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Abstract

Kernel-classifiers comprise a powerful class of non-linear decision functions for binary classification. The
support vector machine is an example of a learning algorithm for kernel classifiers that singles out the con-
sistent classifier with the largest margin, i.e. minimal real-valued output on the training sample, within the set
of consistent hypotheses, the so-callexsion space. We suggest thBayes point machine as a well-founded
improvement which approximates the Bayes-optimal decision by the centre of mass of version space. We
present two algorithms to stochastically approximate the centre of mass of version space: a billiard sampling
algorithm and a sampling algorithm based on the well known perceptron algorithm. It is shown how both
algorithms can be extended to allow for soft-boundaries in order to admit training errors. Experimentally, we
find that — for the zero training error case — Bayes point machines consistently outperform support vector
machines on both surrogate data and real-world benchmark data sets. In the soft-boundary/soft-margin case,
the improvement over support vector machines is shown to be reduced. Finally, we demonstrate that the real-
valued output of single Bayes points on novel test points is a ealifldence measure and leads to a steady
decrease in generalisation error when used as a rejection criterion.

1. Introduction

Kernel machines have recently gained a lot of attention due to the popularisation of the support vector ma-
chine (Vapnik, 1995) with a focus on classification and the revival of Gaussian processes for regression
(Williams, 1999). Subsequently, support vector machines have been modified to handle regression (Smola,
1998) and Gaussian processes have been adapted to the problem of classification (Williams and Barber, 1998;
Opper and Winther, 2000). Both schemes essentially work in the same function space that is characterised
by kernels and covariance functions, respectively. Whilst the formal similarity of the two methods is striking,
the underlying paradigms of inference are very different. The support vector machine was inspired by results
from statistical/PAC learning theory while Gaussian processes are usually considered in a Bayesian frame-
work. This ideological clash can be viewed as a continuation in machine learning of the by now classical
disagreement between Bayesian and frequentistic statistics (Aitchison, 1964). With regard to algorithmics
the two schools of thought appear to favour two different methods of learning and predicting: the support
vector community — as a consequence of the formulation of the support vector machine as a quadratic pro-
gramming problem — focuses on learning as optimisation while the Bayesian community favours sampling
schemes based on the Bayesian posterior. Of course there exists a strong relationship between the two ideas,
in particular with the Bayesian maximum a posteriori (MAP) estimator being the solution of an optimisation
problem.

In practice, optimisation based algorithms have the advantage of a unique, deterministic solution and the
availability of the cost function as an indicator of the quality of the solution. In contrast, Bayesian algorithms
based on sampling and voting are more flexible and enjoy the so-called “anytime” property, providing a
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relatively good solution at any point in time. Often, however, they suffer from the computational costs of
sampling the Bayesian posterior.

In this paper we present the Bayes point machine as an approximation to Bayesian inference for linear
classifiers in kernel space. In contrast to the Gaussian process viewpoint we do not define a Gaussian prior
on the length|w|| of the weight vector. Instead, we only consider weight vectors of lefigth= 1 because
it is only the spatial direction of the weight vector that matters for classification. It is then natural to define a
uniform prior on the resulting ball-shaped hypothesis space. Hence, we determine the centre of mass of the
resulting posterior that is uniform in version space, i.e. in the zero training error region. It should be kept
in mind that the centre of mass is merely an approximation to the real Bayes point from which the name of
the algorithm was derived. In order to estimate the centre of mass we suggest both a dynamic system called
a kernel billiard and an approximative method that uses the perceptron algorithm trained on permutations
of the training sample. The latter method proves to be efficient enough to make the Bayes point machine
applicable to large data sets.

An additional insight into the usefulness of the centre of mass comes from the statistical mechanics
approach to neural computing where the generalisation error for Bayesian learning algorithms has been cal-
culated for the case of randomly constructed and unbiased patté@mper and Haussler, 1991). Thugif
is the number of training examples per weight &nid large, the generalisation error of the centre of mass
scales as.@4/C whereas scaling witf is poorer for the solutions found by the linear support vector machine
(scales as 80/{; see Opper and Kinzel, 1995), Adaline (scales asm/i; see Opper et al., 1990) and
other approaches.

Of course many of the viewpoints and algorithms presented in this paper are based on extensive previous
work carried out by numerous authors in the past. In particular it seems worthwhile to mention that linear
classifiers have been studied intensively in two rather distinct communities: The machine learning community
and the statistical physics community. While it is beyond the scope of this paper to review the entire history
of the field we would like to emphasise that our geometrical viewpoint as expressed later in the paper has
been inspired by the very original paper “Playing billiard in version space” by P. Rujan (Rujan, 1997). Also,
in that paper the term “Bayes point” was coined and the idea of using a billiard-like dynamical system for
uniform sampling was introduced. Both we (Herbrich et al., 1999a,b, 2000a) and Rujan and Marchand (2000)
independently generalised the algorithm to be applicable in kernel space. Finally, following a theoretical
suggestion of Watkin (1993) we were able to scale up the Bayes point algorithm to large data sets by using
different perceptron solutions from permutations of the training sample.

The paper is structured as follows: In the following section we review the basic ideas of Bayesian infer-
ence with a particular focus on classification learning. Along with a discussion about the optimality of the
Bayes classification strategy we show that for the special case of linear classifiers in feature space the centre
of mass of all consistent classifiers is arbitrarily close to the Bayes point (with increasing training sample size)
and can be efficiently estimated in the linear span of the training data. Moreover, we give a geometrical pic-
ture of support vector learning in feature space which reveals that the support vector machine can be viewed
as an approximation to the Bayes point machine. In Section 3 we present two algorithms for the estimation
of the centre of mass of version space — one exact method and an approximate method tailored for large
training samples. An extensive list of experimental results is presented in Section 4, both on small machine
learning benchmark datasets as well as on large scale datasets from the field of handwritten digit recognition.
In Section 5 we summarise the results and discuss some theoretical extensions of the method presented. In
order to unburden the main text, the lengthy proofs as well as the pseudocode have been relegated to the
appendix.

We denoten-tuples by italic bold letters (e.oc= (Xg,...,%n)), vectors by roman bold letters (exj,
random variables by sans serif font (eX). and vector spaces by calligraphic capitalised letters {€)g.

The symboldP, E andl denote a probability measure, the expectation of a random variable and the indicator
function, respectively.
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2. A Bayesian Consideration of Learning

In this section we would like to revisit the Bayesian approach to learning (see Buntine, 1992; MacKay,
1991; Neal, 1996; Bishop, 1995, for a more detailed treatment). Suppose we are given a training sample
z=(xY) = ((X1,¥1),---,(Xm,¥m)) € (X x Y )" of sizemdrawn iid from an unknown distributioRz = Pxy.
Furthermore, assume we are givefixed setH C Y X of functionsh: X — Y referred to asypothesis

space. The task of learning is then to find the functibhwhich performs best on new yet unseen patterns

z= (x,y) drawn according t®xy.

Definition 1 (Learning Algorithm) A (deterministic) learning algorithrl : U3, Z™ — Y X is a map-
ping from training samples z of arbitrary sizz m € N to functions from X to Y. The image of A, i.e
{A(2) |ze Z™} C Y X, is called the effective hypothesis spadd4  of the learning algorithm A for the
training sample sizem € N. If there exists a hypothesis space H C Y X such that for every training sample
sizeme NwehaveH, m C H we shall omit theindiceson H .

In order to assess to quality of a functibre H we assume the existence dfoas functionl : Y xY — R*.
The losd (y,yr) € R" is understood to measure the incurred cost when predigtivigle the true output was
y. Hence we always assume that foryat Y , | (y,y) = 0. A typical loss function for classification is the so
calledzero-onelosslg_1 defined as follows.

Definition 2 (Zero-One Loss) Given a fixed output space Y , the zero-ondoss is defined by

o1 (YY) = lyy -
Based on the concept of a Idsdet us introduce several quality measures for hypothesehl .

Definition 3 (Generalisation and Training Error) Given a probability measure Pxy and a loss | : Y x
Y — R thegeneralisation errdR[h] of afunctionh: X — Y isdefined by

R[h] := Exy [ (h(X),Y)].

Given a training sample z= (x,y) € (X xY)" of szemand aloss|:Y xY — R* the training error
Remp[h, 7] of afunctionh: X — Y isgiven by

m

1
Remp[hvz} = zl (h(X.) ayi) .
m3
Clearly, only the generalisation errBfh] is appropriate to capture the performance fiked classifieth € H
on new patterng = (x,y). Nonetheless, we shall see that the training error plays a crucial role as it provides
an estimate of the generalisation error based on the training sample.

Definition 4 (Generalisation Error of Algorithms) Suppose we are given a fixed learning algorithm A :
Uiy Z™ — Y X. Then for any fixed training sample size m € N the generalisation erroRy,[A] of A is
defined by

Rm[A] := Ezm [RIA(Z)]],

that is, the expected generalisation error of the hypotheses found by the algorithm.
Note that for any loss functioh: Y xY — R™ a small generalisation errd®y[A] of the algorithm.A

guarantees a small generalisation error for most randomly drawn training sazri@eause by Markov’s
inequality we have foe > 0,

Pzm(RIA(Z)] > e-Ezm[RIA(Z)]]) <

o=

Hence we can vievR, [A] also as a performance measureAl hypotheses for randomly drawn training
samplesz. Finally, let us consider a probability measutg over the space of all possible mappings frdm
toY . Then, theaverage generalisation error of a learning algorithm A is defined as follows.
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Definition 5 (Average Generalisation Error of Algorithms) Suppose we are given a fixed learning algo-
rithmA : Uy 1 Z™— Y X . Then for each fixed training sample size m € N the average generalisation error

Rm[A] of A isdefined by
Rm[A] := En [Ezmjn—n [Ex [Evix=xn=n[l ((A(Z)) (), V)]]]] 1)

that is, the average performance of the algorithm's A solution learned over the random draw of training
samples andtarget hypotheses.

The average generalisation error is the standard measure of performance of an algaifitienhave little
knowledge about the potential functit¥ that labels all our data expressed ¥g. Then, the measure (1)
averages out our ignorance about the unknbivtihus considering performance 4fon average.

There is a noticeable relation betweBr [A] and Ry [A] if we assume that given a measwPg, the
conditional distribution of outputg givenx is governed by

Pyix—x(¥) =Pu(H(X) =y). 2

Under this condition we have that B

Rm[A] =Rm[A] .
This result, however, is not too surprising taking into account that under the assumption (2) the rRgasure
fully encodes the unknown relationship between inpuasd outputy.

2.1 TheBayesian Solution

In the Bayesian framework we are not simply interestelaf'in= argmin,.y RIh] itself but in ourknowledge

or belief in h*. To this end, Bayesians use the concepiroér andposterior belief, i.e. the knowledge df*

before having seen any data aatter having seen the data — which in the current case is our training sample
z It is well known that under consistency rules known as Cox’s axioms (Cox, 1946) beliefs can be mapped
onto probability measureBy. Under these rather plausible conditions the only consistent way to transfer
prior beliefPy into posterior beliePyzm_; is therefore given by Bayes’ theorem:

Pzmj—h (2) Pymixm_y t—h (Y)

P T B @] B [Pympnosiion 0]

The second expression is obtained by noticing that

P (h). 3)

Pzmjt—h (2) = Pymxm_y —h (¥) Pxmjn=h (X) = Pymxm_y —h (¥) Pxm (X)

because hypotheses do not have an influence on the generation of patterns. Based on a given loss function
| we can further decompose the first term of the numerator of (3) — known as the likelihdodLet us

assume that the probability of a clasgiven an instancg and an hypothesisis inverse proportional to the
exponential of the loss incurred yon x. Thus we obtain

Prxcann) = oo OIS L exp(—pe1 (h(X).y)
yeY
_ l+exlp(7[3) if 1(h(x),y) :=lo—1(h(x),y) =0 @
T =B it 1(h(x),y) ==lp_1(h(x),y) =1

whereC (x) is a normalisation constant which in the case of the zero-onddosss independeﬁtof x and
B > 0 controls the assumed level of noise. Note that the loss used in the exponentiated loss likelihood function

1. Infact, italready suffices to assume tBafx— [l (¥, Y)] = En [l (y,H (x))], i.e. the prior correctly models the conditional distribution
of the classes as far as the fixed loss is concerned.

2. Note that for loss functions with real-valued arguments this need not be the case which makes a normalisation independent of
quite intricate (see Sollich, 2000, for a detailed treatment).
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is not to be confused with the decision-theoretic loss used in the Bayesian framework, which is introduced
only after a posterior has been obtained in order to reach a risk optimal decision.

Definition 6 (PAC Likelihood) Supposewe are given an arbitrary lossfunction| : Y xY — R™. Then, we
call the function

Pvix=xn=h (¥) == ly=n(x) » (5)
of h the PAC likelihood forh. Note that (5) isthe limiting case of (4) for  — .
Assuming the PAC likelihood it immediately follows that for any prior beRgf the posterior beliePyzm_,
simplifies to
Py (h) ;
Puzn_s(h) = PRV ithev(z)
0 ifhe¢V (2

where the version spatg&(z) is defined as follows (see Mitchell, 1977, 1982).

; (6)

Definition 7 (Version Space) Givenan hypothesisspaceH C Y X andatrainingsamplez= (x,y) € (X x Y )™
of sizem e N the version spac¥ (z) C H isdefined by
z):={heH |Vie{l,...mi:h(x)=yi}.

Since all information contained in the training sampis used to update the pri®y by equation (3) all that
will be used to classify a novel test poiis theposterior belief Pyzm_,.

2.2 The Bayes Classification Strategy

In order to classify a new test point for each clasy the Bayes classification strategy® determines the
loss incurred by each hypothesdiss H applied tox and weights it according to its posterior probability
Pyjzm_z (). The final decision is made for the class Y that achieves the minimum expected loss, i.e.

Bayes; () = argmin B zn- | (H(.y) @)
ye

This strategy has the following appealing property.

Theorem 8 (Optimality of the Bayes Classification Strategy) Suppose we are given a fixed hypothesis space
H C YX. Then, for any training sample sizem € N, for any symmetric loss|:Y x Y — R*, for any two
measures Py and Py, among all learning algorithms the Bayes classification strategy Bayes, given by (7)
minimises the average generalisation error Ry [Bayes,] under the assumption that for each hwith Py (h) > 0

WeY ivxeX:  Eyxaxn=h[l (. Y)]=1(y;h(x)). ®)

Proof Let us consider a fixed learning algorithén Then it holds true that

Rn[A] = En[Ezmp—n [Ex [Evixexn=nll ((A(Z)) (%), Y)]]]]
= Ex[En [Ezmu—n [Evjx—xnn[l ((A(Z)) (x),Y)]]]]
Ex [Ezm [Epjzmz [Eyix—xn=n[l (A (Z)) (x),Y)]]]]

= Ex [Ezm [Epjzm_, [l (A(2)) (X),HX))]]] , ©)

where we exchanged the order of expectations dvém the second line, applied the theorem of repeated
integrals (see, e.g. Feller, 1966) in the third line and finally used (8) in the last line. Using the symmetry
of the loss function, the inner-most expression of (9) is minimised by the Bayes classification strategy (7)

3. The reason we do not call this mapping frdnio Y a classifier is that the resulting mapping is (in general) not within the hypothesis
space considered beforehand.
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for any possible training sampieand any possible test poirt Hence, (7) minimises the whole expression
which proves the theorem. |

In order to enhance the understanding of this result let us consider the simple dasdpf andY =
{-1,+1}. Then, given a particular classifiarc H having non-zero prior probabilitPy (h) > 0, by as-
sumption (8) we require that the conditional distribution of clagsgisenx is delta peaked dt(x) because

Eyix=xh=h(lo-1(%,Y)) = lo_1(y,h(x)),
Pyix=xt=h(=Y) = lyznw)>
PY\X:X,H:h (y) = Ih(x):y .

Although for a fixedh € H drawn according td®y we do not know that Bayes, achieves the smallest gen-
eralisation erroR[Bayes;] we can guarantee that on average over the random drhis tife Bayes classifi-
cation strategy is superior. In fact, the optimal classifier for a fixedH is simplyh itself* and in general
Bayes; (x) # h(x) for at least a fewx € X.

2.3 The Bayes Point Algorithm

Although the Bayes classification strategyisaverage the optimal strategy to perform when given limited
amount of training data it is computationally very demanding as it requires the evaluati®ygh_, (I (H(x),y))
for each possiblg at each new test point(Graepel et al., 2000). The problem arises because the Bayes clas-
sification strategy does not correspond to any one single clagsiiel . One way to tackle this problem is to
require the classified (z) learned from any training sampteo lie within afixed hypothesis spadd C'Y X
containing functiond € H whose evaluation at a particular test potrtan be carried out efficiently. Thus

if it is additionally required to limit the possible solution of a learning algorithm to a given hypothesis space
H C Y X, we can in general only hope to approximBayes,.

Definition 9 (Bayes Point Algorithm) Suppose we are given a fixed hypothesis spaceH € XY and a fixed
loss|: Y xY — R*. Then, for any two measures Px and Py, the Bayes point algorithniyy, is given by

Abp(2) := aagririn Ex [Enjzm_[l (h(X),H(X))]]

that is, for each training sample ze Z™ the Bayes point algorithm chooses the classifier hyp := App(2) € H
that mimics best the Bayes classification strategy (7) on average over randomly drawn test points. The
classifier App(2) is called the Bayes point

Assuming the correctness of the model given by (8) we furthermore remark that the Bayes point algggithm
is the best approximation to the Bayes classification strategy (7) in terms of the average generalisation error,
i.e. measuring the distance of the learning algorithrfor H using the distancéA — Bayes|| = Ry [A] —
Rm[Bayes|. In this sense, for a fixed training samgleve can view theBayes point h,, as a projection of
Bayes, into the hypothesis spad¢ C Y X.

The difficulty with the Bayes point algorithm, however, is the need to know the input distribRfidor
the determination of the hypothesis learned frorihis somehow limits the applicability of the algorithm as
opposed to the Bayes classification strategy which requires only broad prior knowledge about the underlying
relationship expressed via some prior beRef.

4. It is worthwhile mentioning that the only information to be used in any classification strategy is the training sanmmgbkbe prior
Py. Hence it is impossible tdetect which classifieh € H labels a fixedn-tuplex only on the basis of then labelsy observed
on the training sample. Thus, although we might be lucky in guessfoga fixed h€ H andz e Z™ we cannot do better than the
Bayes classification strate@ayes, when considering the average performance — the average being taken over the random choice
of the classifiers and the training samptes
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2.3.1 THE BAYES POINT FORLINEAR CLASSIFIERS

We now turn our attention to the special case of linear classifiers where we assuiNeriteasurements of
the objectsx are taken by featurey : X — R thus forming a (vectorial) feature map: X — K C ¢ =
(01(X),...,0n (X)), Note that by this formulation the special case of vectorial objedssautomatically
taken care of by the identity majp(x) = x. For notational convenience we use the shorthand notatifor

0 (x) such thatx,w) := ZiN=1 ¢, (X)w;. Hence, for a fixed mappinggthe hypothesis space is given by

H = {x—sign((x,w)) |[weW}, ~ W:={weK [|w]|=1}. (10)

As each hypothesis,, is uniquely defined by itsveight vector w we shall in the following consider prior
beliefs Py over W, i.e. possible weight vectors (of unit length), in place of priBggs By construction,

the output space i¥ = {—1,+1} and we furthermore consider the special cask-eflp_1 as defined by
Definition 2. If we assume that the input distribution is spherically Gaussian in the feature Kpate
dimensionalityd = dim(K), i.e.

1
fx (x) = =5 exp( = XII7) , (11)
T2
then we find that the centre of mass
EW\Zm—z [W}
Wem (12)
" [[Ewizn_ W]

is a very good approximation to the Bayes poivd, and converges towardsyy if the posterior belief
Pw/zm_, becomes sharply peaked (for a similar result see Watkin, 1993).

Theorem 10 (Optimality of the Centre of Mass) Suppose we are given a fixed mapping ¢ : X — K C 2.
Then, for all me N, if Px possesses the density (11) and the prior belief is correct, i.e. (8) is valid, the
average generalisation error of the centre of mass as given by (12) always fulfils

‘ﬁm[ﬂcm} —Rm [Abp] ‘ <Ez[k(e(2))],

where 13 €
arccoge)  1-¢ ife <0.23
o 2
K(E—l) : { 0.115_ otherwise ’
and
E(Z) = min |<Wcm7W>‘ .

W:Pyy zm_z(W)>0

The lengthy proof of this theorem is given in Appendix A.1. The interesting fact to note about this result is
that lime_,1 ¥ (¢) = 0 and thus whenever the prior belRfy is not vanishing for some,

lim Ezn[x(e(2))] =0,

because for increasing training sample size the posterior is sharply peaked at the weight vector labelling the
dat®. This shows that for increasing training sample size the centre of mass (under the pEsigriar,)

is a good approximation to the optimal projection of the Bayes classification strategy Baybe point.
Henceforth, any algorithm which aims at returning the centre of mass under the poBigper; is called

a Bayes point machine. Note that in the case of the PAC likelihood as defined in Definition 6 the centre of
mass under the posteriByyzm_, coincides with the centre of mass of version space (see Definition 7).

5. This should not be confused withwhich denotes the samp(&, ..., xm) of training objects.
6. This result is a slight generalisation of the result in Watkin (1993) which only proved this to be true for the unifor®\fprior
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N {wl(x, w = 0

Figure 1: Shown is the margm= v« (w) = (X,w) under the assumption thiv|| = ||x|| = 1. At the same
time, a (length of the dotted line) equals the distancexdfom the hyperplangx | (x,w) =0}
(dashed line) as well as the distance of the weight vegtiyrom the hyperplangw | (x,w) =0}
(dashed line). Note, however, that the Euclidean distance &bm the separating boundary
{weW |(x,w) =0} equalsh(a) whereb is a strictly monotonic function of its argument.

2.4 A (Pseudo) Bayesian Derivation of the Support Vector Machine

In this section we would like to show that the well known support vector machine (Boser et al., 1992; Cortes,
1995; Vapnik, 1995) can also be viewed as an approximation to the centre of mass of versiovi @ace
the noise free scenario, i.e. considering the PAC likelihood given in Definition 6, and additionally assuming
that

vx ex: il = [[¢ (%) = const

In order to see this let us recall that the support vector machine aims at maximisimgriia v, (w) of the
weight vector w on the training sample z given by

. Vi (Xi, W) 1 .
= —_ = i (Xi 13
T T T ey Y 0 13
———
'YXi(W)

which for allw of unit length is merely the minimal real-valued output (flipped to the correct sign) over the
whole training sample. In order to solve this problem algorithmically one takes advantage of the fact that
fixing the real-valued output to one (rather than the ng¢mij of the weight vectokv) renders the problem

of finding the margin maximisexsyy as a problem with a quadratic objective functi(ﬁm/(]2 = w'w) under

linear constraintsy (x;,w) > 1), i.e.

Wsym = argma><< min _y; <Xi7W>> (14)
weW ie{1,...m}
) 2
S L ——— () F )

Note that the set of weight vectors in (15) are called the weight vectors aftimmical hyperplanes (see
Vapnik, 1998, p. 412) and that this sethighly dependent on the given training sample. Nonetheless, the
solution to (15) is (up to scaling) equivalent to the solution ofy @4a formulation much more amenable for
theoretical studies.

Interestingly, however, the quantity, (w) as implicitly defined in (13) is not only the distance of the
pointy;x; from the hyperplane having the normalbut also||x;|| times the Euclidean distance of the point
w from the hyperplane having the normgk; (see Figure 1). Thug,(w) can be viewed as the radius of
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the ball {ve W | |w—V| <b(y(w))} that only contains weight vectors in version spatg). Here,

b:RT — R™T is a strictly monotonic function of its argument and its effect is graphically depicted in Figure

1. As a consequence thereof, maximising the maygiw) over the choice ol returns the classifiesym

that is the centre of the largest ball still inscribable in version space. Note that the whole reasoning relied
on the assumption that all training poingshave a constant norm in feature sp#ce If this assumption is
violated, each distance of a classifieito the hyperplane having the normg; is measured on a different

scale and thus the points with the largest ndjx]| in feature spac& have the highest influence on the
resulting solution. To circumvent this problem is has been suggested elsewhere that input vectors should be
normalised in feature space before applying any kernel method — in particular the support vector machine
algorithm (see Herbrich and Graepel, 2001; Schélkopf et al., 1999; Joachims, 1998; Haussler, 1999). Fur-
thermore, all indicedsy C {1,...,m} at which the minimuny; (x;,wsym) in (14) is attained are the ones

for whichy; (x;,w) = 1 in the formulation (15). As the latter are callsgpport vectors we see that the sup-

port vectors are the training points at which the largest inscribable ball touches the corresponding hyperplane
{weW | (yi(xi,w) =0)}.

2.5 Applying theKernel Trick

When solving (15) over the possible choicesno& W it is well known that the solutiowsyy admits the
following representation

m
Wsvm = Z i X,
i=1
that is the solution to (15) must live in the linear span of the training points. This follows naturally from the
following theorem (see also Scholkopf et al., 2001).

Theorem 11 (Representer Theorem) Suppose we are given a fixed mapping ¢ : X — K C ¢, a training
samplez= (x,y) € Z™, a cost functionc: XM x Y M x R™ — R U {ee} strictly monotonically decreasing in
the third argument and the class of linear functionsin K as given by (10). Then any w, € W defined by

w :=argminc(x,y, ((X1,w) ..., (Xm,W))) (16)
weW

admits a representation of the form
m
Jo e R™M: Wz =) 0iX;. 17)
i=1

The proof is given in Appendix A.2. In order to see that this theorem applies to support vector machines note
that (14) is equivalent to the minimiser of (16) when using

C(Xay7 (<X13W> PEEE) <Xm7W>)) = I;/nelr;)_yl <Xi 5W> )
which is strictly monotonically decreasing in its third argument. A slightly more difficult argument is neces-
sary to see that the centre of mass (12) can also be written as a minimiser of (16) using a specific cost function
c. At first we recall that the centre of mass has the property of minimigipgm_, {HW—WHZ} over the
choice ofw € W (see also (30)).

Theorem 12 (Sufficiency of thelinear span) Suppose we are given a fixed mapping ¢ : X — K C EQ. Let
us assume that Pyy is uniform and Py x—yw—w (¥) = f (sign(y(x,w))), i.e. the likelihood depends on the
sign of the real-valued output y(x,w) of w. Let Ly := {3, 0ix | o € R™} be the linear span of mapped
data points {x1, . ..,Xm} and Wy := W nLy. Then for any training sampleze Z™ and any w € W

Joy 1=V Pz () =C- [ [w—vI dPwizn_2(v) . 18)
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that is, up to a constant C ¢ R* that is independent of w it suffices to consider vectors of unit length in the
linear span of the mapped training points {X1,...,Xm}-

The proof is given in Appendix A.3. An immediate consequence of this theorem is the fact that we only
need to consider the—dimensional sphefd/y in order to find the centre of mass under the assumption of a
uniform prior Pyy. Hence a loss functioasuch that (16) finds the centre of mass is given by

CX,Y, ({(X1, W), ..., (Xm,W))) =2 (1—/Rm20€i <XiaW>dPAZm(x,y)>

whereP zm_; is only non-zero for vectora such that|>™ ; oixi|| = 1 and is independent of.
The tremendous advantage of a representation of the solugiby (17) becomes apparent when consid-
ering the real-valued output of a classifier at any given data point (either training or test point)

m m m
(Wz,X) = <Zocixi,x> =Y 0 (Xi,X) = > 0ik(%;,X) .
i=1 i=1 i=1
Clearly, all that is needed in the feature spKcés theinner product function

K(X.%) := (0(¥),0(X)) - (19)

Reversing the chain of arguments indicates how the kernel trick may be used to find an efficient implementa-
tion. We fix a symmetric functiok : X x X — R calledkernel and show that there exists a feature mapping

o X =K C f’g‘ such that (19) is valid for atk,Xx € X. A sufficient condition fork being a valid inner
product function is given by Mercer’s theorem (see Mercer, 1909). In a nutshell, whenever the evaluation of
kat any given sampléxy, . . ., Xm) results in a positive semidefinite matf®; := k(x;, X;) thenkis a so called

Mercer kernel. The matrixG is called the Gram matrix and is the only quantity needed in support vector and
Bayes point machine learning. For further details on the kernel trick the reader is referred to Schdélkopf et al.
(1999); Cristianini and Shawe-Taylor (2000); Wahba (1990); Vapnik (1998).

3. Estimating the Bayes Point in Feature Space

In order to estimate the Bayes point in feature splceve consider a Monte Carlo method, i.e. instead
of exactly computing the expectation (12) we approximate it by an average over weight wealoasvn
according toPyyzm_, and restricted t&Vy (see Theorem 12) . In the following we will restrict ourselves to
the PAC likelihood given in (5) an®y being uniform on the unit sphed c K. By this assumption we
know that the posterior is uniform over version space (see (6)). In Figure 2 we plotted an example for the
special case dfl = 3—dimensional feature spabe.

It is, however, already very difficult to sample uniformly from version sp@ce) as this set of points
lives on a convex polyhedron on the unit sphere\M,. In the following two subsections we present two
methods to achieve this sampling. The first method develops on an idea of Rujan (1997) (later followed up by
a kernel version of the algorithm in Rujan and Marchand, 2000) that is based on the idea of playing billiards
in version spac¥ (z), i.e. after entering the version space with a very simple learning algorithm such as the
kernel perceptron (see Algorithm 1) the classifieis considered as a billiard ball and is bounced for a while
within the convex polyhedroW (z). If this billiard is ergodic with respect to the uniform distribution over
V (2), i.e. the travel time of the billiard ball spent in a subgeC V (z) is proportional tc%, then averaging
over the trajectory of the billiard ball leads in the limit of an infinite number of bounces to the centre of mass
of version space.

The second method presented tries to overcome the large computational demands of the billiard method
by only approximately achieving a uniform sampling of version space. The idea is to use the perceptron

7. Note that by Theorem 12 it suffices to sample from the projection of the version spad&/gnto
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Figure 2: Plot of a version space (convex polyhedron containing the black/dat)in a 3—dimensional
feature spac& . Each hyperplane is defined by a training example via its normal vgstor

learning algorithm in dual variables with different permutatidhs{1,...,m} — {1,...,m} so as to obtain
different consistent classifiers; € V (z) (see Watkin, 1993, for a similar idea). Obviously, the number of
different samples obtained is finite and thus it is impossible to achieve exactness of the method in the limit of
considering all permutations. Nevertheless, we shall demonstrate that in particular for the task of handwritten
digit recognition the achieved performances are comparable to state-of-the-art learning algorithms.

Finally, we would like to remark that recently there have been presented other efficient methods to es-
timate the Bayes point directly (Rychetsky et al., 2000; Minka, 2001). The main idea in Rychetsky et al.
(2000) is to work out all cornerg; of version space and average over them in order to approximate the
centre of mass of version space. Note that there are exaatlyrners because theth cornerw; satisfies
<Xj,Wi> =0forall j #iandy; (xj,w;j) > 0. If X = (X, ...,Xm) is theN x mmatrix of mapped training points
X = (X1,...,Xn) flipped to their correct side and we use the approach (17yfiis simplifies to

X'w; = X'Xo;j = Goj = (0,...,0,y;,0...,0) =:yig

where the r.h.s. is thieth unit vector multiplied by;. As a consequence, the expansion coefficientf the
i—th cornerw; can easily be computed as = y;G~1g and then need to be normalised such thvaf| = 1.
The difficulty with this approach, however, is the fact that the inversion afitken Gram matrixG is O (m3)
and is thus as computationally complex as support vector learning while not enjoying the anytime property
of a sampling scheme.

The algorithm presented in Minka (2001, Chapter 5) (also see Opper and Winther, 2000, for an equivalent
method) uses the idea of approximating the posterior med&pgn_, by a product of Gaussian densities
so that the centre of mass can be computed analytically. Although the approximation of the cut-off posterior
over Py zm_; resulting from the delta-peaked likelihood given in Definition 6 by Gaussian measures seems
very crude at first glance, Minka could show that his method compares favourably to the results presented in
this paper.

3.1 Playing Billiardsin Version Space

In this subsection we present the billiard method to estimate the Bayes point, i.e. the centre of mass of version
space when assuming a PAC likelihood and a uniform grigrover weight vectors of unit length (the pseudo
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{w | ya(xq, w) =0} {w | ys(x3, w) = 0}

Dia/ (w | olxe, w) = 0}

bs

{w | yi(x1, w) =0}

Figure 3: Schematic view of the kernel billiard algorithm. Startind@t V (z) a trajectory of billiard
bouncedy,...,bs,... is calculated and then averaged over so as to obtain an esfimat the
centre of mass of version space.

code is given on page 275). By Theorem 12 each positiohthe billiard ball and each estimate of the
centre of mass df (z) can be expressed as linear combinations of the mapped input points, i.e.

m m
w=Yoixi, b=> vx, o,yER™.
i=1 i=1
Without loss of generality we can make the following ansatz for the direction veadbthe billiard ball
m
v=>YBixi, PBeR™
i=1

Using this notation inner products and norms in feature spat@come

INgE!

<b,V>=,121%Bjk(Xi7XJ)> ||bH2=_Zlek(Xi7Xj)7 (20)
i=1j= =

wherek : X x X — R is a Mercer kernel and has to be chosen beforehand. At the beginning we assume
thatwo = 0 < o = 0. Before generating a billiard trajectory in version spee) we first run any learning
algorithm to find an initial starting poitty inside the version space (e.g. support vector learning or the kernel
perceptron (see Algorithm 1)). Then the kernel billiard algorithm consists of three steps (see also Figure 3):

1. Determine the closest boundary in directigistarting from current positiob;.

Since it is computationally very demanding to calculate the flight time of the billiarcbbaeodesics

of the hyper-spher&Vy (see also Neal, 1997) we make use of the fact that the shortest distance in

Euclidean space (if it exists) is also the shortest distance on the hyper-$ghefihus, we have for

the flight timer; of the billiard ball at positiorb; in directionv; to the hyperplane with normal vector

YiX|

g = —4Xi) (21)
(Vi x})

After calculating allmflight times, we look for the smallest positive, i.e.

c= argmin ;.
je{i|u>0}

256



BAYES POINT MACHINES

Determining the closest bounding hyperplane in Euclidean space rather than on geodesics causes prob-
lems if the surface of the hyper-sphéhk is almost orthogonal to the direction vectgrin which case
Tc — oo. If this happens we randomly generate a direction vegtpointingtowards the version space
V (z). Assuming that the last bounce took place at the hyperplane having ngymathis condition
can easily be checked by
Yo (Vi,Xg) > 0. (22)

Note that since the samples are taking from the bouncing points the above procedure of dealing with
the curvature of the hyper-sphere does not constitute an approximation but is exact. An alternative
method of dealing with the problem of the curvature of the hyper-spfiérean be found in Minka
(2001, Section 5.8)

. Update the billiard ball's position o, 1 and the new direction vector tg, ;.
The new poinb;; and the new directiom; 1 are calculated from

biyi = bi+1evi, (23)
<Vi)XC>

C.
[Ixcl?

Vigr = Vi— (24)

Afterwards the positiob;_; and the direction vectaf 1 need to be normalised. This is easily achieved
by equation (20).

. Update the centre of maas of the whole trajectory by the new line segment frbpto b1 calculated
on the hyper-sphend/y.

Since the solutiow.. lies on the hyper-sphed/y (see Theorem 11) we cannot simply update the
centre of mass using a weighted vector addition. Let us introduce the opetgtiacting on vectors
of unit length. This function has to have the following properties

lset|® = 1,
[t —s@ut| ulit—sll,
sout = pi((sit),Ws+p2((st).Wt,
p1((st),))>0 , p2({(st),n) >0.

This rather arcane definition implements a weighted addition afidt such thatu is the fraction
between the resulting chord lengh— sy t|| and the total chord lengtfit —s||. In Appendix A.4
it is shown that the following formulae fquy ((s,t) 1) andp2 ({s,t), ) implement such a weighted
addition

2 _ 12 —
prllst. ) — u\/—%,

Pz(<57t>7p) = _p1(<sat>7u)<s7t>:t(“2(1_<Svt>)_1)'

By assuming a constant line density on the manif#ld) the whole line betweeh; andb;, 1 can be
represented by the midpoint on the manifold/ (z) given by

_ bit+biy
103 +bia ]|
Thus, one updates the centre of mass of the trajectory by

=

- - T Ty,
Wit1=p1 <<W"m>’5i+§i>wl+p2 (<W"m>75i+§i> ™
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where&; = ||b; —bj.1]| is the length of the trajectory in theth step andg; = Zij:lﬁj for the ac-
cumulated length up to thieth step. Note that the operatigy, is only an approximation to addition
operation we sought because an exact weighting would require the arc lengths rather than chord lengths.

As a stopping criterion we suggest computing an upper boung aihe weighting factor of the new part of
the trajectory. If this value falls below a pre-specified threshold (TOL) we stop the algorithm. Note that the
increase irE; will always lead to termination.

3.2 Large Scale Bayes Point Machines

Clearly, all we need for estimating the centre of mass of version space (12) is a set of unit length weight
vectorsw; drawn uniformly fromV (z). In order to save computational resources it might be advantageous
to achieve a uniform sample only approximately. The classical perceptron learning algorithm offers the
possibility to obtain up ton! different classifiers in version space simply by learning on different permutations
of the training sample. Of course due to the sparsity of the solution the number of different classifiers obtained
is usually considerably less.

A classical theorem to be found in Novikoff (1962) guarantees the convergence of this procedure and
furthermore provides an upper bound on the nuniteémistakes needed until convergence. More precisely,
if there exists a classifiensym with marginy; (wsym) > 0 (see (13)) then the number of mistakes until
convergence — which is an upper bound on the sparsity of the solution — is not more?fhatwsym),
where¢ is the smallest real number such thii||x < ¢. The quantityy, (Wsym) is maximised for the
solutionwsyy found by the support vector machine, and whenever the support vector machine is theoretically
justified by results from learning theory (see Shawe-Taylor et al., 1998; Vapnik, 1998) the?yatiowsym)
is considerably less tham, sayd < m. Algorithmically, we can benefit from this sparsity by the following

“trick”: since .
W= 2 O X
i=1

all we need to store is the-dimensional vectow.. Furthermore, we keep track of the-dimensional vector
o of real-valued outputs

m
0 = (Xi,Wr) = > ajk(x;,X;)
=

of the current solution at thieth training point. By definition, in the beginning= 0= 0. Now, ifgjy; <0

we updatey; by o +y; and update® by o; < o +yik(x;,X;) which requires onlyn kernel calculations (the
evaluation of thé—th row of the Gram matrix3). In summary, the memory requirement of this algorithm

is 2m and the number of kernel calculations is not more tdam. As a consequence, the computational
requirement of this algorithm is no more than the computational requirement for the evaluation of the margin
vz(Wsym)! We suggest to use this efficient perceptron learning algorithm in order to obtain samftes

the computation of the centre of mass (12).

In order to investigate the usefulness of this approach experimentally, we compared the distribution of
generalisation errors of samples obtained by perceptron learning on permuted training samples with samples
obtained by a full Gibbs sampling (see Graepel and Herbrich, 2001, for details on the kernel Gibbs sampler).
For computational reasons, we used only 188 training patterns and 453 test patterns of the classes “1” and
“2” from the MNIST data sét In Figure 4 (a) and (b) we plotted the distribution over 1000 random samples
using the kernél

k(xX) = ((xX)+1)°. (25)
Using a quantile-quantile (QQ) plot technique we can compare both distributions in one graph (see Figure 4
(c)). These plots suggest that by simple permutation of the training sample we are able to obtain a sample
of classifiers exhibiting a similar distribution of generalisation error to the one obtained by time-consuming
Gibbs sampling.

8. This data set is publicly availablelgtttp: //www.research.att.com/~yann/ocr/mnist/.
9. We decided to use this kernel because it showed excellent generalisation performance when using the support vector machine.
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Figure 4: (a) Histogram of generalisation errors (estimated on a test set) using a kernel Gibbs séimpler.
Histogram of generalisation errors (estimated on a test set) using a kernel percépt€@q. plot
of distributions (a) and (b). The straight line indicates that the two distributions only differ by an
additive and multiplicative constant, i.e. they exhibit the same rate of decay.

A very advantageous feature of this approach as compared to support vector machines are its adjustable
time and memory requirements and the “anytime” availability of a solution due to sampling. If the training
sample grows further and we are not able to spend more time learning, we can adjust the number of samples
w used at the cost of slightly worse generalisation error (see also Section 4).

3.3 Extension to Training Error

To allow for training errors we recall that the version space conditions are given by
m
Vi) ez yi(xi,w) =y Y ok(x,x) > 0. (26)
j=1
Now we introduce the following version space conditions in place of (26):

m
V(%,Yi) € z: Yi Y, ok (X, %j) > —Ayioik(xi, %), (27)
=i

whereA > 0 is an adjustable parameter related to the “softness” of version space boundaries.

Clearly, considering this from the billiard viewpoint, equation (27) can be interpreted as allowing pene-
tration of the walls, an idea already hinted at in Rujan (1997). Since the linear decision function is invariant
under any positive rescaling of expansion coefficienta factore; on the right hand side makésscale in-
variant as well. Although other ways of incorporating training errors are conceivable our formulation allows
for a simple modification of the algorithms described in the previous two subsections. To see this we note
that equation (27) can be rewritten as

m
j=

Y (X, Vi) € Z: Vi ( o (1+Mij)k(>q,x,-)> >0.
1

Hence we can use the above algorithms but with an additive correction to the diagonal terms of the Gram ma-
trix . This additive correction to the kernel diagonals is similar to the quadratic margin loss used to introduce

a soft margin during training of support vector machines (see Cortes, 1995; Shawe-Taylor and Cristianini,

2000). Another insight into the introduction of soft boundaries comes from noting that the distance between

two pointsx; andx; in feature spac& can be written

i=xill* =l x|~ 206.%3) -
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A=2

Figure 5: Parameter spaces for a two dimensional toy problem obtained by introducing training error via an
additive correction to the diagonal term of the kernel matrix. In order to visualise the resulting
parameter space we fixad= 3 and normalised all axes by the product of eigenvalygsi,Az.

See text for further explanation.

which in the case of points of unit length in feature space becorfies-2 —Kk(x;,X;)). Thus, if we add\
to the diagonal elements of the Gram matrix, the points become equidistantfes. This would give the
resulting version space a more regular shape. As a consequence, the centre of the largest inscribable ball
(support vector machine solution) would tend towards the centre of mass of the whole of version space.
We would like to recall that the effective parameter space of weight vectors considered is given by

m m m
WXZ: WZZOCiXi ||W||2:220ciocj<xi,x,->:l .
i=1 i=1j=1
In terms ofa this can be rewritten as

{OLERm|OL/GOL=1} Gij:<Xi,Xj>:k(Xi,Xj).

Let us represent the Gram matrix by its spectral decompositionGi:e.UAU’ whereU'U = | andA =
diag(A1, . ..,Am) being the diagonal matrix of eigenvalugs Thus we know that the parameter space is the
set of all coefficientsx = U’ o, which fulfil

{aeR™ d'Aa=1}.

This is the defining equation of am—dimensional axis parallel ellipsoid. Now adding the texno the
diagonal ofG makesG a full rank matrix (see Micchelli, 1986). In Figure 5 we plotted the parameter space
for a 2D toy problem using onlyn = 3 training points. Although the parameter space is 3—dimensional for
all » > 0 we obtain a pancake like parameter space for small valugskdr A — o the seto of admissible
coefficients becomes the-dimensional ball, i.e. the training examples become more and more orthogonal
with increasingh. The way we incorporated training errors corresponds to the choice of a new kernel given
by

kK (X, X) := K(X,X) + A - ly—x.
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Figure 6: Version spacés(z) for two 3—dimensional toy probleméL eft) One can see that the approxima-
tion of the Bayes point (diamond) by the centre of the largest inscribable ball (cross) is reasonable
if the version space is regularly shap€Right) The situation changes in the case of an elongated
and asymmetric version spade€z).

Finally, note that this modification of the kernel haseffect on new test pointg ¢ x that are not elements
of the training sampl&. For an explanation of the effect afin the context of Gaussian processes see Opper
and Winther (2000).

4. Experimental Results

In this section we present experimental results botiJaiversity of California, Irvine (UCI) benchmark
dataset® and on two bigger task of handwritten digit recognition, namé§postal service (USPS) and
modified National Institute of Sandards (MNIST) digit recognition tasks. We compared our results to the
performance of a support vector machine using reported test set performance from Réatsch et al. (2001) (UCI)
Scholkopf (1997, p. 57) (USPS) and Cortes (1995) (MNIST). All the experiments were done using Algorithm

2 in Appendix B.

4.1 Artificial Data

For illustration purposes we setup a toy dataset of 10 training and 10000 test pdRits Tie data points

were uniformly generated ifi-1, 1]3 and labelled by a randomly generated linear decision rule using the
kernelk(x,X) = (x,X). In Figures 6 we illustrate the potential benefits of a Bayes point machine over a
support vector machine for elongated version spaces. By using the billiard algorithm to estimate the Bayes
point (see Subsection 3.1), we were able to track all positipmghere the billiard ball hits a version space
boundary. This allows us to easily visualise the version spedes For the example illustrated in Figure

6 (right) the support vector machine and Bayes point solutions with hard margins/boundaries are far apart
resulting in a noticeable reduction in generalisation error of the Bayes point machines (8.0%) compared to
the support vector machine (15.1%) solution whereas for regularly shaped version spaces (Figure 6 (left)) the
difference is negligible (6.1% to 6.0%).

10. publicly available atittp: //www.ics.uci.edu/~mlearn/MLRepository.html.
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SVM BPM

Figure 7: Decision functions for a 2D toy problem of a support vector machine (M) and Bayes point
machine (BPM)right) using hard margins\(= 0) and RBF kernels witls = 1. Note that the
Bayes point machine result in a much “flatter” function sacrificing margitiwsym) = 0.036 —
vz (Wem) = 0.020) for smoothness.

In a second illustrative example we compared the “smoothness” of the resulting decision function when
using kernels both with support vector machines and Bayes point machines. In order to model a non-linear
decision surface we used the radial basis function (RBF) kernel

k(x,X) :exp(—”X_WZ) ) (28)

202

Figure 7 shows the resulting decision functions in the hard margin/boundary case. Clearly, the Bayes point
machine solution appears much smoother than the support vector machine solution although its geometrical
margin of Q020 is significantly smaller.

The above examples should only be considered as aids to enhance the understanding of the Bayes point
machines algorithm’s properties rather than strict arguments about general superiority.

4.2 UCI Benchmark Datasets

To investigate the performance on real world datasets we compared hard margin support vector machines to
Bayes point machines with hard boundarigs=0) when using the kernel billiard algorithm described in
Subsection 3.1. We studied the performance on 5 standard benchmarking datasets from the UCI Repository,
andbanana andwaveform, two toy datasets (see Ratsch et al., 2001). In each case the data was randomly
partitioned into 100 training and test sets in the ratio 60%:40%. The means and standard deviations of the
average generalisation errors on the test sets are presented as percentages in the columsiahgaded
margin) andBpM (A = 0) in Table 1. As can be seen from the results, the Bayes point machine outperforms
support vector machines on almost all datasets at a statistically significant level. Note, however, that the
result of thet-test is strictly valid only under the assumption that training and test data were independent —
an assumption which may be violated by the procedure of splitting the one data set into 100 different pairs of
training and test sets (Dietterich, 1998). Thus, the resulpingalues should serve only as an indication for
the significance of the result.

In order to demonstrate the effect of positivésoft boundaries) we trained a Bayes point machine with
soft boundaries and compared it to training a support vector machine with soft margin using the same Gram
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SVM (hard margin)| BPM (hard boundary) o | p-value
Heart 25.4+0.40 22.8+0.34 10.0| 1.00
Thyroid 5.3t0.24 4.4+0.21 3.00| 1.00
Diabetes 33.14+0.24 32.0+0.25 5.0 1.00
Waveform 13.0+0.10 12.1+0.09 20.0| 1.00
Banana 16.2+0.15 15.1+0.14 0.5 1.00
Sonar 15.4+0.37 15.9+0.38 1.0 0.01
lonosphere 11.9+0.25 11.54+0.25 15 0.99

Table 1: Experimental results on seven benchmark datasets. We used the RBF kernel given in (28) with
values ofc found optimal for SVMs. Shown is the estimated generalisation error in percent. The
standard deviation was obtained on 100 different runs. The final column givgs-tladues of
a pairedt—test for the hypothesisBPM is better than SYM” indicating that the improvement is
statistically significant.

matrix (see equation (27)). It can be shown that such a support vector machine corresponds to a soft margin
support vector machine where the margin slacks are penalised quadratically (see Cortes, 1995; Shawe-Taylor
and Cristianini, 2000; Herbrich, 2001). In Figure 8 we have plotted the generalisation error as a funktion of
for the toy problem from Figure 6 and the datalseirt using the same setup as in the previous experiment.
We observe that the support vector machine witlizesoft margin achieves a minimum of the generalisation
error which is close to, or just above, the minimum error which can be achieved using a Bayes point machine
with positiveA. This may not be too surprising taking the change of geometry into account (see Section 3.3).
Thus, also the soft margin support vector machine approximates Bayes point machine with soft boundaries.
Finally we would like to remark that the running time of the kernel billiard was not much different from
the running time of our support vector machine implementation. We did not use any chunking or decomposi-
tion algorithms (see, e.g. Osuna et al., 1997; Joachims, 1999; Platt, 1999) — which in case of support vector
machines would have decreased the running time by orders of magnitudes. The most noticeable difference in
running time was with theaveform andbanana dataset where we are givem= 400 observations. This can
be explained by the fact that the computational effort of the kernel billiard mettﬁ)st mz) whereB s the
number of bounces. As we set our tolerance criterion TOL for stopping veryxo#0(%), the approximate
numberB of bounces for these datasets vigas 1000. Hence, in contrast to the computational effort of
using the support vector machinesQ)(m3) the numbeB of bounces lead to a much higher computational
demand when using the kernel billiard.

4.3 Handwritten Digit Recognition

For the two tasks we now consider our inputs msen grey value images which were transformed infe
dimensional vectors by concatenation of the rows. The grey values were taken from {lde. seR255}.

All images were labelled by one of the ten classes “0” to “9”. For each of the ten chass¢§, ..., 9} we
ran the perceptron algorithin= 10 times each time labelling all training points of clasBy +1 and the
remaining training points by-1. On a Pentium 111 500 MHz with 128 MB memory each learning trial took
10— 20 minutes (MNIST) or - 2 minutes (USPS), respectivély For the classification of a test image

11. Note, however, that we made use of the fact that0% of the grey values of each image are 0 since they encode background.
Therefore, we encoded each image as an index-value list which allows much faster computation of the inner (raHacts
speeds up the algorithm by a factor of 2-3.
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Figure 8: Comparison of soft boundary Bayes point machine with soft margin support vector machine. Plot-
ted is the generalisation error versufor a toy problem using linear kernefeft) and theheart
dataset using RBF kernels with= 3.0 (right). The error bars indicate one standard deviation of
the estimated mean.

we calculated the real-valued output of all 100 different classtfidrg

Il M3

. ) (Oti)jk(Xj,X)
fo = W) =
([wi 1] Y 3 (00), (o) <k (¥ Xs) /KOG X)

r=1s=1

where we used the kernlebiven by (25). Here((xi)j refers to the expansion coefficient corresponding to the
i—th classifier and th¢-th data point. Now, for each of the ten classes we calculated the real-valued decision
of the Bayes point estimat@;m, by

L
fopy (X) = (X, Wemy) = L 2 (X, Wiy ) -

In a Bayesian spirit, the final decision was carried out by

hpp (X) := argmax fppy (X) .
ye{0,...,.9}

Note thatfypy (X) can be interpreted as an (unnormalised) approximation of the posterior probabilixyghat

of classy when restricted to the function class (10) (see Platt, 2000). In order to test the dependence of the
generalisation error on the magnitude may,, (x) we fixed a certain rejection ratec [0, 1] and rejected the

set ofr - 10000 test points with the smallest value of mdg,y (X).

MNIST Handwritten Digits In the first of our large scale experiment we used the full MNIST dataset
with 60000 training examples and 10000 test examples of 28 grey value images of handwritten digits.

The plot resulting from learning only 10 consistent classifiers per class and rejection based on the real-
valued output of the single Bayes points is depicted in Figure 9 (left). As can be seen from this plot, even
without rejection the Bayes point has excellent generalisation performance when compared to support vector
machines which achieve a generalisation erréf &f4%. Furthermore, rejection based on the real-valued

12. For notational simplicity we assume that the firgflassifiers are classifiers for the class “0”, the riefdr class “1” and so on.

13. Note that in this subsectigrranges from{0, ..., 9}.

14. The result of L% with the kernel (25) and a polynomial degree of four could not be reproduced and is thus considered invalid
(personal communication with P. Haffner). Note also that the best results with support vector machines were obtained when using
a soft margin.
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Figure 9: Generalisation error as a function of the rejection rate for the MNIST and USPS ddtactgt.
For MNIST, the support vector machine achieved 1.4% without rejection as compared to 1.46% for
the Bayes point machine. Note that by rejection based on the real-valued output the generalisation
error could be reduced to 0.1% indicating that this measure is related to the probability of mis-
classification of single test point§Right) On USPS, the support vector machine achieved 4.6%
without rejection as compared to 4.73% for the Bayes point machine.

output fop (X) turns out to be excellent thus reducing the generalisation erraf %.00ne should also bear
in mind that the learning time for this simple algorithm was comparable to that of support vector machines
which needr 8 hours per digh® (see Platt, 1999, p. 201, Table 12.2).

USPS Handwritten Digits In the second of our large scale experiments we used the USPS dataset with
7291 training examples an 2007 test examples ok 16 grey value images of handwritten digits. The
resulting plot of the generalisation error when rejecting test examples based on the real-valued outputs of
the single Bayes points is shown in Figure 9 (right). Again, the resulting classifier has a generalisation error
performance comparable to support vector machines whose best resultS%re/den using a soft margin

and 46% in the hard margin scenario. In Figure 10 we plotted the 25 most commonly used images

with non-zero coefficientgn;); across the 100 different classifiers learned. Though no margin maximisation
was performed it turns out that in accordance with the “support vector philosophy” these are the hard patterns
in the datasets with respect to classification. Moreover, as can be seen from the 1-st, 6-th and 8-th example
there is clearly noise in the dataset which could potentially be taken into account using the techniques outlined
in Subsection 3.3 at no extra computational cost.

5. Discussion and Conclusion

In this paper we presented two estimation methods for the Bayes point for linear classifiers in feature spaces.
We showed how the support vector machine can be viewed as an (spherical) approximation method to the
Bayes point hyperplane. By randomly generating consistent hyperplanes playing billiards in version space we
showed how to stochastically approximate this point. In the field of Markov Chain Monte Carlo methods such
approaches are known egflective dice sampling (Neal, 1997). Current investigations in this field include

the question of ergodicity of such methods. The second method of estimating the Bayes point consists of
running the perceptron algorithm with several permutation of the training sample in order to average over the
sample thereby obtained. By its inherent simplicity it is much more amenable to large scale problems and in
particular compares favourably to state-of-the-art methods such as support vector learning.

15. Recently, DeCoste and Scholkopf (2002) demonstrated that an efficient implementation of the support vector machine reduces the
amount of learning time tez 1 hour per digit.
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Figure 10: Shown are the 25 most commonly used examgples< (non-zero coefficientsa,;); for many
j €{1,...,100}) from the USPS dataset across the 100 different classifiers learned using the per-
ceptron learning algorithm. The two numbers below each digit give the number of classifiers they
appeared in and the true class {0,...,9} in the training sample. Interestingly, in accordance
with the philosophy behind support vectors these are the “hardest” patterns with respect to the
classification task although no explicit margin maximisation was performed.
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The centre of mass approach may also be viewed as a multidimensional extensiditrh#meesti mator
(Pitman, 1939) if the weight vectar is thought of as a location parameter to be estimated from the data.
Unfortunately, neither the centre of mass of version space nor the support vector solution are invariant under
general linear transformations of the data but only under the class of orthogonal transformations (see, e.g.
Schdlkopf, 1997). For the centre of mass this is due to the normalisation of the weight vector. Note that it is
this normalisation that makes it conceptually hard to incorporate a bias dimension into our framework.

We presented a derivation of the Bayes point as the optimal projection of the Bayes classification strategy.
This strategy is known to be the optimal strategy, i.e. the classification strategy which results in classifications
with the smallest generalisation error, when considering the generalisatiomeawearage over the random
draw of target hypothesis according to the pigr. It is worthwhile to mention, however, that recent results
in the PAC community allow one to obtain performance guarantees for the Bayesian classification strategy
evenfor single target hypotheses h ~ Py which hold for most random draws of the training sample used
(see McAllester, 1998, 1999). The results indicate that the fraction of the volume of parameter space to the
volume of version space plays a crucial role in the generalisation error of Bayesian classifiers. It could be
shown elsewhere (Herbrich et al., 1999b) that these bounds can be extersiiggleelassifiers and then
involve the volume of the largest point symmetric body around the classifier fully contained in version space
(see Figure 2). These results may additionally motivate the centre of mass as a classifier with good volume
ratio and thus good generalisation. The results also indicate that under circumstances where the shape of the
version space is almost spherical the classical support vector machine gives the best result (see, e.g. Herbrich
and Graepel, 2001).

In a series of experiments it has been shown that the Bayes point, i.e. the centre of mass of version space,
has excellent generalisation performance — even when only broadly approximated by the average classifier
found with simple perceptrons. Furthermore, it was be demonstrated that the real-valued output of the Bayes
point on new test points serves as a reliable confidence measure on its prediction. An interesting feature of the
Bayes point seems to be that the “hardest” patterns in the training sample tend to have the largest contribution
in the final expansion too. This is in accordance with the support vector philosophy although the Bayes point
machine algorithm does not perform any kind of margin maximisation explicitly.

Bayes points in feature space constitute an interesting bridge between the Bayesian approach to machine
learning and statistical learning theory. In this paper we have shown that they outperform hard margin sup-
port vector machines. It is well known that the introduction of a soft margin improves the generalisation
performance of support vector machines on most datasets by allowing for training errors. Consequently,
we introduced a mechanism for Bayesian learning with training errors admitted. A comparison of the gen-
eralisation performance of the two types of systems shows that they exhibit a much closer generalisation
performance than in the hard boundary/margin case.

Although it is generally believed that sparsity in terms of the expansion coefficidstan indicator for
good generalisation (see, e.g. Littlestone and Warmuth, 1986; Herbrich et al., 2000b) the algorithms presented
show that also dense classifiers exhibit a good generalisation performance. An interesting question arising
from our observation is therefore, which properties of single classifiers in version space are responsible for
good generalisation?
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' {x|x'v =0}

Figure 11: The fraction of points on the circle which are differently classified lapdv is depicted by the

. . . - : arcco$(w,v
solid black arc. Note that this fraction is in general g|ven%§y: 2= %

Appendix A. Proofs

A.1 Convergence of Centre of Massto the Bayes Point

In this section we present the proof of Theorem 10. We start with a simple lemma.

Lemma 13 (Generalisation Error for Spherical Distributionsin Feature Space) Suppose we are given a
fixed mapping ¢ : X — K C ¢} resulting in {x:=¢(x) |x€ X }. Furthermore let us assume that Px is
governed by (11). Then, for all w, [|w|| =1, and v, ||v|| = 1, it holds true that

_ arccog(w,v))

Ex [lo-1(sign((X,w)), sign((X,v}))] n

Proof For a fixed value € R let us consider ak such that|x||? = r2. Givenw € K andv € K we consider
the projectiorPy,, : K — K into the linear space spannedinandv and its complemerf?vjv, i.e.

VxeK : X =Py (X) + Py (X) .

Then forw (andv) it holds true that

sign({(x,w)) = sign(<PW7\, (x)+ P\,L\,’V (x) ,W>)
= sign({Puy (x), W) + (Pavy (). W) )
= sign((Pwy (X),W)) .
Hence for any value af € R* the notion of Figure 11 applies and gives

_ arccog(w,V))

VreRT: Exjjx|=r lo-1(sign({X,w)),sign((X,v)))] -
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Thus integrating over results in

Ex [lo_1 (Sign((X,w)),sign((X,v)))] = ;w % exp(—r?)- w dr
_ arccog(w,V))
e

According to Definition 9 and the previous lemma, in order to find the Bayes pgjitor a given training
samplez we need to find the vectarwhich minimises the following function

Ex [Ewjzm—z[lo-1(sign((X,v)),sign({X,W)))]]
= Ewjzm—z [Ex [lo-1(sign((X,v)) ,sign((X,W)))]]
— Ewzs [arccos{év,W))}

subject to the constraifjt’/]] = 1. Hence we have to determine the saddle point of the following Lagrangian

arccog (v,W))

- :|+0€(<V,V>—l),

Lexact(V, ) = Ew|zm-z [

w.r.t. v anda. The difficulty with this expression, however, is that by

w
VylLexact(V, a)|vbp = EW\Zm:z — 2] +20vpp = 0,
L /1= ((Vop, W)
w
Z(Xpr = Ew‘zmzz 2] 9
1— ((Vop, W))

the resulting fix-point equations for all componentsare coupled because of ttig — ((v,w))z)‘% term
within the expectation thus involving all components. Nevertheless, we can find a good proxy fof aragbs/nt
by (1—(v,w)) /2 (see Figure 12 on page 270). This is made more precise in the following lemma.

Lemma 14 (Quality of Euclidean Distance Proxy) Supposewe are given a fixed mapping ¢ : X — K C EQ
resulting in {x:=¢(x) | xe X }. Furthermore let us assume that Px is governed by (11). Given a fixed
vector v € K of unit length, i.e. ||v|| = 1, let usfinally assume that

w0 1> € -
Then we know that
Ew|zn_z [Ex [lo-1 (Sign((X,W)),sign((X,v)))]] < Ewjzn_ E ||W—v||2} +x(e),
Ewjzn—z[Ex [lo-1(Sign((X,W)) ,sign((X,v)))] = Ewjzm—s H W _V”Z} xe
where arccose) _ 1-¢ ife <0.23
k() 1:{ 0.11 ? otherwise
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arccos(x)

-1.0 -0.5 0.0 0.5 1.0

Figure 12: Plot of the functions arccog /m and(1—x) /2 vs.x. As we can see, translating the latter func-
tion by not more tham= 0.11 shows that it is a both an upper and lower bound for arcggs
and thus a reasonable proxy.

Proof Using Lemma 13 we only need to show that under the assumption (29) it holds true that

arccog (v, w))

1 2
< —lV=w|"+x .

1 2
ZHV—WH —x(g) <

At first we notice that

P I 2\ _ 1= (vw)
ZIv=wi? = 5 (VP = 20v,w) + w]?) = =22

Thus let us determine the maximal difference in
arccogx) 1-—x
f =
) T 2

in the interval(—1,1). A straightforward calculation reveals that the maximum occuxs atyv/1— 4n—2 and
is 0.10< f(x*) < 0.11. Hence whenever< 1—+v/1—4n—2 < 0.23 we can directly usé (x) which itself is
in the worst case upper bounded b D. Noticing thatvx € (0,1) : f (x) = —f (—x) proves the lemma. B

If we replace arccogv,w)) /m by |lw—v||? /4 on the basis of the previous lemma we obtain the simpler
problem of determining the saddle point of the Lagrangian

1
Lapprox(V, @) = Eywjzm—, [4_1 W — v|2} +oa(Vv-1).
Taking the derivative w.r.tv thus yields
1
EW‘Zm:Z |:§W:| + Z(XVCm = 0,

Vv Lapprox(Va o) |

Vem

1
ZO(V(;m - EW‘Zm:Z |:§W:| . (30)
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The value ofx is determined by multiplying the whole expressiongy; and utilising the constraim,,,vem =
1 ie.

1
zaVémVCm = 200= EW‘Zm:Z |:2 <W,ch>:|
1
o = ZEW‘Zm:Z [<W,ch>} .

Resubstituting this expression into (30) finally yields

EW\Zm:z [W}
<EW\Zm:z W], ch> ’

1
Vem = @EWR”“:Z (W] =
whose only solution is given by

EW|Zm:z [W]
H EW|Zm:z [W] H '

Vem =

A.2 Proof of Theorem 11

Proof Givenz= (x,y) € Z™we consider the projectidd, : W — K that maps all vectors of unit length in the
linear span of the point&d (1) ,...,0 (Xm)} = {X1,...,Xm} and the projectio®; : W — K that maps into
the complement of the linear span{ofy, . .., Xm}. Thus, for any vectow € K we havew = Py (W) + P¢ (w)
which immediately implies that for all,yi) € z

(i w) = (i, P (W) + Pyt () ) = (xi, Px (W) + (i, Py () ) = (xi, Px(W)) .
Supposen; is a minimiser of (16) buPy (Wz) # Wy, i.€. ||Px (Wy)|| < |[wz|| = 1. Then

C(X7y7(<X17WZ>)7"'7<Xm7WZ>> = C(X7y7(<X17PX(WZ)>)7"'7<Xm7PX(WZ)>)
> e (XY IPc W2 (00, P (Wa))) o (i, P () )

Py (W) Py (W)
(ol o)

where the second line follows from the assumption thi strictly monotonically decreasing in the third
argument. We see that, cannot be the minimiser of (16) and by contradiction it follows that the minimiser
must admit the representation (17). ]

A.3 Sufficiency of the Linear Span — Proof of Theorem 12

Proof Let us rewrite the |.h.s. of (18)

/W ||W7VH2 dPW‘Zm:z(V) = / 2 W V dpw‘szz(V)
= 2-2 Z HIS|QF(Y| (Xi V)= <W V> dPW‘Zm Z(V)
w be{-1,+1}Mi=
= 2-x / HIS'Q“M (Xi,v))=bj <W V> (b|> dv (31)
be{- 1+1}rn
A(w,zb)
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where the first line follows by the assumption thaty € W, the second line is true because only one sum-
mationb leads to a non-zero product and the third line follows from

T4 f (sign(yi (xi.)))- ,ﬁ
jW HI 1 f (S|gn(y. <Xla ) f dw

)
21 f (sign(yi (xi,v)))
Jw H.:l (sign(yi (xi,u))) du

Let us consider the expressiérw,z b). For a fixed sez= (x,y) € Z™letPx: W — K andP; : W —
K be the projection of unit length vectors inkg and its orthogonal complement, respectively. Then, by
construction we know that

Yi (Xi,V) =i <Xi,PX(V) +Py (v)> =i (Xi, Px(V)) +¥i <X., (v )> =i (Xi,Px(v)) .
As a conseguence,
sign(yi <xi,PX (V) + Py (v)>) =b < sign(yi <xi,PX (V) — Py (v)>) =b, (32)

which implies that

dPyyzm_z (V) dv

dv = CHfb.

AW,z b) = /W _]j[llsign(yi Pl (W, P(V)) T (Bi) v, (33)

because by (32) all the inner products with orthogonal components are vanishing. Noticiky th¥Y :
[P« (V)|| < 1 we can rewrite (33) as

m
A(W, Z, b) = A\L A IHV‘H’H:l Hlsigr(yi<xi,u>):bi <W,U> f (b|) dudv
X/ bx i=1

1 m
/0 ( /K\Lx'vnlrdv> /LX'Hun:rg'sigmmxi,u»:bi {w,u) f (bi) dudr

Lastly, for allu with |lu]| = r we use the fact that
m
u
Hlslgn(m (xi.u))=by (W, U) = r'l_{'sign(ryi (xi,§))=bi <W’ ?>
1=

il u
=T 'illlsign(yi (xi.¥))=bi <W’ F> ’ (34)

that is the feasibility of a point does not change under rescalinguofCombining (34), (33) and (31) we
have shown that there exists a cons@rt R™ such that

' 2 ' 2
W — V|| dPyzm_, (V :C~/ W —V||* dPyyzm_z (V) .
/W | [ w|z —z(V) Jw, | | w|z —2(V)

A4 A derivation of the operation &y,

Let us derive operatiom,, acting on vectors of unit length. This function has to have the following properties
(see Section 3.1)

lsewt]® = 1. (35)
[t—sout| = wlt-s], (36)
sout = pi1s+pat, (37)
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Here we assume thés||® = ||t||*> = 1. Inserting equation (37) into (35) results in

[p1S+ pat||® = (p1s+ pat, pis+pat) = p2+p3+2p1p2 (s t) = 1. (39)

In a similar fashion combining equation (37) and (36) gives

[t—saut]® = t—s?
I(1-p2)t—pus® = Wt—s|?
(L-p2)®—2(1—p2)pr(st)+pf = 2P(1—(st)). (40)

Note that equation (39) is quadraticgn and has the following solution

po = —pu(st)ty/p2((st)’—pZ+1. (41)

A

Let us insert equation (41) into the |.h.s. of equation (40). This gives the following quadratic equation in
(1-p2)*—2(1—p2)pa(st)+pi =
(1+pi(st) —A) (L-A-pi(st) +p] =
(L1-A?—(pa(st)*+pi =
2-2A = 2P(1-(st)).

Solving this equation fop; results in

o (st -2
pl”\/ sth+1

Inserting this formula back into equation (41) we obtain

p2=—pr(st) (¥ (1-(st))—1).

273



HERBRICH, GRAEPEL, CAMPBELL

Appendix B. Algorithms

Algorithm 1 Dual perceptron algorithm with permutation

Require: A permutationT: {1,...,m} — {1,...,m}
Ensure: Existence of a version spavdz), a linearly separable training sample in feature space
a=0=0
repeat
fori=1,....,mdo
if Yri(i)On(iy < 0 then
Qi < O + Yr1(i)
for j=1,...,m do
Ory(j) = On(j) + Y K (Xriy X))
end for
end if
end for
until the if branch was never entered within ttoe loop
return the expansion coefficients
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Algorithm 2 Kernel billiard algorithm (in dual variables)

Require: A tolerance TOLe [0,1] andtmax € R
Require: Existence of a version spa¥ez), a linearly separable training sample in feature space
Ensure: foralli=1,...,myi X", vik(x,%j) >0
o= 0, B = random, normalis@ using equation (20)
E=Emax=0,pmin=1
while pz (Pmin,Z/ (E+&max)) > TOL do
repeat
fori=1,...,mdo
di = 351 vik(Xj, %), vi = XL Bk (X, %)
Ti = —di /Vi
end for
¢ = argmin., o 1
if To > Tmax then
B = random, but fulfils equation (22), normaliBeising equation (20)
else
c=c
end if
until Ty < Tmax
Y = v+ 1B, normalisey using equation (20)
Be = Bc — 2ve/K(Xc, Xec)
{ =v+7Y, normalise using equation (20)

6= /IS (=) (1=, k()
p=X X, Giogk (X, X))

o =pa(p. %) otpz (P ) €

Pmin = MIN(P, Pmin); Emax= Max(&,Emax), E=E+&,y=7

end while
return the expansion coefficients
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