visionary nature of Riemann’s lecture is gained
by noting that it took another sixty years before the concept of a differentiable manifold
was properly developed in 1913 by Weyl (1923).

The aim of Riemannian geometry is to provide an intrinsic understanding of geometry
based on observations made within the manifold considered. This should be contrasted
to an extrinsic interpretation of geometry such as is possible, for example, for a sphere
embedded in R3. The sphere is clearly curved, (from the perspective of an observer in the
‘flat’ Euclidean space R3), and it is simple enough to develop measures of this curvature
such as Euler’s principal curvatures5 that involve extrinsic measurements. The problem is
considerably less clear if one imagines a mythical being living within 2-dimensional space
on the surface of the sphere. A valid intrinsic understanding of geometry would allow
such a creature to make measurements to determine whether they were living on ‘flat’
Euclidean space compared to, for example, an extremely large sphere (eg. the polygonal
creatures living in the world created by Abbot (1992)). Gauss certainly believed that this
was possible and his work on the curvature of surfaces (Gauss, 1965) emphasizes that the

4. A transcript of Riemann’s lecture was published in (Riemann, 1868). An English translation was made
by Spivak and appears in volume 2 of his comprehensive treatise on geometry (Spivak, 1979). Our
knowledge of this work came from the recent delightful book by McCleary (1994).

5. The principal curvatures of a surface in R3 are the maximal and minimal curvature of all curves obtained
by intersecting the surface with a plane (Euler, 1760).
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infinitesimal curvature of a surface (as measured by the product of the principal curvatures)
is related to the difference between the sum of the angles of an infinitesimal triangle drawn
at the point of interest from 180◦. This is an intrinsic measure available to creatures living
within the surface.

The key concept of Riemannian geometry is the concept of independence of the measure
of length (and volume) from the local coordinates used to measure position. Underlying
this concept is the understanding that there are no ‘special’ coordinates for a manifold
and consequently that a geometric property is intrinsic to that manifold if and only if it is
invariant under coordinate transformations. The fundamental axiom that Riemann worked
from was that the infinitesimal length of a curve should be a physical quantity independent
of the mathematical representation of the manifold but quite possibly dependent on the
point at which the measurement is taken. In modern language, the measure of length
on the manifold must be invariant under changes in local coordinates. In order for this
to be true, the explicit expression of the infinitesimal measure of length must depend on
the coordinates used; otherwise they would not transform with changes in the coordinates.
From this principle it it is possible to derive the expression

ds =

√√√√ n∑
i,j=1

gij(x)dxidxj

where s denotes the curve parameterization and the gij(x) code the manner in which the
length of the curve depends on the particular local coordinates {x1, x2, . . . , xn} used. The
matrix G(x) = [gij(x)]i,j is called the Riemannian metric for the manifold considered.
The properties of symmetry, non-degeneracy and positive definiteness of the matrix G(x)
correspond to physical properties of measuring length, albeit the infinitesimal limit of length.
Of course, infinitesimal length may be integrated along curves to obtain a classical distance
metric on the space. A curve tracing out the shortest distance between any two points
according to this metric is called a geodesic. Such curves would appear as straight lines to
a creature living within the manifold.

Using the above intuition is now possible to state the intrinsic difference between a
curved Riemannian space and flat space. For Euclidean space there exists a ‘special’ coor-
dinate system for which the infinitesimal length measure is expressed

ds =

√√√√ n∑
i=1

dxidxi.

That is, the metric is gij(x) = δij (G(x) = I). Clearly, a manifold is intrinsically Euclidean
(or ‘flat’) if there exists a set of coordinates for which the Riemannian metric is transformed
to the identity matrix. Of course, this must hold equally at every point in the space. From
symmetry there n(n − 1)/2 linearly independent functions that define gij(x), there are n
degrees of freedom available by altering the coordinate function, and consequently there are
n(n − 1)/2 components of gij(x) that cannot be arbitrarily fixed by variation in the coor-
dinate chart. For example, for any two dimensional Riemannian manifold one may choose
coordinates (locally) such that g11 = g22 = 1, however, the function g12(x) = g21(x) will in
general be non-zero and non-constant. The set of all 2-dimensional Riemannian manifolds

349



Mahony and Williamson

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 7: A grid of unit measure in the Euclidean coordinates associated with the EG-
algorithm on the left maps to a grid of curvilinear coordinates in the weight
space for the EG-algorithm on the right. Observe that the coordinate grid is
compressed close to the axes corresponding to the property that a unit step of
distance in this region only alters the actual weight vector w by a small amount.

are (locally) parameterised by the function g12(x). Euclidean space R2 corresponds to the
case g12(x) ≡ 0. The independent functions gij(x) are linked to the curvature of the space.

An important observation is that the measure of length is dependent on the point
at which the measurement is made in the manifold. An instructive example taken from
the body of the paper is provided by considering the geometry used to analyze the EG-
algorithm. The metric matrix is G(w) = diag( 1

(w1)2 , . . . ,
1

(wn)2 ) (cf. Subsection 6.2) defined
on the weight space wi > 0 for all i = 1, . . . , n. Transforming the coordinates according to

u(w) :=
(
ln(w1), . . . , ln(w2)

)
,

one obtains the constant Riemannian metric G(u) = In. Thus, the Riemannian structure
introduced for the EG-algorithm is Euclidean of ‘flat’. Nevertheless, the geodesics in the
original weight space are not straight lines.

It is instructive to plot two examples of the mapping between the Euclidean coordinates
u(w) introduced above and original weight space in the local coordinates w (cf. Figures
7 and 8). In Figure 7 it is obvious that in the weight space the unit grid derived from
the Euclidean coordinates gets compressed close to the i’th coordinate axis by a factor of√

1/(wi)2 = φ(wi), the improper probability distribution that was introduced to model
the prior knowledge assumed for the EG-algorithm. Thus, taking a unit step in this region
results in very small changes in the weight vector coefficient wi. The second figure (Figure 8)
shows the curvilinear nature of the geodesics in the weight space compared to the linear
geodesics in the Euclidean coordinates for the EG-algorithm.

The application of Riemannian geometry to statistical learning theory undertaken in this
paper has a minor variant from classical Riemannian geometry. In statistical learning theory
the weight vector w lives in a ‘special’ coordinate frame, namely, the coordinate frame that
is linked to the linear model class of the learning problem. Thus, a preferential structure is
given by a Riemannian metric defined with respect to ‘special’ coordinates corresponding
to the weight vectors w used in the linear model class. In these coordinates the measure of
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Figure 8: An analogous plot to that shown in Figure 7 except that the Euclidean coordinates
have been rotated by 45◦. This plot shows the curvilinear nature of the geodesic
coordinates induced by the EG preferential structure in weight space. A creature
living within the weight space equipped with the EG potential stucture would
observe the curves on the right drawn as straight lines shown in the grid on the
left.

length is certainly not constant. Thus, the geodesics appear curved when expressed in the
coordinates w and the parameterization strongly contributes to the properties of the learning
algorithm. The key observation is that the performance of the algorithm is measured in the
‘special’ weight vector coordinates. This is contrasted to classical Riemannian geometry
where all local coordinate charts are equally valid. If one were to discard the weight vector
coordinate representation and use, for example, the Euclidean parameterization u := u(w)
for the EG-algorithm it would be necessary to reparameterize the model class to obtain the
same learning problem (cf. Section 2)

x 7→ 〈exp(u), x〉, x ∈ RN ,

for u. Thus, in a learning problem it is both the preferential structure and the structure of
the model class that combined define the geometry of the problem.6

It remains to comment on the issues involved in obtaining measurements of the Rie-
mannian geometry of a manifold using only intrinsic measurements. Since an intrinsic
measurement is made within the space a direct measure of distance is not sufficient to de-
termine the important off diagonal metric structure. A differential measure, i.e. how the
measure of length changes as a displacement is made, will provide information that can be
used to infer the metric structure of the manifold. Riemann showed that this approach was
sufficient to intrinsically compute the curvature of a manifold equipped with a infinitesimal
quadratic distance measure (or Riemannian metric). As a consequence the curvature of a
Riemannian manifold can be computed from first derivatives of the metric functions gij(x).
The actual expressions in coordinate form are intricate and difficult to work with. It was
Christoffel (1869) who introduced a formal representation of this structure in terms of a set

6. An interesting consequence of this observation is that any non-singular parameterization of the learning
problem x 7→ 〈f(u), x〉, (linear in the measurement x) can be represented as linear model class along
with a preferential structure derived from the local coordinate chart w := f(u), u = f−1(w).
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Figure 9: A triangle drawn in coordinated w of weight space.

Correct Incorrect
∠A 71.5◦ 108◦

∠B 37◦ 37◦

∠C 71.5◦ 108◦

Total 180◦ 253◦

Figure 10: A table showing the angles between vertices of the triangle shown in Figure 9.

of symbols and transformation rules under change of coordinates. The Christoffel symbols
can be used to compute intrinsic geometric properties of a Riemannian manifold such as
curvature, parallel transport, geodesics, etc. In this paper, the Christoffel symbols are used
simply to obtain an explicit ODE for the geodesic equations for the learning algorithms
considered.

A final remark on the measurement of angles on Riemannian manifolds is of interest.
It was well understood by workers in the early nineteenth century that for 2-dimensional
surfaces the sum of the internal angles of a triangle is linked to the curvature of the surface.
Indeed, for a triangle the internal angles sum to a value that differs from 180◦ by a factor
that depends only on the curvature and the area of the triangle. Of course the angles must
be measured relative the Riemannian metric that defines the geometry. Thus, the angle
between two vectors at a point in the space is

∠u, v = arccos

(
uTG(x)v

(uTG(x)u)
1
2 (uTG(x)u)

1
2

)
Consider the triangle drawn in Figure 9 constructed from geodesic curves for the ge-

ometry introduced for the EG-algorithm. Earlier it was shown that a smooth change of
coordinates exists that transforms the metric into the Euclidean metric and hence that the
space is flat. Computing the angles of the three points according to formulae above yields
the correct values shown in Table A. As expected the correct calculation leads to total

352



Prior Knowledge and Gradient Descent Learning Algorithms

of 180◦ corresponding to the fact that the preferential structure for the EG-algorithm is
flat. The incorrect values shown are the angles computed without using the Riemannian
metric and correspond to the angles that one observes visually in Figure 9. Summing the
incorrect angles yields something absurd. This example demonstrates the importance of
the Riemannian metric in measuring angles as well as providing a measure of distance.

References

Edwin Abbot. Flatland: A Romance of Many Dimensions. Thrift editions. Dover pubn,
1992. Unabridged version of the revised edition, 1884.

Hirotugu Akaike. The interpretation of improper prior distributions as limits of data de-
pendent proper prior distributions. Journal of the Royal Statistical Society, Series B, 42
(1):46–52, 1980.

Shun-ichi Amari. Differential-Geometrical Methods in Statistics. Springer, Berlin, 1985.

Shun-ichi Amari. Neural learning in structured parameter spaces — natural riemannian
gradient. In Advances in Neural Information Processing Systems 9, 1997.

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10:
251–276, 1998.

Ole E. Barndorff-Nielsen. Parametric Statistical Models and Likelihood. Springer, Berlin,
1988.

William M. Boothby. An Introduction to Differentiable Manifolds. Academic Press, London,
1986.

Joseph T. Chang and David Pollard. Conditioning as disintegration. Statistica Neelandica,
51(3):287–317, 1997.
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Bernhard Riemann. Über die Hypothesen welche der Geometrie zu Grunde liegen. Abhand-
lungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13, 1868.

Christian P. Robert. The Bayesian Choice. Springer, New York, 1994.

Albert N. Shiryaev. Probability. Springer, New York, 2nd edition, 1996.

Victor Solo and Xuan Kong. Adaptive Signal Processing Algorithms. Prentice-Hall, Engle-
wood Cliffs, 1995.

Murray Spivak. A comprehensive introduction to differential geometry. Publish or Perish,
Inc., Wilmington, Delaware, USA, 2nd edition, 1979. 5 volumes.

Manfred K. Warmuth and Arun K. Jagota. Continuous and discrete-time nonlinear gradient
descent: Relative loss bounds and convergence. Preprint, University of California, Santa
Cruz. http://www.cse.ucsc.edu/˜manfred/pubs/differential.ps, September 1997.

Hermann Weyl. Die Idee der Riemannschen Fläche. Teubner, Liepzig, Germany, 1923.
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