
Journal of Machine Learning Research 1 (2000) 77-112 Submitted 5/00; Published 11/00

Learning Evaluation Functions to

Improve Optimization by Local Search

Justin A. Boyan� justin@boyan.com

NASA Ames Research Center

Computational Sciences Division

Mo�ett Field, CA 94035 USA

Andrew W. Moore awm@cs.cmu.edu

Carnegie Mellon University

Computer Science Department

Pittsburgh, PA 15213 USA

Editor: Leslie Pack Kaelbling

Abstract

This paper describes algorithms that learn to improve search performance on large-
scale optimization tasks. The main algorithm, Stage, works by learning an evaluation
function that predicts the outcome of a local search algorithm, such as hillclimbing or
Walksat, from features of states visited during search. The learned evaluation function is
then used to bias future search trajectories toward better optima on the same problem. An-
other algorithm,X-Stage, transfers previously learned evaluation functions to new, similar
optimization problems. Empirical results are provided on seven large-scale optimization
domains: bin-packing, channel routing, Bayesian network structure-�nding, radiotherapy
treatment planning, cartogram design, Boolean satis�ability, and Boggle board setup.

1. Introduction

Global optimization problems are ubiquitous in areas such as VLSI design, drug design, job-
shop scheduling, inventory management, medical treatment planning, and transportation
planning. Formally, an instance of a global optimization problem consists of a state space
X and an objective function Obj : X ! <; the goal is to �nd a state x� 2 X that mini-
mizes Obj. If X is large, then �nding x� is generally intractable unless the problem has a
specialized global structure, such as a linear program. However, many general-purpose local
search algorithms attempt to exploit Obj's local structure to locate good approximate op-
tima; these include iterative improvement (hillclimbing), simulated annealing (Kirkpatrick,
Gelatt, & Vecchi, 1983), tabu search (Glover & Laguna, 1993), and Walksat (Selman,
Kautz, & Cohen, 1996). They work by imposing a neighborhood relation on the states of
X and then searching the graph that results, guided by Obj.

Local search has been likened to \trying to �nd the top of Mount Everest in a thick
fog while su�ering from amnesia" (Russell & Norvig, 1995, p.111). In this metaphor, the
climber considers each step by consulting an altimeter and deciding whether to take the
step based on the change in altitude. But suppose the climber has access to not only an

�. The �rst author's current aÆliation is with ITA Software of Cambridge, MA (www.itasoftware.com).

c
2000 Justin A. Boyan and Andrew W. Moore.

Boyan and Moore

altimeter, but also additional senses and instruments|for example, the current x and y
location, the slope of the ground underfoot, and whether or not the current location is on a
trail. These additional \features" may enable the climber to make a more informed, more
foresightful, evaluation of whether to take a step.

Additional state features are generally plentiful in real optimization domains. Practi-
tioners of local search algorithms often append such features to their objective function as
extra terms; they may then spend considerable e�ort tweaking those terms' coeÆcients.
This excerpt, from a book on simulated annealing for VLSI design (Wong, Leong, & Liu,
1988), is typical:

Clearly, the objective function to be minimized is the channel width w. How-
ever, w is too crude a measure of the quality of intermediate solutions. Instead,
for any valid partition, the following cost function is used:

C = w2 + �p � p
2 + �U � U (1)

The state feature U measures the sparsity of the horizontal tracks, while p measures the
longest path length in the current partition. In this application, the authors hand-tuned
the coeÆcients of the extra state features p2 and U , setting �p = 0:5 and �U = 10. (We
will show that our algorithm learned to assign, counterintuitively, a negative value to �U ,
and achieved much better performance.) Similar examples of evaluation functions being
manually con�gured and tuned for good performance can be found in, e.g., the work of
Falkenauer & Delchambre (1992) and Szykman & Cagan (1995).

We address the following question: can we exploit extra features of an optimization
problem to generate improved evaluation functions automatically, thereby guiding search
to better solutions?

This paper presents one approach to doing so, based on machine learning: the Stage
algorithm. We present Stage in Section 2. Section 3 reports empirical results of Stage on
a set of seven domains, including an analysis of why it helped considerably on most domains
but failed to help on another. Section 4 presents a natural extension to Stage in which
the learned evaluation functions are transferred among similar problem instances. Finally,
Section 5 places Stage in the context of related work, and Section 6 outlines directions for
future research in this area.

2. The STAGE Algorithm

The Stage algorithm automatically constructs predictive evaluation functions by analyzing
search trajectories. It then uses these evaluation functions to guide further search on the
same problem instance. In this section we present Stage, including its foundations in
reinforcement learning, and illustrate its performance on a simple example.

2.1 Learning to Predict

The performance of a local search algorithm depends on the state from which the search
starts. We can express this dependence in a mapping from starting state x to expected

78

Learning Evaluation Functions

search result:

V �(x)
def
= expected best Obj value seen on a trajectory that starts from

state x and follows local search method �
(2)

Here, � represents a local search method such as hillclimbing or simulated annealing. V �(x)
evaluates x's promise as a starting state for �.

For example, suppose we want to minimize the one-dimensional function Obj(x) =
(jxj � 10) cos(2�x) over the domain X = [�10; 10], as depicted in Figure 1. Assuming a
neighborhood structure on this domain where tiny moves to the left or right are allowed,
hillclimbing (greedy descent) search clearly leads to a suboptimal local minimum for all
but the luckiest of starting points. However, the quality of the local minimum reached
does correlate strongly with the starting position: V �(x) � jxj � 10. Gathering data from
only a few suboptimal trajectories, a function approximator can easily learn to predict that
starting near x = 0 will lead to good performance.

-10 -5 5 10

-10

-5

5

-10 -5 5 10

-10

-5

5

10

Figure 1: Left: Obj(x) for a one-dimensional minimization domain. Right: the function
V �(x) that predicts hillclimbing's performance on that domain.

We approximate V � using a function approximation model such as polynomial regres-
sion, where states are encoded as real-valued feature vectors. As discussed above, these
input features may encode any relevant properties of the state, including the original objec-
tive function Obj(x) itself. We denote the mapping from states to features by F : X ! <D,
and our approximation of V �(x) by ~V �(F (x)). Our experiments reported here all use simple
linear or quadratic regression models to �t ~V �, since incremental training of these mod-
els can be made extremely eÆcient in time and memory (Press, Teukolsky, Vetterling, &
Flannery, 1992; Boyan, 1998). These models also have the property that they aggressively
extrapolate trends from their training samples. Such extrapolation bene�ts Stage in its
search for promising, previously unvisited states.

Foundations of V �

V � is well-de�ned for any local search procedure �, assuming that the objective function
is bounded below. Assuming also that � is proper (guaranteed to terminate), training
data for supervised learning of ~V � may readily be obtained by running � from di�erent

79

Boyan and Moore

starting points. Assuming further that the algorithm � behaves as a Markov chain|i.e.,
the probability of moving from state x to x0 is the same no matter when x is visited and
what states were visited previously|then intermediate states of each simulated trajectory
may also be considered alternate \starting points" for that search, and thus used as training
data for ~V � as well. This insight enables us to get not one but perhaps hundreds of pieces
of training data from each trajectory sampled. The extra training points collected this
way may be highly correlated, so their e�ect on optimization performance is an empirical
question; our results show that the improvement can be substantial.

One further assumption on the local search procedure is of interest: monotonicity. The
procedure � is said to be monotonic if the objective function never increases along a search
trajectory. Under this assumption and the aforementioned assumptions that the procedure
is Markovian and proper, � is equivalent to a �xed policy for a Markov decision process
(Puterman, 1994), and V � is the value function of that policy.1 Value functions satisfy
local consistency equations (Bellman, 1957), so algorithms more sophisticated than Monte-
Carlo simulation with supervised learning are applicable: in particular, the TD(�) family of
temporal-di�erence algorithms may make better use of training data, converge faster, and
use less memory during training (Sutton, 1988). LSTD(�), an eÆcient least-squares formu-
lation of TD(�) (Boyan, 2001), applies speci�cally to the linear approximation architectures
we use. However, the experiments reported in this paper use only classical supervised ma-
chine learning (in particular, least-squares polynomial regression), so the monotonicity of
procedure � need not be assumed.

2.2 Using the Predictions

The learned evaluation function ~V �(F (x)) evaluates how promising x is as a starting point
for algorithm �. To �nd the best starting point, we must optimize ~V � over X.

Note that even if ~V � is smooth with respect to the feature space|as it surely will be
if we represent ~V � with a simple model like quadratic regression|it may still give rise to
a complex cost surface with respect to the neighborhood structure on X. The existence of
a state with features similar to those of the current state does not imply there is a step in
state-space that will take us to that state. Thus, to optimize ~V � we must run a second stage
of stochastic local search|but with ~V �(F (x)) instead of Obj(x) as the guiding evaluation
function.

The Stage algorithm provides a framework for learning and exploiting ~V � on a single
optimization instance. As illustrated in Figure 2, Stage repeatedly alternates between two
di�erent stages of local search: (a) running the original method � on Obj, and (c) running
hillclimbing on ~V � to �nd a promising new starting state for �. Thus, Stage can be viewed
as a smart multi-restart approach to local search.

Stage plots a single long trajectory through the state space, periodically switching
between the original objective function Obj(x) and the newly-learned evaluation function
~V �(F (x)). The trajectory is only broken if the ~V � search phase accepts no moves, indicating
that x is a local minimum of both evaluation functions. When this occurs, Stage resets the

1. In the corresponding MDP, the transition probabilities are de�ned by �; the rewards R(x; x0) are de�ned
to be Obj(x) on termination steps and 0 on all other steps. Thus, the summed reward of a complete
trajectory equals the objective function value at that trajectory's �nal state. The monotonicity condition
on � guarantees that the �nal state on a trajectory is also the best state, per the de�nition of Equation 2.

80

Learning Evaluation Functions

starting state for π
produces good new

Run toπ
π~

for V ; retrain the fitter
produces new training data

optimize V
~π

Hillclimb to

optimize Obj

(a) (b)

(c)
(d)

Figure 2: A diagram of the main loop of Stage

-10

-5

0

5

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

va
lu

e

states x

Objective function
Iteration 1
Iteration 2
Iteration 3
Iteration 4

Figure 3: Stage on the 1-D minimization example

search to a random or prespeci�ed initial state. A complete description of the algorithm is
given in Table 1.

2.3 Two Examples

Consider again the one-dimensional wave problem of Figure 1. We encode this problem for
Stage using the single input feature x, and quadratic regression to represent ~V �. Not sur-
prisingly, Stage performs eÆciently on this problem: after only a few trajectories through
the space, it learns a U-shaped parabolic approximation to V �. Hillclimbing on ~V �, then,
leads directly to the basin of the global optimum.

This problem is contrived, but its essential property|that state-space features help to
predict the performance of an optimizer|does hold in many practical domains. Simulated
annealing does not take advantage of this property, and indeed performs poorly on this
problem. This problem also illustrates that Stage does more than simply smooth out the

81

Boyan and Moore

STAGE(X, X0, �, Obj, ObjBound, F , Fit, Patience, TotEvals):
Given:
� a state space X
� starting states X0 � X, and a method for generating a random state in X0

� a local search procedure � that is Markovian and guaranteed to terminate
(e.g., hillclimbing)

� an objective function, Obj : X ! <, to be minimized
� a lower bound on Obj, ObjBound 2 < (may be �1 if no bound is known)
� a mapping F from states to feature vectors, F : X ! <D

� a function approximator Fit
� a patience parameter Patience governing stochastic hillclimbing on ~V �

� TotEvals, the number of state evaluations allotted for this run.

1. Initialize the function approximator; let x0 2 X0 be a random starting state.

2. Loop until the number of states evaluated exceeds TotEvals:

(a) Optimize Obj using �. From x0, run search algorithm �, producing a search
trajectory (x0; x1; x2; : : : ; xT).

(b) Train ~V �. For each point xi on the search trajectory, de�ne yi :=
minj=i:::T Obj(xj), and add the pair fF (xi) 7! yig to the training set for Fit.
Retrain Fit, and call the resulting learned evaluation function ~V �.

(c) Optimize ~V � using hillclimbing. Continuing from xT , optimize ~V �(F (x))
by performing a stochastic hillclimbing search. Cut o� the search when either
Patience consecutive moves produce no improvement, or a candidate state zt+1
is predicted to be impossibly good, i.e., ~V �(F (zt+1)) < ObjBound. Denote this
search trajectory by (z0; z1; : : : ; zt).

(d) Set smart restart state. Set x0 := zt. But in the event that the ~V
� hillclimbing

search accepted no moves (i.e., zt = xT), then reset x0 to a new random starting
state in X0.

3. Return the best state found.

Table 1: The Stage algorithm.

82

Learning Evaluation Functions

 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 8
 7
 6
 5
 4
 3
 2
 1
 0

Figure 4: A small example bin-packing instance: the initial state and optimal solution.

waves in Obj(x): doing so here would produce an unhelpful
at function. Stage does
smooth out the waves, but in a way that incorporates predictive knowledge about local
search.

We now consider a more realistic illustration of Stage in operation, on the NP-complete
problem of bin-packing (Co�man, Garey, & Johnson, 1996). We are given a bin capacity C
and a list L = (a1; a2; :::an) of n items, each having a size s(ai) > 0. The goal is to pack
the items into as few bins as possible. Figure 4 depicts an example bin-packing instance
with 30 items. Packed optimally, these items �ll 9 bins exactly to capacity.

To apply local search, we de�ne a neighborhood operator that moves a single random
item to a random new bin having suÆcient spare capacity. Stage predicts the outcome of
stochastic hillclimbing using quadratic regression over two features of the state x:

1. The actual objective function, Obj = # of bins used.

2. Var = the variance in fullness of the non-empty bins. This feature is similar to a cost
function term introduced by Falkenauer & Delchambre (1992).

For the initial state, we simply place each item in its own bin. With this setup, a sample
run of Stage proceeds as follows:

� Iteration 1, Step (a): Stage hillclimbs from the initial state (Obj = 30;Var = 0:011)
to a local optimum (Obj = 13;Var = 0:019). Hillclimbing's trajectory through the
feature space is plotted in Figure 5a.

� Iteration 1, Step (b): Stage builds a training set that associates the feature vectors
of each visited state with the observed outcome, 13. Training produces the
at ~V �

function shown in Figure 5b.

� Iteration 1, Steps (c) and (d): Hillclimbing on this
at ~V � accepts no moves, so Stage
resets to the instance's initial state.

83

Boyan and Moore

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj

(b)

Vpi_0 (first iteration)

10
15

20
25

300

0.05

0.1

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

Figure 5: Iteration #1

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Vpi_0

HC on Obj

(b)

Vpi_1 (second iteration)
 8
 9

 10
 11
 12
 13
 14

10
15

20
25

300

0.05

0.1

-15

-10

-5

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

Figure 6: Iteration #2

� Iteration 2, Step (a): Hillclimbing on Obj again, Stage produces a new trajectory
that happens to do better than the �rst, �nishing at a local optimum (Obj = 11;Var =
0:022) as shown in Figure 6a.

� Iteration 2, Step (b): Our training set is augmented with target values of 11 for
all states on the new trajectory. The resulting quadratic ~V � already has signi�cant
structure. Notice how the contour lines of ~V �, shown on the base of the surface plot
(Figure 6b), correspond to smoothed versions of the trajectories in our training set.
Extrapolating, ~V � predicts that the the best starting points for � are on arcs with
higher Var(x).

� Iteration 2, Steps (c) and (d): Stage hillclimbs on the learned ~V � to try to �nd a
good starting point. The trajectory, shown as a dashed line in Figure 7a, goes from

84

Learning Evaluation Functions

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Vpi_0

HC on Obj
HC on Vpi_1

HC on Obj

(b)

Vpi_2 (third iteration)
 8
 9

 10
 11
 12
 13
 14

10
15

20
25

300

0.05

0.1-10

-5

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

Figure 7: Iteration #3

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Vpi_0

HC on Obj
HC on Vpi_1

HC on Obj
HC on Vpi_2

HC on Obj
HC on Vpi_3

HC on Obj
HC on Vpi_4

HC on Obj
HC on Vpi_5

HC on Obj
(b)

Vpi_6 (seventh iteration)
 8
 9

 10
 11
 12
 13
 14

10
15

20
25

300

0.05

0.1

-5

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

Figure 8: Iteration #7

(Obj = 11;Var = 0:022) up to (Obj = 12;Var = 0:105). Note that the search was
willing to accept some harm to the true objective function during this trajectory.

� Iteration 3, Step (a): This time, hillclimbing on Obj does indeed lead to a yet better
local optimum at (Obj = 10;Var = 0:053), shown in Figure 7a.

� During further iterations, the approximation of ~V � is further re�ned. Continuing to
alternate between hillclimbing on Obj and hillclimbing on ~V �, Stage manages to
discover the global optimum at (Obj = 9;Var = 0) on iteration seven (see Figure 8).

Stage's complete trajectory is plotted in Figure 8(a). This example illustrates Stage's
potential to exploit high-level state features to improve performance on combinatorial op-
timization problems. It also illustrates the bene�t of training ~V � on entire trajectories, not
just starting states: in this run a useful quadratic approximation was learned after only two

85

Boyan and Moore

iterations, both of which started from the same initial state. Results on larger bin-packing
instances, and on many other large-scale domains, are presented in the following section.

3. Results

The results of an extensive experimental evaluation of Stage are summarized in Table 2
(page 88). For seven problems with widely varying characteristics, we contrast the per-
formance of Stage with that of multi-restart stochastic hillclimbing, simulated annealing,
and domain-speci�c algorithms where applicable. The hillclimbing runs accepted equi-cost
moves and restarted whenever patience consecutive moves produced no improvement. The
simulated annealing runs made use of the successful \modi�ed Lam" adaptive annealing
schedule (Ochotta, 1994, x4.5); its parameters were hand-tuned to perform well across the
whole range of problems but not exhaustively optimized for each individual problem in-
stance.

On each instance, all algorithms were held to the same number of total search moves
considered, and run 100 times. Note that for Stage, the number of moves considered
includes moves made during both stages of the algorithm, i.e., both running the baseline
procedure � and optimizing the learned policy ~V �. However, this number does not capture
Stage's additional overhead for feature construction and function approximator training.
This overhead turned out to be minimal, usually on the order of 10% of the running time,
as we discuss later in Section 3.8. A more detailed description of the results and the seven
experimental domains may be found in Boyan's dissertation (1998).

3.1 Bin-packing

The �rst set of results is from a 250-item benchmark bin-packing instance (u250 13, from
(Falkenauer & Delchambre, 1992)). Table 2 compares Stage's performance with that of hill-
climbing, simulated annealing, and best-�t-randomized (Co�man et al., 1996), a bin-packing
algorithm with good worst-case performance guarantees. Stage signi�cantly outperforms
all of these. We obtained similar results for all 20 instances in the u250 suite (Boyan, 1998).

How did Stage succeed? The Stage runs followed the same pattern as the runs on the
small example bin-packing instance presented above. Stage's learned evaluation function,
~V �(Figure 9), successfully trades o� the original objective and the additional bin-variance
feature to identify promising start states. As in the example instance (Figure 8), Stage
learns to direct the search toward the high-variance states from which hillclimbing is pre-
dicted to excel.

3.2 Channel Routing

The problem of \Manhattan channel routing" is an important subtask of VLSI circuit
design. Given two rows of labelled pins across a rectangular channel, we must connect like-
labelled pins to one another by placing wire segments into vertical and horizontal tracks.
Segments may cross but not otherwise overlap. The objective is to minimize the area of the
channel's rectangular bounding box|or equivalently, to minimize the number of di�erent
horizontal tracks needed. Figure 10 shows example solutions for one small and one large
channel routing problem.

86

Learning Evaluation Functions

Vpi (iteration #15)
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150

100
150

200
2500

0.01
0.02

0.03
0.04

0.05
0.06

0.07

50

100

150

200

Obj(x)

Var(x)

Figure 9: An evaluation function learned by Stage on bin-packing instance u250 13.
Stage learns that states with higher variance, corresponding to the outer arcs of
the contour plot, are promising start states for hillclimbing.

5

7

6

7

7

9

5

8

9

0

3

4

4

5

1

3

2

4

4

6

1

2

8

9

Figure 10: Left: a small channel routing instance. Right: a 12-track solution to instance
YK4.

87

Boyan and Moore

Problem Algorithm Performance over 100 runs
Instance mean best worst

Bin-packing Hillclimbing, patience=250 109.38� 0.10 108 110
(u250 13, opt=103) Simulated annealing 108.19� 0.09 107 109
M = 105 Best-Fit Randomized 106.78� 0.08 106 107

Stage, quadratic regression 104.77� 0.09 103 105

Channel routing (A) Hillclimbing, patience=250 22.35� 0.19 20 24
(YK4, opt=10) (B) Simulated annealing, Obj = w2 + 0:5p2 + 10U 16.49� 0.16 14 19
M = 5�105 (C) Simulated annealing, Obj = w 14.32� 0.10 13 15

(D) Hillclimbing, patience=1 14.69� 0.12 13 16
(E) Stage, linear regression 12.42� 0.11 11 14

(F) Stage, quadratic regression 14.01� 0.77 11 31
(G) Hillclimbing + random walk 17.26� 0.14 15 19
(H) Modi�ed Stage|only smooth Obj 16.88� 0.22 14 19

Bayes net Hillclimbing, patience=200 3563.4� 0.3 3561.3 3567.4

(MPG) Simulated annealing 3568.2� 0.9 3561.3 3595.5
M = 105 Stage, quadratic regression 3564.1� 0.4 3561.3 3569.5
Bayes net Hillclimbing, patience=200 440567� 52 439912 441171
(ADULT2) Simulated annealing 440924� 134 439551 444094
M = 105 Stage, quadratic regression 440432� 57 439773 441052

Bayes net Hillclimbing, patience=200 748201� 1714 725364 766325
(SYNTH125K) Simulated annealing 726882� 1405 718904 754002

M = 105 Stage, quadratic regression 730399� 1852 718804 782531

Radiotherapy Hillclimbing, patience=200 18.822�0.030 18.003 19.294
(5E) Simulated annealing 18.817�0.043 18.376 19.395
M = 104; N = 200 Stage, quadratic regression 18.721�0.029 18.294 19.155

Cartogram Hillclimbing, patience=200 0.174�0.002 0.152 0.195
(US49) Simulated annealing 0.037�0.003 0.031 0.170
M = 106 Stage, quadratic regression 0.056�0.003 0.038 0.132

Satis�ability (J) Walksat, noise=0, cuto�=106, tries=100 15.22� 0.35 9 19
(par32-1.cnf, opt=0) (K) Walksat + Æw = 0 (hillclimbing) 690.52� 1.96 661 708
M = 108 (L) Walksat + Æw = 10 15.56� 0.33 11 19

(M) Stage(Walksat), quadratic regr. 5.36� 0.33 1 9
(N) Stage(Walksat/Markov), linear regr. 4.43� 0.28 2 8

Boggle setup Hillclimbing, patience=1000 -8.413�0.066 -9.046 -7.473
5� 5 Simulated annealing -8.431�0.086 -9.272 -7.622

M = 105 Stage, quadratic regression -8.480�0.077 -9.355 -7.570

Table 2: Comparative results on a variety of minimization domains. Each line reports the
mean, 95% con�dence interval of the mean, best, and worst solutions found by 100
independent runs of one algorithm on one problem. All algorithms were limited
to considering M total search moves. Statistically best results are boldfaced.

88

Learning Evaluation Functions

We use the clever local search operators de�ned by Wong et al.(1988) for this problem,
but replace their contrived objective function C (see Equation 1 above) with the natural
objective function Obj(x) = the channel width w. Wong's additional objective function
terms, p and U , along with w itself, were given as the three input features to Stage's
function approximator.

Results on YK4, an instance with 140 vertical tracks, are given in Table 2. All methods
were allowed to consider 500,000 moves per run. Experiment (A) shows that multi-restart
hillclimbing �nds quite poor solutions. Experiment (B) shows that simulated annealing, as
used with the objective function of Wong et al., does considerably better. Experiment (C),
simulated annealing with the raw objective function Obj(x) = w, does better still, which is
surprising because Wong et al. invented the extra features of (B) to make their simulated-
annealing system perform better. We believe (C) works better because it allows a long
simulated annealing run to e�ectively random-walk along the ridge of all solutions of equal
cost w, and given enough time it will fortuitously �nd a hole in the ridge. In fact, increasing
hillclimbing's patience to 1 (disabling restarts) worked nearly as well (D).

Stage used simple linear and quadratic regression models for learning. The results (E,F)
show that Stage learned to optimize superbly, not only improving on the performance of
hillclimbing as it was trained to do, but also �nding better solutions on average than the best
simulated annealing runs. Did Stage really work according to its design? We considered
and eliminated two hypotheses:

1. Since Stage alternates between simple hillclimbing and another policy, perhaps it
simply bene�ts from having more random exploration? This is not the case: we tried
the search policy of alternating hillclimbing with 50 steps of random walk, and its
performance (G) was much worse than Stage's.

2. The function approximator may simply be smoothing Obj(x), which helps eliminate
local minima and plateaus? No: we tried a variant of Stage which learned to smooth
Obj(x) directly instead of learning ~V � (H); this also produced much less improvement
than Stage.

A closer look at the learned coeÆcients of ~V � reveals that Stage does in fact build a
counterintuitive, yet successfully predictive, secondary evaluation function for search. We
return to this analysis in Section 4.1.

3.3 Bayesian Network Structure-Finding

Given a data set, an important data mining task is to identify the Bayesian network struc-
ture that best matches the data. We search the space of acyclic graph structures on A
nodes, where A is the number of attributes in each data record. Following (Friedman &
Yakhini, 1996), we evaluate a network structure by a minimum description length score
which trades o� between �t accuracy and low model complexity.

Stage was given the following seven extra features:

� the mean and standard deviation of the conditional entropy scores of the nodes;

� the mean and standard deviation of the number of parameters in the nodes' conditional
probability tables;

89

Boyan and Moore

Figure 11: Left: a Bayesian network on 24 binary attributes (Moore & Lee, 1998) that was
used to generate the SYNTH125K dataset. Its Obj score is 718641. Right: a
network structure learned by a good run of Stage on the dataset. Its Obj score
is 719074. Only two edges from the generator net are missing from the learned
net. The learned net includes 17 edges not in the generator net (shown as curved
arcs).

� the mean and standard deviation of the number of parents the nodes; and

� the number of nodes with no parents.

We applied Stage to three datasets: MPG, a small dataset consisting of 392 records of
10 attributes each; ADULT2, a large real-world dataset consisting of 30,162 records of 15
attributes each; and SYNTH125K, a synthetic dataset consisting of 125,000 records of 24
attributes each. The synthetic dataset was generated by sampling from the Bayesian net-
work depicted in Figure 11 (left). A perfect reconstruction of that net would receive a score
of Obj(x) = 718641.

Results are shown in Table 2. On SYNTH125K, the largest dataset, simulated annealing
and Stage both improve signi�cantly over multi-restart hillclimbing, usually attaining a
score within 2% of that of the Bayesian network that generated the data, and on some runs
coming within 0.04%. A good solution found by Stage is drawn in Figure 11 (right). Sim-
ulated annealing slightly outperforms Stage on average on this dataset. On the MPG and
ADULT2 datasets, hillclimbing and Stage performed comparably, while simulated anneal-
ing did slightly less well on average. In sum, Stage's performance on the Bayesian network
learning task was less dominant than on the bin-packing and channel routing tasks, but it
was still more consistently best or nearly best than either hillclimbing or simulated annealing
on the three benchmark instances attempted.

90

Learning Evaluation Functions

3.4 Radiotherapy Treatment Planning

Radiation therapy is a method of treating tumors. A linear accelerator that produces a
radioactive beam is mounted on a rotating gantry, and the patient is placed so that the
tumor is at the center of the beam's rotation. Depending on the exact equipment being
used, the beam's intensity can be modulated in various ways as it rotates around the patient.
A radiotherapy treatment plan speci�es the beam's intensity at a �xed number of source
angles.

EYE1 EYE2

BRAINSTEM TUMOR

Figure 12: A simpli�ed radiotherapy instance

A map of the relevant part of the patient's body, with the tumor and all important
structures labelled, is available. Also known are good clinical forward models for calculating,
from a treatment plan, the distribution of radiation that will be delivered to the patient's
tissues. The optimization problem, then, is to produce a treatment plan that meets target
radiation doses for the tumor while minimizing damage to sensitive nearby structures. The
current practice is to use simulated annealing and/or linear programming for this problem
(Webb, 1994).

Figure 12 illustrates a simpli�ed planar instance of the radiotherapy problem. The
instance consists of an irregularly shaped tumor and four sensitive structures: the eyes,
the brainstem, and the rest of the head. Given a treatment plan, the objective function is
calculated by summing ten terms: an overdose penalty and an underdose penalty for each
of the �ve structures. These ten subcomponents were the features for Stage's learning.

Objective function evaluations are computationally expensive in this domain, so our
experiments considered only 10;000 moves per run. Again, all algorithms performed com-
parably, but Stage's solutions were best on average, as shown in Table 2.

3.5 Cartogram Design

A \cartogram" or \Density Equalizing Map Projection" is a map whose boundaries have
been deformed so that population density is uniform over the entire map (Gusein-Zade &

91

Boyan and Moore

Tikunov, 1993; Dorling, 1994). We considered redrawing the map of the United States such
that each state's area is proportional to its electoral vote for U.S. President. The goal is to
best meet the new area targets while minimally distorting the states' shapes and borders.

CA

OR

WA

NV

AZ

UT

ID
MT

WY

CO

NM

TX

OK

KS

NE

SD

ND
MN

IA

MO

AR

LA
MS AL GA

FL

SC
TN NC
KY

VA
WV

MDDE
NJ
CTRI
MA

ME
NHVT

NY

PA
OHINIL

WI
MI

DC

CA

OR
WA

NV

AZ

UT

IDMT

WY

CO

NM

TX
OK

KS

NE
SD
ND MN

IA

MO

AR

LAMS AL GA

FL

SC

TN
NC

KY VA
WV MD

DE

NJ

CT
RI
MA

ME

NHVT

NY

PAOHIN
IL

WI
MI

DC

L2L1

OCEAN

CA

OR
WA

NV

AZ

UT

ID
MT
WY

CO

NM

TX

OK

KS

NE
SD
ND

MN

IA

MO

AR

LA

MS AL GA

FL

SC
TN NC
KY

VA
WV MDDE

NJ

CT
RI

MA

ME
NHVT

NY

PA
OH

INIL

WI MI

DC

Figure 13: Cartograms of the continental U.S. Each state's target area is proportional to
its electoral vote for U.S. President. The undistorted U.S. map has zero penalty
for state shapes and orientations but a large penalty for state areas, so Obj(x) =
525:7. Hillclimbing produces solutions like the one shown at top right, for which
Obj(x) = 0:115: The third cartogram, found by Stage, has Obj(x) = 0:043:

We represented the map as a collection of 162 points in <2; each state is a polygon over
a subset of those points (see Figure 13). Search begins at the original, undistorted U.S.
map. The search operator consisted of perturbing a random point slightly; perturbations
that would cause two edges to cross were disallowed. The objective function was de�ned as

Obj(x) = �area +�gape +�orient + �segfrac;

where �area penalizes states for missing their new area targets, and the other three terms
penalize states shaped di�erently than in the true U.S. map. For Stage, we represented
each con�guration by the four subcomponents of Obj. Learning a new evaluation function
with quadratic regression over these features, Stage produced a signi�cant improvement
over hillclimbing, but was outperformed by simulated annealing.

92

Learning Evaluation Functions

3.6 Satis�ability

Finding a variable assignment that satis�es a large Boolean expression is a fundamental
(indeed, the original) NP-complete problem. In recent years, surprisingly diÆcult formulas
have been solved byWalksat (Selman et al., 1996), a simple local search method. Walk-

sat, given a formula expressed in CNF (a conjunction of disjunctive clauses), conducts a
random walk in assignment space which is biased toward minimizing

Obj(x) = # of clauses unsatis�ed by assignment x.

When Obj(x) = 0, all clauses are satis�ed and the formula is solved.

Walksat searches as follows. On each step, it �rst selects an unsatis�ed clause at
random; it will satisfy that clause by
ipping one variable within it. To decide which one,
it �rst evaluates how much overall improvement to Obj would result from
ipping each
variable. If the best such improvement is positive, it greedily
ips a variable that attains
that improvement. Otherwise, it
ips a variable which worsens Obj: with probability
1 � noise , a variable which harms Obj the least, and with probability noise, a variable
at random from the clause. The best setting of noise is problem-dependent (McAllester,
Kautz, & Selman, 1997).

Walksat is so e�ective that it has rendered nearly obsolete an archive of several hundred
benchmark problems collected for a DIMACS Challenge on satis�ability (Selman et al.,
1996). Within that archive, only the largest \parity function learning" instances (nefariously
constructed by Kearns, Schapire, Hirsh and Crawford) are known to be solvable in principle,
yet not solvable byWalksat. We report here results of experiments on the instance par32-
1.cnf, a formula consisting of 10277 clauses on 3176 variables. Each experiment was run
100 times and allowed to consider 108 bit
ips per run.

Experiment J (see Table 2) shows results with the best hand-tuned parameter settings for
Walksat. The best such run still left 9 clauses unsatis�ed. We introduced an additional
Walksat parameter Æw, with the following e�ect: any
ip that would worsen Obj by
more than Æw is rejected. Normal Walksat has Æw = 1. At the other extreme, when
Æw = 0, no harmful moves are accepted, resulting in an ine�ective form of hillclimbing (K).
However, using intermediate settings of Æw|thereby prohibiting only the most destructive
of Walksat's moves|seems not to harm performance (L), and in some cases improves it.

For Stage's learning, a variety of potentially useful state features are available, e.g.:

� % of clauses currently unsatis�ed (= Obj(x))

� % of clauses satis�ed by exactly 1 variable

� % of clauses satis�ed by exactly 2 variables

� % of variables that would break a clause (i.e., cause it to become unsatis�ed) if
ipped

� % of variables set to their \naive" setting, de�ned to be 1 for variable xi if xi appears
in more clauses of the formula than :xi does, or 0 otherwise.

Can Stage, by observing Walksat trajectories, learn to combine these features usefully,
as it did by observing hillclimbing trajectories in other domains?

Theoretically, Stage can learn from any procedure � that is proper (guaranteed to
terminate) and Markovian. Walksat's normal termination mechanism, cutting o� after

93

Boyan and Moore

a pre-speci�ed number of steps, is not Markovian: it depends on an extraneous counter
variable, not just the current assignment. Despite this technicality, Stage with quadratic
regression (M) very nearly completely solved the problem, satisfying all but 1 or 2 of the
10277 clauses on several runs. Replacing this mechanism by a properly Markovian cuto�
criterion forWalksat (namely, terminating with probability 1=10000 after each step), and
using linear instead of quadratic regression (N), Stage's improvement over plainWalksat

was about the same. Results on four other 32-bit parity benchmark instances were similar.
In these experiments, Walksat was run with noise=25 and Æw=10; full details may be
found in Boyan's dissertation (1998).

We note that recently developed, special-purpose algorithms for satis�ability can now
successfully satisfy all clauses of the 32-bit parity benchmarks (Kautz, 2000). Neverthe-
less, we believe that Stage shows promise for hard satis�ability problems|perhaps for
MAXSAT problems where near-miss solutions are useful.

3.7 Boggle Board Setup

In the game of Boggle, 25 cubes with letters printed on each face are shaken into a 5 � 5
grid (see Figure 14).2 The object of the game is to �nd English words that are spelled out
by connected paths through the grid. A legal path may include horizontal, vertical, and/or
diagonal steps; it may not include any cube more than once. Long words are more valuable
than short ones: the scoring system counts 1 point for 4-letter words, 2 points for 5-letter
words, 3 points for 6-letter words, 5 points for 7-letter words, and 11 points for words of
length 8 or greater.

G R Y
H V P
Z K Y W
D D D

A D Y

R
W X

W

T

SY
J G

R S T C S
D E A E
G N L R P
E A T E S

S S D

I

IM

Figure 14: A random Boggle board (8 words, score=10, Obj=�0:010) and an optimized
Boggle board found by Stage (2034 words, score=9245, Obj=�9:245). The
latter includes such high-scoring words as depreciated, distracting, specialties,
delicateness and desperateness.

Given a �xed board setup x, �nding all the English words in it is a simple computational
task; by representing the dictionary3 as a pre�x tree, Score(x) can be computed in about a

2. Boggle is published by Parker Brothers, Inc. The 25-cube version is known as \Big Boggle" or \Boggle
Master."

3. Our experiments make use of the 126,468-word OÆcial Scrabble Player's Dictionary.

94

Learning Evaluation Functions

millisecond. It is a diÆcult optimization task, however, to identify what �xed board x� has
the highest score. For consistency with the other domains presented, we pose the problem
as a minimization task, where Obj(x) = �Score(x)=1000: Exhaustive search of 2625 Boggle
boards is intractable, so local search is a natural approach.4

We set up the search space as follows. The initial state is constructed by choosing 25
letters uniformly at random. Then, to generate a neighboring state, either of the following
operators is applied with probability 0.5:

� Select a grid square at random and choose a new letter for it. (The new letter is
selected with probability equal to its unigram frequency in the dictionary.)

� Or, select a grid square at random, and swap the letter at that position with the letter
at a random adjacent position.

The following features of each state x were provided for Stage's learning:

1. The objective function, Obj(x) = �Score(x)=1000.

2. The number of vowels on board x.

3. The number of distinct letters on board x.

4. The sum of the unigram frequencies of the letters of x. (These frequencies, computed
directly from the dictionary, range from Freq(e) = 0:1034 to Freq(q) = 0:0016.)

5. The sum of the bigram frequencies of all adjacent pairs of x.

These features are cheap to compute incrementally after each move in state space, and in-
tuitively should be helpful for Stage in learning to distinguish promising from unpromising
boards.

However, Stage's results on Boggle were disappointing: average runs of hillclimbing,
simulated annealing, and Stage all reach the same Boggle score of about 8400{8500 points.
Boggle is the only nontrivial domain we have tried on which Stage's learned smart restart-
ing does not improve signi�cantly over random-restart hillclimbing. What explains this
failure?

To answer this question, we return to Stage's foundations. Stage is designed to map
out the attracting basins of a domain's local minima. Our hypothesis is that when there
is a coherent trend among these attracting basins, Stage can exploit it. Identifying such
a coherent trend depends crucially on the user-selected state features, the domain's move
operators, and the regression models considered. What our positive results have shown is
that for a wide variety of problems, with very simple choices of features and models, a useful
structure can be identi�ed and exploited.

However, the Boggle results illustrate the converse of our hypothesis: when the results of
hillclimbing from a variety of starting states show no discernible trend, then Stage will fail.
The following experiment with Boggle makes this clear. We ran 50 restarts of hillclimbing
for each of six di�erent restarting policies:

4. We allow any letter to appear in any position, rather than constraining them to the faces of real 6-sided
Boggle cubes.

95

Boyan and Moore

random: Reassign all 25 tiles in the grid randomly on each restart.

EEE: Start with each tile in the grid set to the letter `E'.

SSS: Start with each tile in the grid set to the letter `S'.

ZZZ: Start with each tile in the grid set to the letter `Z'.

ABC: Start with the grid set to ABCDE/FGHIJ/KLMNO/PQRST/UVWXY.

cvcvc: Assign the �rst, third, and �fth rows of the grid to random consonants, and the
second and fourth rows of the grid to random vowels. High-scoring grids often have a
pattern similar to this (or rotations of this).

-10

-9

-8

-7

-6

-5

-4

random EEE SSS ZZZ ABC cvcvc

-
B

og
gl

e
sc

or
e

(in
 th

ou
sa

nd
s)

Figure 15: Boggle: average performance of 50 restarts of hillclimbing from six di�erent sets
of starting states

The boxplot in Figure 15 compares the performance of hillclimbing from these sets of
states. Apparently, the restarting policy is irrelevant to hillclimbing's mean performance:
on average, each trajectory leads to a Boggle score near 7000 no matter which of the above
types of starting states is chosen. Thus, Stage cannot learn useful predictions of V �,
and its failure to outperform multi-restart hillclimbing on Boggle is consistent with our
understanding of how Stage works.

Similar reasoning also explains why Stage cannot bootstrap the performance of simu-
lated annealing|i.e., use � = simulated annealing instead of � = hillclimbing in Stage's
inner loop. Simulated annealing's initial period of random search (high \temperatures")
makes the outcome of each trajectory quite unpredictable from the starting state.

96

Learning Evaluation Functions

3.8 Running Times

Because our experiments were run dynamically on a pool of over 100 shared workstations
having widely varying job loads and processor speeds, it was impossible to enforce equal-
runtime constraints on each competing algorithm. Instead, we settled for constraining each
competing algorithm to compute the same number of state evaluations per trial. However,
relative to hillclimbing and simulated annealing, Stage carries the additional computational
burden of training and evaluating a function approximator on ~V �. Did this amount to an
unfair advantage for Stage in the results?

In short, the answer is no. In controlled timing experiments, we found that Stage's
running time was usually within 10% of hillclimbing's, and never more than double it. Dis-
crepancies, when they did occur, were caused not by time spent in function approximation,
but rather by such factors as (1) focusing search in a higher-quality part of the space where
legal moves were more expensive to generate; or (2) accepting an overall much smaller per-
centage of moves, thereby incurring a penalty for undoing many moves. Moreover, in those
same cases, our results would be qualitatively unchanged even if Stage's runs had been
cut o� early to account for the discrepancies (Boyan, 1998).

Asymptotically, the computational cost of Stage's function approximation is O(D2L+
D3) for linear regression or O(D4L+D6) for quadratic regression, where L is the length of
a training trajectory and D is the number of features used. This follows directly from the
matrix-update and matrix-inversion steps of least-squares regression. By using very small
numbers of features, and by choosing features that were cheap to generate, we kept the
overhead of learning in our experiments very low. However, Stage's extra overhead for
function approximation would become signi�cant if many more features or more sophisti-
cated function approximators were used. Furthermore, even if the function approximation
is inexpensive, Stage may require many trajectories to be sampled in order to obtain
suÆcient data to �t V � e�ectively.

For some problems such costs are worth it in comparison with a non-learning method,
because a better or equally good solution is obtained with overall less computation. But
in those cases where we use more computation, learning may nevertheless be useful if we
are then asked to solve further similar problems (e.g., a new channel routing problem with
di�erent pin assignments). Then we can hope that the computation we invested in solving
the �rst problem will pay o� in the second, and future, problems because we will already
have a ~V � estimate. This e�ect is called transfer, and we investigate it in the following
section.

4. Transfer

4.1 Comparing ~V � Across Instances

To investigate the potential for transferring learned evaluation functions among similar
problem instances, we �rst re-ran Stage on a suite of eight problems from the channel
routing literature (Chao & Harper, 1996). Table 3 summarizes the results and gives the
coeÆcients of the linear evaluation function learned independently for each problem. To
make the similarities easier to see in the table, we have normalized the coeÆcients so that

97

Boyan and Moore

their squares sum to one; note that the search behavior of an evaluation function is invariant
under positive linear transformations.

Problem lower best-of-3 best-of-3 learned coeÆcients
instance bound hillclimbing Stage < �w; �p; �U >

YK4 10 22 12 < 0:71; 0:05; �0:70 >
HYC1 8 8 8 < 0:52; 0:83; �0:19 >
HYC2 9 9 9 < 0:71; 0:21; �0:67 >
HYC3 11 12 12 < 0:72; 0:30; �0:62 >
HYC4 20 27 23 < 0:71; 0:03; �0:71 >
HYC5 35 39 38 < 0:69; 0:14; �0:71 >
HYC6 50 56 51 < 0:70; 0:05; �0:71 >
HYC7 39 54 42 < 0:71; 0:13; �0:69 >
HYC8 21 29 25 < 0:71; 0:03; �0:70 >

Table 3: Stage results on eight problems from (Chao & Harper, 1996). The coeÆcients
have been normalized so that their squares sum to one.

The similarities among the learned evaluation functions are striking. Like the hand-
tuned cost function C of (Wong et al., 1988) (Equation 1), all but one of the Stage-learned
functions assign a relatively large positive weight to feature w and a small positive weight
to feature p. Unlike the hand-tuned cost function, all the Stage runs assigned a negative
weight to feature U . The similarity of the learned functions suggests that transfer between
problem instances would indeed be fruitful.

As an aside, we note that Stage's assignment of a negative coeÆcient to U is surprising,
because U measures the sparsity of the horizontal tracks. U correlates strongly positively
with the objective function to be minimized; a term of �U in the evaluation function ought
to pull the search toward terrible, sparse solutions in which each subnet occupies its own
track. However, the positive coeÆcient on w cancels out this bias, and in fact a proper
balance between the two terms can be shown to lead search toward solutions with uneven
track sparsity|some tracks nearly full, some nearly empty. Although this characteristic is
not itself the mark of a high-quality solution, it does help lead hillclimbing search to high-
quality solutions. Stage successfully discovered and exploited this predictive combination
of features.

4.2 X-Stage: A Voting Algorithm for Transfer

Many sensible methods for transferring the knowledge learned by Stage from training in-
stances to new instances can be imagined. This section presents one such method. Stage's
learned knowledge, of course, is represented by the approximated value function ~V �. We
would like to take the ~V � information learned on a set of training instances fI1; I2; : : : ; INg
and use it to guide search on a given new instance I 0. But how can we ensure that ~V � is
meaningful across multiple problem instances simultaneously, when the various instances
may di�er markedly in size, shape, and attainable objective-function value?

98

Learning Evaluation Functions

The �rst step is to impose an instance-independent representation on the features F (x),
which comprise the input to ~V �(F (x)). As it so happens, all the feature sets described in
Section 3 above are naturally instance-independent, or can easily be made so by normaliza-
tion. For example, in Bayesian-network structure-�nding problems (Section 3.3), the feature
that counts the number of parentless nodes can be made instance-independent simply by
changing it to the percentage of total nodes that are parentless.

The second step concerns normalization of the outputs of ~V �(F (x)), which are predic-
tions of objective-function values. In Table 3 above, the nine channel routing instances
all have quite di�erent solution qualities, ranging from 8 tracks in the case of instance
HYC1 to more than 50 tracks in the case of instance HYC6. If we wish to train a single
function approximator to make meaningful predictions about the expected solution quality
on both instances HYC1 and HYC6, then we must normalize the objective function itself.
For example, ~V � could be trained to predict not the expected reachable Obj value, but
the expected reachable percentage above a known lower bound for each instance. In their
algorithm for transfer among job-shop scheduling instances (described below), Zhang and
Dietterich (1995, 1996) adopt this approach: they heuristically normalize each instance's
�nal job-shop schedule length by dividing it by the diÆculty level of the starting state. A
similar normalization scheme was also used successfully by Moll et al. (1999). This enables
them to train a single predictive evaluation function over all problem instances.

However, if the available lower bounds are not tight, such normalization can be prob-
lematic. We adopt here a di�erent approach that eliminates the need to normalize the
objective function across instances. The essential idea is to recognize that each individually
learned ~V �

Ik
function, unnormalized, is already suitable for guiding search on the new prob-

lem I 0: the search behavior of an evaluation function is scale and translation-invariant. Our
X-Stage algorithm, speci�ed in Table 4, combines the knowledge of multiple ~V �

Ik
functions

not by merging them into a single new evaluation function, but by having them vote on
move decisions for the new problem I 0. Note that after the initial set of value functions
has been trained, X-Stage performs no further learning when given a new optimization
problem I 0 to solve.

Combining ~V �
Ik
decisions by voting rather than, say, averaging, ensures that each training

instance carries equal weight in the decision-making process, regardless of the range of that
instance's objective function. Voting is also robust to \outlier" functions, such as the one
learned on instance HYC1 in Table 3 above. Such a function's move recommendations will
simply be outvoted. A drawback to the voting scheme is that, in theory, loops are possible
in which a majority prefers x over x0, x0 over x00, and x00 over x. However, we have not seen
such a loop in practice, and if one did occur, the patience counter Patience would at least
prevent X-Stage from getting permanently stuck.

4.3 Experiments

We applied X-Stage to the domains of bin-packing and channel routing. For the bin-
packing experiment, we gathered a set of 20 instances (the u250 suite) from the OR-Library.
Using the same Stage parameters given in that section, we trained ~V � functions for all
of the 20 except u250 13, and then applied X-Stage to test performance on the held-out
instance. The performance curves of X-Stage and, for comparison, ordinary Stage are

99

Boyan and Moore

X-Stage(I1; I2; : : : ; IN ; I
0):

Given:
� a set of training problem instances fI1; : : : ; INg and a test instance I 0.

Each instance has its own objective function and all other Stage parameters (see
Table 1). It is assumed that each instance's featurizer F : X ! <D maps states to
the same number D of real-valued features.

1. Run Stage independently on each of the N training instances.

This produces a set of learned value functions f ~V �
I1
; ~V �

I2
; : : : ; ~V �

IN
g.

2. Run Stage on the new instance I 0, but skipping Stage's training Step 2b, and
modifying Step 2c|the step that searches for a promising new starting state for �|as
follows. Instead of performing hillclimbing on a newly learned ~V �, perform voting-
hillclimbing on the set of previously learned ~V � functions. Voting-hillclimbing means
simply:

Accept a proposed move from state x to state x0 if and only if, for a majority
of the learned value functions, ~V �

Ik
(F (x0)) � ~V �

Ik
(F (x)).

Return the best state found.

Table 4: The X-Stage algorithm for transferring learned knowledge to a new optimization
instance

shown in Figure 16 (left). The semilog scale of the plot clearly shows that X-Stage reaches
good performance levels more quickly than Stage. However, after only about 10 learning
iterations and 10,000 evaluations, the average performance of Stage exceeds that of X-
Stage. Stage's ~V � function, �nely tuned for the particular instance under consideration,
ultimately outperforms the voting-based restart policy generated from 19 related instances.

The channel routing experiment was conducted with the set of 9 instances shown in
Table 3 above. Again, all Stage parameters were set as in the experiments of Section 3.
We trained ~V � functions for the instances HYC1 : : :HYC8, and applied X-Stage to test
performance on instance YK4. The performance curves of X-Stage and ordinary Stage
are shown in Figure 16. Again, X-Stage reaches good performance levels more quickly
than does Stage. This time, the voting-based restart policy maintains its superiority over
the instance-speci�c learned policy for the duration of the run.

These preliminary experiments indicate that the knowledge Stage learns during problem-
solving can indeed be transferred pro�tably to novel problem instances. An interesting ques-
tion for futher research is how to combine previously learned knowledge with new knowledge
learned during a run, so as to have the best of both worlds: exploiting general knowledge
about a family of instances to reach good solutions quickly, and exploiting instance-speci�c
knowledge to reach the best possible solutions.

100

Learning Evaluation Functions

105

110

115

120

125

1000 10000 100000

N
um

be
r

of
 b

in
s

(1
03

 is
 o

pt
im

al
)

Number of moves considered

STAGE
X-STAGE

10

15

20

25

30

35

40

45

50

5000 50000 500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE
X-STAGE

Figure 16: Left: Bin-packing performance on instance u250 13 with transfer (X-Stage)
and without transfer (Stage). Right: Channel routing performance on instance
YK4 with and without transfer. Note the logarithmic scale of the x-axes.

5. Related Work

Stage draws on work from the communities of adaptive local search, reinforcement learning,
and genetic algorithms. This section reviews the most relevant results from each of these
communities in turn.

5.1 Adaptive Multi-Restart Techniques

An iteration of hillclimbing typically reaches a local optimum very quickly. Thus, in the
time required to perform a single iteration of (say) simulated annealing, one can run many
hillclimbing iterations from di�erent random starting points (or even from the same starting
point, if move operators are sampled stochastically) and report the best result. Empirically,
random multi-start hillclimbing has produced excellent solutions on practical computer
vision tasks (Beveridge, Graves, & Lesher, 1996), outperformed simulated annealing on the
traveling salesman problem (TSP) (Johnson & McGeoch, 1997), and outperformed genetic
algorithms and genetic programming on several large-scale testbeds (Juels & Wattenberg,
1996).

Nevertheless, the e�ectiveness of random multi-start local search is limited in many cases
by a \central limit catastrophe" (Boese, Kahng, & Muddu, 1994): random local optima in
large problems tend to all have average quality, with little variance (Martin & Otto, 1994).
This means the chance of �nding an improved solution diminishes quickly from one iteration
to the next. To improve on these chances, an adaptive multi-start approach|designed to
select restart states with better-than-average odds of �nding an improved solution|seems
appropriate. Indeed, in the theoretical model of local search proposed by Aldous and
Vazirani (1994), a given performance level that takes O(n) restarts to reach by a random
starting policy can instead be reached with as few as O(log n) restarts when an adaptive
policy, which uses successful early runs to seed later starting states, is used.

101

Boyan and Moore

Many adaptive multi-start techniques have been proposed. One particularly relevant
study has been conducted by Boese (1995). On a �xed, well-known instance of the TSP,
he ran local search 2500 times to produce 2500 locally optimal solutions. Then, for each of
those solutions, he computed the average distance to the other 2499 solutions, measured by
a natural distance metric on TSP tours. The results showed a stunning correlation between
solution quality and average distance: high-quality local optima tended to have small aver-
age distance to the other optima|they were \centrally" located|while worse local optima
tended to have greater average distance to the others; they were at the \outskirts" of the
space. Similar correlations were found in a variety of other optimization domains, includ-
ing circuit/graph partitioning, satis�ability, number partitioning, and job-shop scheduling.
Boese concluded that many practical optimization problems exhibit a \globally convex" or
so-called \big valley" structure, in which the set of local optima appears convex with one
central global optimum. Boese's intuitive diagram of the big valley structure is reproduced
in Figure 17.

Figure 17: Intuitive picture of the \big valley" solution space structure. (Adapted from
(Boese, 1995).)

The big valley structure is auspicious for a Stage-like approach. Indeed, Boese's in-
tuitive diagram, motivated by his experiments on large-scale complex problems, bears a
striking resemblance to the 1-D wave function of Figure 1, which we contrived as an ex-
ample of the kind of problem at which Stage would excel. Boese went on to propose a
two-phase adaptive multi-start methodology for optimization similar to Stage. The main
di�erence is that Boese hand-builds a problem-speci�c routine for adaptively constructing
new starting states, whereas Stage uses machine learning to do the same automatically.

A similar methodology underlies the current best heuristic for solving large traveling
salesman problems, \chained local optimization" (CLO) (Martin & Otto, 1994). CLO
performs ordinary hillclimbing to reach a local optimum z, and then applies a special large-
step stochastic operator designed to \kick" the search from z into a nearby but di�erent
attracting basin. Hillclimbing from this new starting point produces a new local optimum
z0; if this turns out to be much poorer than z, then CLO returns to z, undoing the kick. In
e�ect, CLO constructs a new high-level search space: the new operators consist of large-step
kick moves, and the new objective function is calculated by �rst applying hillclimbing in
the low-level space, then evaluating the resulting local optimum. (A similar trick is often

102

Learning Evaluation Functions

applied with genetic algorithms, as we discuss in Section 5.3 below.) In the TSP, the kick
designed by Martin and Otto (1994) is a so-called \double-bridge" operation, chosen because
such moves cannot be easily found nor easily undone by Lin-Kernighan local search moves
(Johnson & McGeoch, 1997). Like Boese's adaptive multi-start, CLO relies on manually
designed kick steps for �nding a good new starting state, as opposed to Stage's learned
restart policy. Furthermore, Stage's \kicks" place search in not just a random nearby
basin, but one speci�cally predicted to produce an improved local optimum.

The big valley diagram, like our 1-D wave function, conveys the notion of a global
structure over the local optima. Unlike the wave function, it also conveys one potentially
misleading intuition: that starting from low-cost solutions is necessarily better than start-
ing from high-cost solutions. In his survey of local search techniques for the TSP, John-
son (1997) considered four di�erent randomized heuristics for constructing starting tours
from which to begin local search. He found signi�cant di�erences in the quality of �nal solu-
tions. Interestingly, the heuristic that constructed the best-quality starting tours (namely,
the \Clarke-Wright" heuristic) was also the one that led search to the worst-quality �nal
solutions|even worse than starting from a very poor, completely random tour. Such \de-
ceptiveness" can cause trouble for simulated annealing and genetic algorithms. Large-step
methods such as CLO may evade some such deceits by \stepping over" high-cost regions.
Stage confronts the deceit head-on: it explicitly detects when features other than the ob-
jective function are better predictors of �nal solution quality, and can learn to ignore the
objective function altogether when searching for a good start state.

Many other sensible heuristics for adaptive restarting have been shown e�ective in the
literature. The widely applied methodology of \tabu search" (Glover & Laguna, 1993) is
fundamentally a set of adaptive heuristics for escaping local optima, like CLO's kick steps.
Hagen and Kahng's (1997) \Clustered Adaptive Multi-Start" achieves excellent results on
the VLSI netlist partitioning task; like CLO, it alternates between search with high-level
operators (constructed adaptively by clustering elements of previous good solutions) and
ordinary local search. Jagota's \Stochastic Steep Descent with Reinforcement Learning"
heuristically rewards good starting states and punishes poor starting states in a multi-start
hillclimbing context (Jagota, Sanchis, & Ganesan, 1996). The precise reward mechanism is
heuristically determined and appears to be quite problem-speci�c, as opposed to Stage's
uniform mechanism of predicting search outcomes by value function approximation. As
such, a direct empirical comparison would be diÆcult.

5.2 Reinforcement Learning for Optimization

As mentioned in Section 2.1, Stage may be seen as approximating the value function of a
policy in a Markov decision process that corresponds to the optimization problem. Value
function approximation has previously been applied to a large-scale optimization task: the
Space Shuttle Payload Processing (SSPP) domain (Zhang & Dietterich, 1995; Zhang, 1996).
As this work is the closest in the literature to ours, we will discuss it here in some detail.

Stage works by learning V �, the predicted outcome of a prespeci�ed optimization
policy �. By contrast, the Zhang and Dietterich approach seeks to learn V �, the predicted
outcome of the best possible optimization policy. Before discussing how they approached
this ambitious goal, we must address how the \best possible optimization policy" is de�ned,

103

Boyan and Moore

since optimization policies face two con
icting objectives: to produce good solutions and
to �nish quickly. In the SSPP domain, Zhang and Dietterich measured the total cost of a
search trajectory (x0; x1; : : : ; xN ;end) by

Obj(xN) + 0:001N

E�ectively, since Obj(x) is near 1:0 in this domain, this cost function means that a 1%
improvement in �nal solution quality is worth about 10 extra search steps (Zhang, 1996).
The goal of learning, then, was to produce a policy �� to optimize this balance between
trajectory length and �nal solution quality.

Zhang and Dietterich's goal was to obtain transfer from easy instances to hard in-
stances of SSPP. Thus, they represented states by abstract instance-independent features,
as we did later in X-Stage. They also normalized their objective function so that it would
span roughly the same range regardless of problem diÆculty; X-Stage's voting-based ap-
proach to transfer of X-Stage allows this normalization to be avoided. Following Tesauro's
methodology for reinforcement-learning of V � on backgammon (Tesauro, 1992), they ap-
plied optimistic TD(�) to the SSPP domain. The results showed that searches with the
learned evaluation functions produced schedules as good as those found by the previously
best SSPP optimizer in less than half the CPU time.

Getting these results required substantial tuning. One complication involves state-space
cycles. Since the SSPP move operators are deterministic, a learned policy may easily enter
an in�nite loop, which makes its value function unde�ned. Loops are fairly infrequent be-
cause most operators repair constraint violations, lengthening the schedule; still, Zhang and
Dietterich had to include a loop-detection and escape mechanism, clouding the interpreta-
tion of V �. To attack other combinatorial optimization domains with their method, they
suggest that \it is important to formulate problem spaces so that they are acyclic" (Zhang,
1996)|but such formulations are unnatural for most local search applications, in which
the operators typically allow any solution to be reached from any other solution. Stage
�nesses this issue by �xing � to be a proper policy such as hillclimbing, which cannot cycle.

Stage also circumvents three other algorithmic complications that Zhang and Dietterich
found it necessary to introduce: experience replay (Lin, 1993), random exploration (slowly
decreasing over time), and random-sample greedy search. Experience replay, i.e., saving the
best trajectories in memory and occasionally retraining on them, is unnecessary in Stage
because the regression matrices always maintain the suÆcient statistics of all historical
training data (Boyan, 2001). Adding random exploration is unnecessary because empirically,
Stage's baseline policy � (e.g., stochastic hillclimbing or WALKSAT) provides enough
exploration inherently. This is in contrast to the SSPP formulation, where actions are
deterministic. Finally, Stage does not face the branching factor problem that led Zhang
and Dietterich to introduce random-sample greedy search (RSGS). Brie
y, the problem
is that when hundreds or thousands of legal operators are available, selecting the greedy
action, as optimistic TD(�) requires, is too costly. RSGS uses a heuristic to select an
approximately greedy move from a subset of the available moves. Again, this clouds the
interpretation of V �. In Stage, each decision is simply whether to accept or reject a single
available move, and the interpretation of V � is clear.

To summarize, Stage avoids most of the algorithmic complexities of Zhang and Diet-
terich's method because it is solving a fundamentally simpler problem: estimating V � from

104

Learning Evaluation Functions

a �xed stochastic �, rather than discovering an optimal deterministic policy �� and value
function V �. It also avoids many issues of normalizing problem instances and designing
training architectures by virtue of the fact that it applies in the context of a single problem
instance. However, an advantage of the Zhang and Dietterich approach is its potential to
identify a truly optimal or near-optimal policy ��. Stage can only learn an improvement
over the prespeci�ed policy �.

5.3 Genetic Algorithms

Genetic algorithms (GAs), based on metaphors of biological evolution such as natural selec-
tion, mutation, and recombination, represent another heuristic approach to combinatorial
optimization (Goldberg, 1989). Translated into the terminology of local search, \natural
selection" means rejecting high-cost states in favor of low-cost states, as hillclimbing does;
\mutation" means a small-step local search operation; and \recombination" means adap-
tively creating a new state from previously good solutions. GAs have much in common with
the adaptive multi-start hillclimbing approaches discussed above in Section 5.1. In broad
terms, the GA population carries out multiple restarts of hillclimbing in parallel, culling
poor-performing runs and replacing them with new adaptively constructed starting states.

To apply GAs to an optimization problem, the con�guration space X must be repre-
sented as a space of discrete feature vectors|typically �xed-length bitstrings f0; 1gL|and
the mapping must be a bijection, so that a solution bitstring in the feature space can be
converted back to a con�guration in X. This contrasts with Stage, where features can be
any real-valued functions of the state, and the mapping need not be invertible. Typically,
a GA mutation operator consists of
ipping a single bit, and a recombination operator
consists of merging the bits of two \parent" bitstrings into the new \child" bitstring. The
e�ectiveness of GA search depends critically on the suitability of these operators to the
particular bitstring representation chosen for the problem. Hillclimbing and simulated an-
nealing, by contrast, allow much more sophisticated, domain-speci�c search operators, such
as the partition-graph manipulations we used for channel routing (Wong et al., 1988). On
the other hand, genetic algorithms have a built-in mechanism for combining features of
previously discovered good solutions into new starting states. Stage can be seen as pro-
viding the best of both worlds: sophisticated search operators and adaptive restarts based
on arbitrary domain features.

Some GA implementations do manage to take advantage of local search operators more
sophisticated than bit-
ips, using the trick of embedding a hillclimbing search into each
objective function evaluation (Hinton & Nowlan, 1987). That is, the GA's population
of bitstrings actually serves as a population not of �nal solutions but of starting states
for hillclimbing. The most successful GA approaches to the traveling salesman problem
all work this way so that they can exploit the sophisticated Lin-Kernighan local search
moves (Johnson & McGeoch, 1997). Here, the GA operators play a role analogous to the
large-step \kick moves" of chained local optimization (Martin & Otto, 1994), as described
in Section 5.1 above. Depending on the particular implementation, the next generation's
population may consist of not only the best starting states from the previous generation,
but also the best �nal states found by hillclimbing runs|a kind of Lamarckian evolution in
which learned traits are inheritable (Ackley & Littman, 1993; Johnson & McGeoch, 1997).

105

Boyan and Moore

In such a GA, the population may be seen as implicitly maintaining a global predictive
model of where, in bitstring-space, the best starting points are to be found. The COMIT
algorithm of Baluja and Davies (1997) makes this viewpoint explicit: it generates adap-
tive starting points not by random genetic recombination, but rather by �rst building an
explicit probabilistic model of the population and then sampling that model. COMIT's
learned probability model is similar in spirit to Stage's V � function. Di�erences include
the following:

� COMIT is restricted to bijective bitstring-like representations, whereas Stage can
use any feature mapping; and

� COMIT's model is trained from only the set of best-quality states found so far, ignor-
ing the di�erences between their outcomes; whereas Stage's value function is trained
from all states seen on all trajectories, good and bad, paying attention to the outcome
values. Boese's experimental data and \big valley structure" hypothesis indicate that
there is often useful information to be gained by modelling the weaker areas of the
solution space, too (Boese et al., 1994). In particular, this gives Stage the power for
directed extrapolation beyond the support of its training set.

In preliminary experiments in the Boolean satis�ability domain, on the same 32-bit parity
instances described in Section 3.6, COMIT (using WALKSAT as a subroutine) did not
perform as well as Stage (Davies & Baluja, 1998).

Finally, for a broader survey of machine learning methods applied to large-scale op-
timization, we refer the reader to the proceedings of a recent IJCAI workshop (Boyan,
Buntine, & Jagota, 2000).

6. Conclusions and Future Work

Our primary conclusion is that learned, predictive evaluation functions can boost the per-
formance of local search. Stage is a simple, practical technique that demonstrates this;
on most tested instances, Stage robustly outperforms both multi-start hillclimbing and a
good implementation of simulated annealing. Stage's simplicity enables many potentially
useful extensions, such as the X-Stage algorithm for transfer presented above. Further
extensions include the following:

Non-polynomial function approximators. Our results were limited to polynomial mod-
els of V �. It would be interesting to see whether other linear architectures|such as
CMACs, radial basis function networks, and random-representation neural networks|
could produce better �ts and better performance. A more ambitious study could in-
vestigate eÆcient ways to use nonlinear architectures, such as multi-layer perceptrons
or memory-based methods, with Stage. In the context of transfer, the training speed
of the function approximator is less crucial.

More aggressive optimization of ~V�. On each iteration, in order to �nd a promising
new starting state for the baseline procedure �, Stage optimizes ~V � by performing
�rst-improvement hillclimbing (Step 2c). A more aggressive optimization technique
such as simulated annealing could instead be applied at that stage, and that may well
improve performance.

106

Learning Evaluation Functions

Steepest descent. With the exception of the WALKSAT results of Section 3.6, Stage
has been trained to predict and improve upon the baseline procedure of � = �rst-
improvement hillclimbing. However, in some optimization problems|particularly,
those with relatively few moves available from each state|steepest-descent (best-
improvement) search may be more e�ective. Steepest-descent is proper, Markovian,
and monotonic, so Stage applies directly; it would be interesting to compare its
e�ectiveness with �rst-improvement hillclimbing's.

Continuous optimization. Our results have focused on discrete optimization problems.
However, Stage applies without modi�cation to continuous global optimization prob-
lems (i.e., �nd x� = argminObj : <K ! <) as well. The cartogram design problem
of Section 3.5 is an example of such a problem; however, much more sophisticated
neighborhood operators than the point perturbations we de�ned for that domain are
available. For example, the downhill simplex method of Nelder and Mead (described
in (Press et al., 1992, x10.4)) provides an e�ective set of local search moves for con-
tinuous optimization. Downhill simplex reaches a local optimum quickly, and Press
et al.(1992) recommend embedding it within a multiple-restart or simulated-annealing
framework. Stage could provide an e�ective learning framework for multi-restart
simplex search.

Con�dence intervals. Stage identi�es good restart points by optimizing ~V �(F (x)), the
predicted expected outcome of search from x. However, in the context of a long run
involving many restarts, it may be better to start search from a state with worse
expected outcome but higher outcome variance. After all, what we really want to
minimize is not the outcome of any one trajectory, but the minimum outcome over the
whole collection of trajectories Stage generates. A possible heuristic along these lines
would be to exploit con�dence intervals on ~V �'s predictions to guide search, similarly
to the interval-estimation (Kaelbling, 1993) and IEMAX (Moore & Schneider, 1996)
algorithms.

Filtering refers to the early cuto� of an unpromising search trajectory|before it even
reaches a local optimum|to conserve time for additional restarts and better trajec-
tories. Heuristic methods for �ltering have been investigated by, e.g., Nakakui &
Sadeh (1994). Perkins et al. (1997) have suggested that reinforcement-learning meth-
ods could provide a principled mechanism for deciding when to abort a trajectory. In
the context of Stage, �ltering could be implemented simply as follows: cut o� any
�-trajectory when its predicted eventual outcome ~V � is worse than, say, the mean of
all �-outcomes seen thus far. This technique would allow Stage to exploit its learned
predictions during both stages of search.

Sampling refers to the selection of candidate moves for evaluation during search. In our
work, we have assumed that candidate moves are generated with a probability dis-
tribution that remains stationary throughout the optimization run. In optimization
practice, however, it is often more e�ective to modify the candidate distribution over
the course of the search|for example, to generate large-step candidate moves more
frequently early in the search process, and to generate small-step, �ne-tuning moves
more frequently later in search (Cohn, 1992, x2.4.4). In one approach (Su, Buntine,

107

Boyan and Moore

Newton, & Peters, 1998), linear regression is used to predict, over multiple simulated-
annealing runs, the long-term outcome achieved by starting search at state x and
with initial action a.5 In reinforcement-learning terminology, their method learns to
approximate the task's state-action value function Q�(x; a) (Watkins, 1989). This
form of value function allows the e�ects of various actions a to be predicted without
having to actually apply the action or invoke the objective function. In optimiza-
tion domains where objective function evaluations are costly, the Q� value-function
formulation o�ers the potential for signi�cant speedup.

Direct Meta-Optimization. All the approaches discussed thus far have built evaluation
functions by approximating a value function V � or V �, functions which predict the
long-term outcomes of a search policy. However, an alternative approach not based
on value function approximation, which we call direct meta-optimization, also applies.
Direct meta-optimization methods assume a �xed parametric form for the evaluation
function and optimize those parameters directly with respect to the ultimate objective.
In symbols, given an evaluation function ~V (xj~w) parametrized by weights ~w, we seek
to learn ~w by directly optimizing the meta-objective function

M(~w) = the expected performance of search using evaluation function ~V (xj~w) :

The evaluation functions ~V learned by such methods are not constrained by the Bell-
man equations: the values they produce for any given state have no semantic interpre-
tation in terms of long-term predictions. The lack of such constraints means that less
information for training the function can be gleaned from a simulation run; however,
not having to meet the Bellman constraints may actually make learning easier.

Ochotta (1994) demonstrated a successful, though computationally expensive, method
of applying meta-optimization to combinatorial optimization. We believe that recent
memory-based stochastic optimization techniques (Moore & Schneider, 1996; Moore,
Schneider, Boyan, & Lee, 1998; Anderson, Moore, & Cohn, 2000) can signi�cantly
reduce the computational requirements of direct meta-optimization. Whether direct
meta-optimization methods or Stage-like methods ultimately provide the most ef-
fective means of learning evaluation functions for global optimization remains to be
seen.

Acknowledgments

We would like to acknowledge the invaluable contributions made to this research by Scott
Fahlman, Tom Mitchell, and Tom Dietterich. We also acknowledge the support of a
NASA Graduate Student Research Program fellowship (Boyan) and an NSF Career Award
(Moore). Finally, we thank the JMLR editor and three anonymous reviewers for their
careful comments.

5. Note that the state vector x for simulated annealing consists of both the current con�guration x and the
current temperature T .

108

Learning Evaluation Functions

References

Ackley, D. H., & Littman, M. L. (1993). A case for distributed Lamarckian evolution.
In Langton, C., Taylor, C., Farmer, J. D., & Ramussen, S. (Eds.), Arti�cial Life
III: Santa Fe Institute Studies in the Sciences of Complexity, Vol. 10, pp. 487{509.
Addison-Wesley, Redwood City, CA.

Aldous, D., & Vazirani, U. (1994). \Go with the winners" algorithms. In Proceedings of the
35th Symposium on Foundations of Computer Science, pp. 492{501.

Anderson, B. S., Moore, A. W., & Cohn, D. (2000). A nonparametric approach to noisy and
costly optimization. In Proceedings of the 17th International Conference on Machine
Learning, pp. 17{24.

Baluja, S., & Davies, S. (1997). Combining multiple optimization runs with optimal de-
pendency trees. Tech. rep. CMU-CS-97-157, Carnegie Mellon University School of
Computer Science.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Beveridge, J., Graves, C., & Lesher, C. E. (1996). Local search as a tool for horizon line
matching. Tech. rep. CS-96-109, Colorado State University.

Boese, K. D. (1995). Cost versus distance in the traveling salesman problem. Tech. rep.
CSD-950018, UCLA Computer Science Department.

Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for
combinatorial global optimizations. Operations Research Letters, 16, 101{113.

Boyan, J. A. (1998). Learning Evaluation Functions for Global Optimization. Ph.D. thesis,
Carnegie Mellon University. Internet resource available at http://www.cs.cmu.edu/-
~jab/thesis/.

Boyan, J. A. (2001). Technical update: Least-squares temporal di�erence learning. Machine
Learning. To appear.

Boyan, J. A., Buntine, W., & Jagota, A. (Eds.). (2000). Statistical Machine Learning
for Large-Scale Optimization, Vol. 3 of Neural Computing Surveys. Internet resource
available at http://www.icsi.berkeley.edu/~jagota/NCS/vol3.html.

Chao, H.-Y., & Harper, M. P. (1996). An eÆcient lower bound algorithm for channel
routing. Integration: The VLSI Journal.

Co�man, E. G., Garey, M. R., & Johnson, D. S. (1996). Approximation algorithms for bin
packing: a survey. In Hochbaum, D. (Ed.), Approximation Algorithms for NP-Hard
Problems. PWS Publishing.

Cohn, J. M. (1992). Automatic Device Placement for Analog Cells in KOAN. Ph.D. thesis,
Carnegie Mellon University Department of Electrical and Computer Engineering.

Davies, S., & Baluja, S. (1998) Personal communication.

109

Boyan and Moore

Dorling, D. (1994). Cartograms for visualizing human geography. In Hearnshaw, H. M., &
Unwin, D. J. (Eds.), Visualization in Geographical Information Systems, pp. 85{102.
Wiley.

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and line
balancing. In Proceedings of the IEEE 1992 International Conference on Robotics
and Automation, pp. 1186{1192 Nice, France.

Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian net-
works. In Proceedings of the 12th Conference on Uncertainty in Arti�cial Intelligence.

Glover, F., & Laguna, M. (1993). Tabu search. In Modern Heuristic Techniques for Com-
binatorial Problems. Scienti�c Publications, Oxford.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, Mass.

Gusein-Zade, S. M., & Tikunov, V. S. (1993). A new technique for constructing continuous
cartograms. Cartography and Geographic Information Systems, 20 (3), 167{173.

Hagen, L. W., & Kahng, A. B. (1997). Combining problem reduction and adaptive multi-
start: A new technique for superior iterative partitioning. IEEE Transactions on
CAD, 16 (7), 709{717.

Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems,
1 (1), 495{502.

Jagota, A., Sanchis, L., & Ganesan, R. (1996). Approximating maximum clique using neural
network and related heuristics. In Johnson, D. S., & Trick, M. A. (Eds.), DIMACS
Series: Second DIMACS Challenge. American Mathematical Society.

Johnson, D. S., & McGeoch, L. A. (1997). The traveling salesman problem: A case study
in local optimization. In Aarts, E. H. L., & Lenstra, J. K. (Eds.), Local Search in
Combinatorial Optimization. Wiley and Sons.

Juels, A., & Wattenberg, M. (1996). Stochastic hillclimbing as a baseline mathod for
evaluating genetic algorithms. In Touretzky, D. S., Mozer, M. C., & Hasselmo, M. E.
(Eds.), Advances in Neural Information Processing Systems, Vol. 8, pp. 430{436.

Kaelbling, L. P. (1993). Learning in Embedded Systems. The MIT Press, Cambridge, MA.

Kautz, H. (2000). The IJCAI-97 computational challenge in propositional reasoning and
search. Internet resource available as http://www.cs.washington.edu/homes/-

kautz/challenge/.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimisation by simulated annealing.
Science, 220, 671{680.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis,
Carnegie Mellon University.

110

Learning Evaluation Functions

Martin, O. C., & Otto, S. W. (1994). Combining simulated annealing with local search
heuristics. Tech. rep. CS/E 94-016, Oregon Graduate Institute Department of Com-
puter Science and Engineering.

McAllester, D., Kautz, H., & Selman, B. (1997). Evidence for invariants in local search. In
Proceedings of the National Conference on Arti�cial Intelligence (AAAI).

Moll, R., Barto, A., Perkins, T., & Sutton, R. (1999). Learning instance-independent value
functions to enhance local search. In Kearns, M. S., Solla, S. A., & Cohn, D. A.
(Eds.), Advances in Neural Information Processing Systems, Vol. 11, pp. 1017{1023.
The MIT Press.

Moore, A. W., & Lee, M. S. (1998). Cached suÆcient statistics for eÆcient machine learning
with large datasets. Journal of Arti�cial Intelligence Research, 8, 67{91.

Moore, A. W., & Schneider, J. (1996). Memory-based stochastic optimization. In Touretzky,
D., Mozer, M., & Hasselmo, M. (Eds.), Neural Information Processing Systems 8.

Moore, A. W., Schneider, J. G., Boyan, J. A., & Lee, M. S. (1998). Q2: Memory-based active
learning for optimizing noisy continuous functions. In Proceedings of the Fifteenth
Interational Conference on Machine Learning (ICML).

Nakakuki, Y., & Sadeh, N. M. (1994). Increasing the eÆciency of simulated annealing
search by learning to recognize (un)promising runs. Tech. rep. CMU-RI-TR-94-30,
CMU Robotics Institute.

Ochotta, E. (1994). Synthesis of High-Performance Analog Cells in ASTRX/OBLX. Ph.D.
thesis, Carnegie Mellon University Department of Electrical and Computer Engineer-
ing.

Perkins, T., Moll, R., & Zilberstein, S. (1997). Filtering to improve the performance of
multi-trial optimization algorithms. Unpublished manuscript.

Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical Recipes in C:
The Art of Scienti�c Computing (Second edition). Cambridge University Press.

Puterman, M. L. (1994). Markov Decision Processes|Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY.

Russell, S., & Norvig, P. (1995). Arti�cial Intelligence: A Modern Approach. Prentice Hall.

Selman, B., Kautz, H., & Cohen, B. (1996). Local search strategies for satis�ability testing.
In Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Challenge.
American Mathematical Society.

Su, L., Buntine, W. L., Newton, R., & Peters, B. (1998). Learning as applied to stochas-
tic optimization for standard cell placement. International Conference on Computer
Design.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences. Machine
Learning, 3, 9{44.

111

Boyan and Moore

Szykman, S., & Cagan, J. (1995). A simulated annealing-based approach to three-
dimensional component packing. ASME Journal of Mechanical Design, 117.

Tesauro, G. (1992). Practical issues in temporal di�erence learning. Machine Learning,
8 (3/4).

Watkins, C. (1989). Learning From Delayed Rewards. Ph.D. thesis, Cambridge University.

Webb, S. (1994). Optimising the planning of intensity-modulated radiotherapy. Phys. Med.
Biol., 39, 2229{2246.

Wong, D. F., Leong, H., & Liu, C. (1988). Simulated Annealing for VLSI Design. Kluwer
Academic Publishers.

Zhang, W. (1996). Reinforcement Learning for Job-Shop Scheduling. Ph.D. thesis, Oregon
State University.

Zhang, W., & Dietterich, T. G. (1995). A reinforcement learning approach to job-shop
scheduling. In Proceedings of the International Joint Conference on Arti�cial Intelli-
gence (IJCAI), pp. 1114{1120.

112

