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1. Introduction

The present paper addresses the problem of a temperature dependence of the giant dipole
resonance (GDR) width. Actually, our concern about is only with one part of the total
GDR width - the spreading one.

GDR was found in a hot rotating nucleus formed in a collision of two heavy ions as
early as 1981 [1]. As a result of quite sophisticated experiments performed during 20
years some integral characteristics of GDR were carefully studied. In particular, it is well
proved that the energy of GDR and the exhaustion of the model independent Energy
Weighted Sum Rule (EW S R) are quite stable against temperature increase. At the same
time one observes a strongly increasing width of GDR with temperature of a nucleus T'.

Several processes contribute to the GDR width at finite temperature [2-4]. Among

“them are quantum fluctuations which exist already in a cold nucleus: the Landau damp-
ing, the coupling with surface vibrations, the collisional damping (i.e. the coupling to
incoherent two-particle-two-hole excitations) and the coupling to the single-particle con-
tinuum. At T # 0 the thermal fluctuations of a nuclear shape appear. Moreover, since a
hot compound nucleus usually carries a large angular momentum, the rotation also affects
the GDR width.

Extracting the GDR characteristics from the measured v-spectra is not an absolutely
unambiguous procedure. These spectra are in fact a weighted sum of the y-ray yield
emitted by many nuclei populated in the decay of the initial compound nucleus. The
extracted GDR characteristics depend to some extent on assumptions about a shape
of E1 strength function, and mass- and temperature- dependence of its parameters [5)-
Also, the temperatures inferred from experimental excitation energy of a hot compound
nucleus are sensitive to the level density parameter which is not known very accurately.
The impressive example is the fate of a phenomenon of the so-called saturation of the GDR
width at T > 3.5—4 MeV. After the appearance of new data and reanalysis of the previous
ones [6, 7] the GDR width [gpr was found permanently increasing up to T ~ 3.2 MeV.
It was also established that the information about GDR at higher temperatures cannot
be extracted reliably from the existing data.

Even a more ambiguous problem is the disentangling of different contributions to the
experimental GDR width. Fortunately, due to the experiments with inelastically scattered
a-particles which yield a compound system with a small angular momentum [8] the effects
of rotation and temperature on the GDR width were separated. However, in most cases
conclusions can be made only by comparing the final results of theoretical calculations
with the measured (extracted !) experimental value. Sometimes conclusions appear to
be controversial. For example, the adiabatic coupling model [9] reasonably describes the
experimental data on the GDR width in !*°Sn and 2°Pb supposing the intrinsic GDR

width Tt almost independent of temperature. According to studies [9], the main effect,



which explains increasing of ['gpg, is the thermal nuclear shape fluctuations. On the other
hand, according to [10], the behavior of the GDR parameters in the compound nucleus
86Mo cannot be explained by assuming ['* be a constant.

Different theoretical approaches also predict a quite different T-dependence for the
GDR width. The first calculations of a thermal behavior of I'* were performed in [11].
At that time, it was already well known that the coupling of a single-particle motion
with collective surface vibrations is the main mechanism of damping of giant resonances
in cold nuclei. In [11], a temperature dependence of this coupling was studied with the
Matsubara thermal Green’s function technique and it was found that the GDR width was
nearly constant when T increased. The physical ground of these calculations was the Nu-
clear Field Theory [12] (NFT) treating a nucleus as a system of interacting quasiparticles
and vibrations (RPA phonons). In mote recent studies [13] the very weak dependence I

“on T was explained by the cancellation effect between self-energy and vertex contribu-

tions. However, several years ago in [14], where the problem was studied within the same
formalism and under the same physical assumptions as in [11, 13], an increment of the
spreading GDR width with T was found.

The latter result qualitatively agrees with that of the approaches taking into account
the coupling with incoherent 2p~2h excitations (the collisional damping) [4]. For example,
a semiclassical theory based on exact solutions of the linearized Vlasov kinetic equation
[15] predicted the increase in the GDR width with temperature although, according to
[5], the increase was too slow. A phenomenological method of independent sources of dis-
sipation {16] developed within the same semiclassical approach demonstrated the intrinsic
GDR width quite stable against T whereas the contribution of two-body dissipation in-
creases with T'. Also, the calculations performed within the quantum framework of the
small amplitude limit of the extended time-dependent Hartree-Fock method with the non-
Markovian collision term [17, 18] showed the increase in the intrinsic GDR width with
temperature. However, the absolute value of the width is still uncertain ranging between
25% to 50% of the observed value [4].

Thus, the current situation with the temperature dependence of the GDR spreading
width, as one can conclude from the above brief review, is not clear. That is why we
present the results of calculations within one more approach. The approach was developed
in [19-21] and is based on the two main ingredients: the Quasiparticle-Phonon Nuclear
Model (QPM) [22-24] and the formalism of thermo field dynamics (TFD) [25, 26]. For a
long time QPM was successfully used in theoretical investigations of damping of various
giant resonances including two-phonon ones [27] in cold nuclei. The physical basis of QPM
is very similar to that of the Nuclear Field Theory, and both the models have produced
quite close results as applied to nuclear structure calculations at T = 0. In [19-21] the
QPM was extended to finite temperatures by the use of the TFD formalism. Already at



that formal stage interesting differences with [11] were noted. The main new scope of
the present paper is numerical calculations of the T-dependence of I'* in the TFD-QPM
approach. Moreover, basing on the present results we discuss more carefully than before
a relation of our approach to that of [11, 13, 14].

The paper is organized as follows. In Sect. 2, the extension of the Quasiparticle-Phonon
Nuclear Model to finite temperatures is presented. In Sect. 3, the results of numerical
calculations for *°Sn and 2°®Pb nuclei are presented. We discuss a physical background
of our results and a comparison with other approaches in Sect. 4. A short conclusion is

given in Sect. 5.

2. QPM at finite temperature

2.1 Thermal RPA

First attempts to apply the TFD formalism to nuclear structure problems were made in
[26, 28] and [19-21]. Up to now the TFD formalism is not widely used in the nuclear
structure studies. So it seems appropriate to outline how QPM can be extended to finite
temperatures within the TFD thus repeating to some extent the results of [19-21].

The QPM Hamiltonian in a cold nucleus consists of phenomenological mean fields
for protons and neutrons, pairing interaction of the BCS type and separable multipole
particle - hole interactions with the isoscalar and isovector items

H= Hsp + Hpair + th V (1)
where
Hsp = Z (E] had /\'r) C;ijm (2)
jm T

Hpair = _Z Z c“mchCJszchmz (3)

im
Ho = ~55 3 (w6 +0n") ME(r)Mau(o) (4)

A Tpo=%1

The operator MY, () is the single-particle multipole operator

T . - .
M3, (1) = 32 (ma| R(r)Yau(F/r)|j2ma)f m, Ciome
fama
and ch, ¢jm are the creation and annihilation operators of particles with quantum num-
bers n,l,j,m = j,m. The notation jm means the time-reversed state. The index T is

isotopic one. It takes two values, 7 = n,p. The symbol 3" means that the summation is



taken only over neutron or proton single - particle (hole) states and changing the sign of
T means changing n ¢ p. The parameters G, G, are constants of neutron-neutron and
proton-proton BCS-pairing interactions and /cé'\), /-:g'\) are coupling constants of isoscalar
and isovector multipole - multipole (with multipolarity A) interactions, respectively.

The first step in treating nuclear dynamics governed by the Hamiltonian (1) at finite
temperature is formal doubling of the Hilbert space of a nucleus. To this aim, we introduce
a fictitious (tilde-) system which is of exactly the same structure as the initial one. For
any operator A acting in the initial Hilbert space there exists its tilde counterpart A
acting in the space of tilde states. The tilde-system is governed by the tilde Hamiltonian
¢jm are substituted by

H which has the same structure as H, only the operators cj’m,

their tilde-counterparts &}, and .
The thermal Hamiltonian of the QPM is by definition

H=H-H ' (5)

An excitation spectrum of a hot nucleus is obtained by diagonalization of H. At the same
time, the thermal behaviour of the nucleus is controlled by the thermal vacuum state
[0(T')), which is the eigenstate of H with the zero eigenvalue.

To construct the thermal vacuum state |0(T')) we made two Bogoliubov transforma-
tions. The first one is the standard (u,v) Bogoliubov transformation from the particle

operators to the quasiparticle ones a}'m and Qjm.

S = wiad, + (-1 "vi04m (6)
im = ujaim + (—1) vl

The same transformation (with the same uj,v; coefficients) is made with the tilde-
operators thus producing tilde quasiparticle operators &}, @;jm. The second transfor-
mation is a unitary thermal Bogoliubov transformation [25] from ordinary and tilde qua-

siparticle operators to thermal quasiparticle operators 3, 8%, 3, 3+

Bim = TjCm —Y;&}, (7)
Bim = Zj&m +yiof,,
where
2 2 _

The coefficients of the Bogoliubov rotations (6) and (7) are determined simultaneously

by minimization of the free energy F(") (separately for neutron and proton subsystems)

FO = ((T)|H) + H{ZL0(T)) = TSO = 2\ (0(T)|N|o(T)) (8)

pair



where N(*) is the operator of a number of neutrons (protons) in the nucleus
Fo =3V
- Im-Im
im

The entropy S reads

S = —Z (27+1) [z? ln z? + yf- lnyf] . (9)

J

Expectation values in (8) are taken with respect the thermal ground state |0(7')) which
at this stage is supposed to be the vacuum state for the thermal quasiparticle operators

BimlO(TY) = Bim|0(T)) =0 . (10)

In terms of the operators at,a* the vacuum [0(T)) is nothing but a coherent, or squeezed,

state

e[S ]

where |0) is the direct product of the BCS vacuum and its tilde counterpart.
After variation of (8) over the coefficients u;,vj, z;, y; we obtain the BCS-equations at
finite temperature {28, 19].

L ey (Ej — Ar)(1 = 2n;)

'r 1=2n;
2+ 1) ——rt——, (12)
; CEPREY

The expressions for the coefficients u;, v; and the quasiparticle energy ¢; are the following:

) 1 E; -\ 1 E<—)\
2 _ _ it B 2 _ _ 7T e _ 2 2
Ui =g (1 + ” ) , Y=5 (1 o ) , g =q/(Ei— A2+ A2 (13)

And for the coefficients z;, y; one gets

yi=mn;; zi=1-n;, (14)
where n; is the Fermi-Dirac thermal occupation number for the quasiparticle with the
energy €;

1
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With the coefficients u;, vj, z;, y; determined by (13-15) the part of the thermal Hamil-
tonian which consists of the single-particle and pairing terms and their tilde-counterparts
takes the form

Hrsqp = Z &5 (ﬁfmﬂjm - Efmﬁjm) .
ymT
The Hamiltonian Hrsqp describes a system of independent thermal quasiparticles with
temperature dependent energies ¢; (and -¢; for the tilde thermal quasiparticles). The
ground state of this system is the thermal vacuum state |0(7")) defined by (10).

The term Hyy, is the interaction of thermal quasiparticles. After the transformations

(6) and (7) the multipole operator ML(T) takes the form

M, () = \/2A—+Z £33 [AF G ) + (=) Agliajos A — )] + Baliiai M) (16)

The value f

]l]2
operator M. "L. The operators Az,'(jl J2; M), and Bg(j1j2; Au) are defined as follows:

X ) = ;;z’, (MW[ Ve (B3],
~ VT (8],

Bo(jujai M) = il /T =ms /s, ([ 1Bal,, + (1 [6s ~Z]A-u>
- ,,,,(w—\/—nn[ﬂnﬂm,,ﬂ/—\/a[n B,

is a reduced single-particle matrix element of the one-body multipole

where

(+)

— U v oy =) —_ ., . .. )
Ujip = Ui Vi + Ui Vi, Vs 5, = Ujy Ujy — V5,05,

nj2

The operator Ag(ji1j2; Aw) is the hermitian conjugate of A% (j1j2; Ai). The square brackets
[ ]ax stand for the coupling of single-particle angular momenta j;, j; to the sum angular
~momentum A.
At the next step we take into account the RPA correlations due to interaction of
thermal quasiparticles [26, 20]. To proceed, we introduce the following thermal phonon

operator:

!

. . o x
i = Z( i 18565] W + 255, {’B’tﬁ’i’]x _H/)’”’ [ﬁ% %] /\u)

= (0 (B BB dams 20 BB + B Brrlron)  (1T)

Further, we assume that these phonons are bosons and redefine the ground state of a
hot nucleus. Hereafter it is a vacuum state for the thermal phonon operator |¥o(T')), i.e.



@xu]%o(T)) = 0. Thus the function |¥o(T')) is a temperature dependent wave function of
the compound state. With an assumption on the bosonic nature of the phonon operator
(17) the norm of a thermal one-phonon wave function is

Z i) = (Bi) + (G3)" = (B50)" 25" = 2AGL =1 (18)
]l]?
Then the thermal RPA equations can be obtained by either applying the variational
principle or the equation of motion method. Here we show only the secular equation for
energies wy; of thermal one-phonon states | A7) and expressions for amplitudes of a thermal

phonon wave function. The secular equation reads

D) + Xp(e)] (55 4 517) — 460X ) Ky () = 1, (19)
“ where
Xow) = LS g [ = s = ) )
A 14 Vo (ej, +€5)2 — w?

( 1112)2(n11 niz)(ejl - Ejz):l ] (20)

(€J1 - €j2)2 - w?

The amplitudes are

N A a N (+
Mo fin%in V1 — a1 nn Mo |1 J(”)z 5”)2\/1 —nj, ,/
2NA:

hi T N;\' (€51 +€5) — wai i (i +€5) +wri

(A) o8 A~ (,\) C) A —n
n,‘\i‘ - 1 fiinVin V1 — 1y Mo 1 fih Jul 1- "nv”u
nyp 2/\/"\' (5“ 5]2) Wi J172 QN)" (511 512) + wy

('\) + A +
T _ 1 .71]2 §1J)2 ViV Mz M ’ 1 ](11)2 511)2 VAL TRVAL
QN)\:

s = 2N (5 +€5) +wni ’ i (e + 512) wyi

w=“’»}

(21)

where the factor M is

1 _X,\i Wi (,\) + n('\) 3 )
? +( ¥ (A)(w ey ) 2 2 w)
w=w; X2 (wn)(sg —5y")

It is worthwhile to note that in contrast with RPA at T = 0 the solutions of (19) with
negative energies have physical meaning (see also [14]). They correspond to the tilde-
phonon states Q,\m|\llo(T))

(Wo(T)| [, Q1] 196(T)) = ~(Wa(T)| [H, Bu] 19(T)) = won



Let us comment on the structure of a TRPA phonon. The components ¢ and ¢ are the
same as in the standard quasiparticle RPA (QRPA) (see, e.g. [24]) and are only damped
being heated by the factor (1 —n;). The components 3 and ¢ are totally due to the tilde
part of the Fock space of a heated nucleus. They vanish in a cold nucleus. Note that
the w dependence of the forward and backward tilde amplitudes is just opposite to that
of the ordinary amplitudes. It means that, e.g., while ¢ is of a pole character ¥ is not
and instead the amplitude ¢ is a pole amplitude. The most interesting amplitudes are 7
and (. They could be specified as cross-over amplitudes containing both the ordinary and
tilde thermal quasiparticles. Just due to them the poles ¢; — ¢;,, which do not exist in
QRPA at T = 0, appear in (19). Note that these poles can appear at quite low energies,
thus enriching a low-energy part of the phonon spectrum in comparison with QRPA at

(- )

= 0. The amplitudes 7 and ¢ deperid on the superfluid factor v; ;, which is enhanced

“when both the states 7, and j, are of a particle or a hole type. In contrast, the four other
(+)

jid2*
In nuclei with pairing correlations the amplitudes , ¢ vanish when T' = 0. However, in

amplitudes are proportional to the superfluid particle-hole factor u}

normal nuclei the thermal phonon operator (17) consists of only two types of components
n and (

fui = o [BRBE] L+ (-1, [Bubs]

J1d2

The expressions for 7 and ¢ displayed above are valid in this case as well excepting that
(=)

the value Vi

equals to unity. The expression (20) also becomes simpler

X, w Z f“h n]x _'ng)(Ejl - .72)
2>‘+1 Jx_Eh) - w?
At the end of this subsection we display the expression for the matrix element ®,; of

the E\-transition operator from the ground state of a hot nucleus to a thermal one-phonon
state (i.e. for the transition [¥o(T)) = QF,;|¥o(T))). It reads [20]

2 = S GIMEN) {2 u) [\/1—"11\/ =, (35, + 83)

\/_\/;lz ( j1d2 .71]2)] Jm V1 \/TZ ("bm Jm)} ,  (22)

where (j1||M(EX)||j2) is a reduced single-particle matrix element of the EX transition
operator.



2.2 Interaction of thermal phonons

Now the thermal Hamiltonian reads in terms of the TRPA phonons and thermal quasi-
particles®

H

It

Zw/\i (Q}-uiQ)\/.ti - é;’m‘@’)\ui) -
Aut
ST e (o
- 22 QY.+ Qaoui) Be(iris A —p) = (23)
2\/— Api T Jij2 /\i w ’

= (PG + o) B A — ) + e}

The terms ~ (@Q* + Q) B etc (hereafter we denote their sum by Heph) couple a thermal
one-phonon state with more complex thermal configurations, e.g., two-phonon ones. Due

- to this mixing the strength of a one-phonon state is fragmented over some energy interval.
In other words, the term Hqphn produces a spreading width of a thermal one-phonon state.
To describe the fragmentation of thermal phonons, we use again the variational method
with a trial wave function of the form

‘ Z R JV QJM: + Z P)‘z‘:; (JV /\1‘1111 QA;#;:;]JM I\I’O(T)) (24)

Apiy
Aziz

The equation for energies of states (24) is

sy - T Vs (Ji) Ui (1)
1 v [T} 2

Wi 1y +w/\2£2 NJv

det

=0. (25)

ArirAziz

The functions U '\“‘(J i) are the coupling matrix elements between one- and two-phonon
states. The expression for U is the following:

A AN J
Ui (Ji,r) = -—m,+ Ve t1y [ )’F?f;:{ s }K?;;;f: (26)

Jriags )33 J2 N
At A J o Ji J AL A
A=Az pAri 1 A2 AgigJi i 1 A2 Arir X
+(_) . 2F111121 - . . )CJ':J?:J'; +( )J )\11‘-]7”2 3 - . ‘CJ::J';J:'2 ’
J3 J2 N J3 J2 N

where % = f®) /\/A'N and the functions K)227F and £)1{12#% are

2 J1j2 J3J201 35201

K«\nl.h
J3J201 ]1]2

1tz +M Ay, Ji Ayty A1, Arir 1
1112 Zi y-72( ) (¢Jx]3 17]3]2 + ¢jx]’3 1312 77 J1ds 1312 + CJua 1312
(+) iy, Ji iy T i, Ji iy
- meh xn( 1) Misi ¢j2j3 + CJall ]2]3 w]all Ni2ss d)Js] 1213
_ J2+73 My, Ji A1y TALiL T Thi I
]1]2 le yn( ) (T]]m Mjs iz + Can J3]2 + 11’]311 an ¢]3]1 .13]2

3Note that the serm B};Bp and its tilde counterpart are omitted

Jx+js+/\1+J Arfy Ariy g Ji Ay, Ji Ariy
3"111']2 ) (d)Jst Jst + ¢Jx]3 J233 + anJs n]z]a + ngJa J2J3)

+




Mitdaiz (=) L o yiititadde (i et At daiz 4 oMy pdaiz | diin daia
['jajzjl - ijjzx-’lzh( 1) (¢ij3 ¢Jz]3 +¢J113 ¢.7233 +77]x]3 J2J3 + J1J3 771213)

+) o Ji+iz+M Aty ~A2iz A1i1 ) A2dz Ariy A2tz i1 Aziz
ujljzzllyh(_) 1/)1'11'3 Cjaiz + ¢J'xj3 Niada + Mivss ¢j3j2 + ijjs 1'bl:m

). . A2 [ AL g A2tz At gAaiz | Thidn, A2iz 7 A161 ~A2i2
Ui ¥ %3 (=) Gt gy Miast Piada + Piasi Minds + Vs Sias

=), o J2+is [ M1 FA2i2 Aiy Aotz 7Ait JAhadz 4 TA1i1 T Aziz
Vi ¥ ¥ (=1) Miats Sista + Sioir Miads T Wissi Piada T Piost Vinsa

-+

Let us note that in case the pairing correlations vanish, expression (26) completely agrees
with that from [14] (see egs.(4.1)-(4.2) in the paper).

To calculate the El-strength function in hot nucleus taking into account a fragmen-
tation of thermal one-phonon dipole states, we explore the well-known strength function
method [23, 24]. Avoiding to solve (25) we directly calculate the function

WEAT) = Y 5o B()P, (21)
v (=) + 1

where the coefficients ®(Jv) the are amplitudes of E-transitions from the ground state
of a hot nucleus (a compound state) to states described by the wave functions (24). This
amplitudes are superpositions of the matrix elements ®j; (22) the with weight factors

Ri(Jv) from (25)

®(Jv) = Z Ri(Jv)®y;,

and A is a smearing parameter.

3. Numerical results

We calculate the El-strength distributions for 0 < T < 3 MeV in '2Sn and 2°®Pb nuclei.
All model parameters {mean field potentials, pairing constants, coupling constants of
separable interactions etc) are fixed in accordance with the standard QPM procedure
(22, 24], 1.e., by the use of experimental data on the energies of low-lying vibrational
“states and giant resonances at T = 0. As a mean field the phenomenological Woods-
Saxon potential is explored. The single-particle basis consists of all bound states and
several quasibound ones with a relatively small escape widths.

Pairing correlations that exist only in the neutron system of the '2°Sn nucleus are
treated in the thermal BCS approximation. Since we do not make a particle projection,
a neutron energy gap in this nucleus vanishes at 7'~ 1 MeV.

Only multipole-multipole particle-hole interactions with 1 < A < 7 are included in
the Hamiltonian. A radial form factor of the separable multipole interaction has the
form R(r) = dU/dr, where U is the central part of the Woods-Saxon potential. The

10



coupling constant of the isoscalar dipole-dipole interaction is adjusted at every value of T
to make the energy of the spurious 1~-state zero in the TRPA calculations. The chemical
potentials ), , are also adjusted at every T value to keep the right average values of N, Z.
First, let us discuss the TRPA results. The El-strength distributions in nuclei !*°Sn
and 2%8Pb at different temperatures are shown in Figs. 1 and 2, respectively. One can
see that in TRPA we get qualitatively the same results as many other authors [17, 29].
When temperature increases, only some minor redistribution of the E1 strength between
different one-phonon 1~ states takes place. The energy centroids and Landau widths of
GDR in both the nuclei almost do not change with T'.
In Figs. 3 and 4 the temperature dependencies of the dipole energy weighted sum rule
(EWSR) in the same nuclei are shown. The model EW SR is calculated by the following
formula: )
EWSR=" 3 (FIL)" [(es +en) @il —ns —ns) = (o5 = )W) (5 — nz)]
T j12j2
The model independent value of EWSR (S,) is calculated in accordance with the stan-
dard expression

§=LEMNZ_ 8N *m?MeV
8r m A

Since the calculated values of EW SR are quite close to the model independent ones,
one can conclude that our single-particle basis is large enough to describe GDR in medium
and heavy nuclei. An excess of our EWSR over the model independent value S; in
120Sp at T < 1 Mev can be attributed to the effect of the BSC pairing. When the
pairing correlations vanish, a deviation of EW SR from S; as well as a steepness of the
T-dependence of EW SR in '°Sn become very similar to those in 2°Pb. On the whole a
difference between S; and EW SR in the range 0 < T < 3 MeV is less than 10% and a
decrease in EW SR with T is less than 5% within the same temperature range.

Now we discuss the results when the interaction of thermal (TRPA) phonons is taken
into account. - We include in the one-phonon part of (24) 14 dipole phonons with the
largest B{E1) values at given T from the energy range 0-30 MeV. These 14 E1 TRPA-
phonons exhaust more than 80% of the model EWSR. The two-phonon part of (24)
includes all possible two-phonon 1~ states from the energy range 0-30 MeV constructed
by combining normal parity phonons of different energies with momenta 1 < A < 7. Some
additional limitations to the two-phonon space will be discussed in Sect. 4. The smearing
parameter A in the Lorentz weight function is taken to be equal to 1 MeV. We calculate
the energy centroid E and spreading width ['* of the El-strength distributions with the
following formulae:

Fe M i m-(m)z

mg Mo Mo



B(E1), & fm”

B(E1), &° fm’

B(E1), &% fm®

B(E1), €% fm®

0 ) J’l[[ll.‘ | . ||

5 10 15 20 25 30
w, MeV

Figure 1: The TRPA results for the El-strength distribution in '?*Sn nucleus at different
temperatures.
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Figure 2: The TRPA results for the El-strength distribution in 2®*Pb nucleus at different
temperatures.
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Figure 3: Temperature dependence of EW SR in 12°Sn (dashed line). Solid horizontal line
- the value of the model independent energy weighted sum rule S;.
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Figure 4: Temperature dependence of EWSR in 2°®Pb (da,shed line). Solid horizontal
line — the value of the model independent energy weighted sum rule S;.
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where my is the kth energy moment of the El strength function defined as follows:
EmﬂI
me= [ p(BL n)dr.
Emin
Our results for the T-dependence of [+ and the experimental data from [8, 30] in both
the nuclei are shown in Figs. 5 and 6.

T T T T T T

0 1 2 3
T, MeV

Figure 5: Temperature dependence of the GDR width I'* in !?°Sn. Open diamonds -
experimental data from [8, 30]; full diamonds ~ revised experimental data from [6].

The most distinctive feature of the theoretical curves is that they show increase in the
GDR spreading width with temperature. Moreover, the theoretical results agree quite
well with the data of {8, 30]. In principle, it is not encouraging because I'* is only a
‘part of the total width I'(GDR) and apparently a difference has to exist between the
experimental ['gpr and the calculated I'*. Fortunately, the difference appears when one
takes the data of 8, 30] revised by D. Kusnezov et al. [6]. The revised data are also
shown in Figs. 5 and 6. They are lying higher than the theoretical curves and seem to
grow with temperature slightly faster. A reason of increasing I'* will be discussed in the
next section.
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T, MeV

Figure 6: Temperature dependence of the GDR width I'* in 2°®Pb. Open diamonds -
experimental data from [8, 30]; full diamonds - revised experimental data from [6].

4. Discussion

Our results concerning ['(T) qualitatively agree with that of [14] and {15, 17, 18] but are
in contradiction with those of {11, 13]. To understand why in our approach the value I'*
increases with temperature, we analyze the matrix elements of a phonon-phonon coupling
U ,{\2‘,?2‘(1,-‘ ) and found a strong effect of a few very low-lying thermal phonons appearing in
the phonon spectrum only at T # 0 due to the nonvanishing thermal occupation factors.
These states correspond to low-lying poles of the (g;, —¢;,) type. Moreover, one amplitude
7j,j, dominates the phonon wave function, i.e., these phonons are noncollective and of the
p-p or h-h type. It can be easily shown that the following expression for the amplitude
" Mj.j. of such a phonon is valid:

v o T /T
Mji g2 € — € ~ Whs
Ji J2 At

because for a non-collective phonon ¢;, —¢j, ~ w. If one of the phonons |Ay4;) or |Ag12) in
the matrix element U /{\2‘:2‘ (17) (26) is of the afore-mentioned type, the value U appears to
be also proportional to \/m and I ~ 3" U? ~ T'/w. Thus, a temperature dependence
of T+ arises. The appearance of a small value w in a denominator explains a strong

influence of these noncollective phonons on the I'* value.
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We conclude that the reason for the increment of I'* with T is the interaction of GDR
with the noncollective p-p (or h-h) thermal phonons of the special type. On the whole
this conclusion agrees with the results of [14] although in that work a special role of
the low-lying p-p (h-h) phonons was not definitely pointed out. It seems that in [11]
the noncollective thermal RPA excitations have been ignored (the same statement can be
found in [14]). It follows from our consideration that if the thermal phonon space includes
only those phonons which are of the p-h type at 7' = 0 I'* will be quite stable against T.

Some questions concerning a dependence of our numerical results on parameters still
remain. An appearance of low-lying p-p (h-h) states is dependent on the parameters of
the mean field. It seems to us that the use of a phenomenological Saxon-Woods potential
gives the upper limit for the role of these low-lying p-p (h-h) states because the density
of single-particle states near the Fermilevel is the largest one in this potential. We guess

" that, e.g., with the mean field calculating by the Hartree-Fock method with a density-
dependent effective interaction like the Skyrme one, the influence of these phonons on I'*
will be weaker.

There is one more ingredient directly affecting the calculated value of I'*. It is obvious
that the whole space of two-phonon states is overcomplete because thermal phonons are
considered as bosons and any special projection of two- or four- fermion states into the
bosonic ones is not made. This ovecompleteness is partially reduced due to the special
limitation in constructing the two-phonon part of the trial wave function (24). Namely,
only two-phonon configurations combining two collective or one collective - one noncollec-
tive phonons are included in the wave function. However, there is no clear cut separation
between collective and noncollective states, especially because the "true” collective states
like low-lying quadrupole and octupole phonons dissolve with increasing temperature.
Therefore, in practice one needs a quantitative measure of ”collectivity of a phonon”.
This measure can be introduced basing on a phonon structure. For example, a phonon is
considered as a collective one if the largest two-fermion component in its wave functions
(17) exhausts less than B% of the total norm. Evidently, B is a technical parameter.
The larger is B the larger is the thermal two-phonon space or the number of two-phonon

- configurations taken into account in the calculations. Enlargement of the two-phonon
space means strengthening of fragmentation or damping.

To estimate a possible effect of the two-phenon basis, we make the calculations with
two different spaces of two-phonon states. In Fig. 7, we display the results of calculations
of I'*(T) in 2®Pb for B = 50% and 60%. The width ['* sizably decreases together with
B. Moreover, a rate of the increase in I'* with T also becomes slower at a smaller value
of B. Nevertheless, a general trend of the thermal behavior of the spreading GDR width
is saved.

Note, the effect of a size of the two-phonon subspace is much weaker at T = 0. In



r', Mev

Figure 7: Temperature dependence of the GDR width I'; in 2%Pb calculated with different
two-phonon model spaces: dashed line - B=50% ; solid line - B=60% . (see the text for
comprehensive explanations)

[23], a consistent procedure taking into account the Pauli principle corrections in the
two-phonon components was developed. The procedure is based on the exact (from the
point of view of their fermionic structure) commutator of phonon operators. Its influence
on the strength functions of multipole giant resonances in cold nuclei was studied in
[31]). The corresponding corrections were found to be small because at T' = 0 the main
contribution to the spreading width of giant resonances is given by the coupling with
the lowest collective quadrupole and octupole phonons and corresponding two-phonon
configurations are weakly affected by the Pauli principle. However, with increasing of T
the low-lying collective vibrations dissolve and their contribution to the damping of giant
resonances diminishes. At the same time, the role of the Pauli principle acting between
large number of weakly collective and noncollective states treated as bosons becomes more
“and more important. The results presented in Fig. 7 reflect this process.

There is one more interesting and at the first glance principal difference between our
approach and that of [11, 13, 14]. The difference has already been pointed out in [21]
and now we would like to discuss it in more detail. In {11, 14], the GDR width depends
on thermal occupation numbers of two types - the Fermi-Dirac and the Bose-Einstein
occupation numbers. The appearance of Bose occupation factors is a consequence of
treating all the phonons as quasibosons when the temperature dependent Green’s function
of a single phonon is introduced.

In the present paper, a reader can not find the thermal bosonic occupation numbers,

and it seems there is no room for them. We start with the model Hamiltonian written in
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terms of nucleonic (i.e. fermionic) variables. The thermal occupation numbers appear in
the game when we make the thermal Bogoliubov rotation (7) and thus produce the thermal
Fock space. All further manipulations explore these "heated” fermions and the appearance
of bosonic occupation numbers is quite questionable. Qur thermal Hamiltonian in its final
form (23) is the Hamiltonian of interacting phonons built from ”heated” quasiparticles
but the phonon system itself is not heated in the sense that there is no thermal smearing
of phonons over their energy levels. This corresponds to a transparent phenomenological
picture: when one heats a nucleus putting there a good piece of energy, a nucleonic
motion is changed and due to this the properties of a nuclear surface are changed. As a
consequence of the latter the properties of surface vibrations are changed. However, one
cannot heat nuclear surface vibrations themselves.

In [14], the authors start just with the Hamiltonian of the interacting TRPA phonons

"implying, as an obvious fact, that the phonon system has the same temperature T as the
underlying fermions forming the thermal phonons. In our opinion this is an additional
assumption which has to be justified. Similarly, in [13] from the beginning a nucleus is
treated as a system of phonons and quasiparticles. But since phonons and quasiparticles
are considered as some "initial” ingredients, the structure of phonons has to be as it is in
a cold nucleus and cannot be changed by heating the system. Thus, they cannot satisfy
the thermal RPA equation.

The point is that quasiparticles and phonons are not independent variables in a nu-
cleus. The phonon is a coherent superposition of bifermionic excitations. So, starting
with the model Hamiltonian given in terms of nucleonic degrees of freedom one has to
make a mapping of pure fermionic states to a subspace consisting of ideal ”quasiparticle”
and ”bosonic” elementary modes.

In this regard, Hatsuda [26] discussed already two ways to consider a hot nucleus. The
first is to make a mapping of the initial Hamiltonian and the initial pure fermionic Fock
space of a cold system (nucleus) and only after this to thermalize a system in question.
For the approach presented here it means that degrees of freedom should be doubled for
the quasiparticle-phonon image of the Hamiltonian (1)-(4) (see, e.g., [23, 24]). Then one
gets the thermal Hamiltonian with both the types of thermal occupation numbers and,
consequently, the GDR width also should depend on them. However, Hatsuda [26] has
also shown taking the Lipkin model as an example that "thermalizing” of the bosonic
image of the initial fermionic Hamiltonian one cannot derive in the leading order the
TRPA equations for these bosons.

The second way is just the way of the present paper: while heating we treat a nucleus
as a system of fermions and only after this we project or transform the original nucleonic.
degrees of freedom to more convenient ones {bosonic or bosonic + fermionic).

We would like to stress that the problem how to treat a thermalized nucleus in terms
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of quasiparticles and phonons is not so trivial as it may seem at the first glance. It is in
intimate correspondence with a proper choice of physically important degrees of freedom
and their consistent mapping which has to comply with the particle statistic requirements.
Some aspects of the problem were discussed also in [32].

As concerns the effect of the thermal phonon occupation numbers on the T-dependence
of T'¥, it is not significant, we guess. At least this is not the crucial point for increasing
[+ with temperature.

5. Conclusions

A temperature dependence of the spreading GDR width has been studied within the
Quasiparticle — Phonon Model extended to finite temperature within the TFD formalism.

. According to the results of numerical calculations, I'* increases with T in the temperature
range 0 < T < 3 MeV. In our opinion, this is the main result of the paper. A reasonable
agreement of the theoretical value of I'* with the experimental data is of less importance
because the former-is determined up to a factor of 1.5.

Our results agree qualitatively with those of {14, 15, 17, 18]. Moreover, the matrix
element of a thermal phonon interaction U ,{\2‘,'2‘ (J%) coincides with the corresponding vertex
of [14]. It seems that in [11, 13] the influence of thermal p-p and h-h phonons was missed.

We also drew attention to the problem of a proper choice of relevant nuclear degrees
of freedom to describe giant resonances in a hot nucleus. To our knowledge, this aspect
of a giant resonance theory was overlooked before.
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Cropoxenko A. H. u np. E4-2002-196
3aBucumocThb spreading-1IHPHHBI THIAHTCKOIO JHIIOIBHOTO
pe30HaHCa OT TEMIIEPATYph

3aBucuMocTs spreading-IUMPHHBI THMAHTCKOINO IHIIOJIBHOTO pE30HAaHCa re
OT TEMIIEpATypHl UCCIIeOBaHAa B PaMKaX KBa3HYaCTHYHO-(POHOHHOM MOIENH sapa
(KOM), 06061ueHHONH Ha HEHyNIeBbie TEMIEPaTyphl ¢ MOMOIIBIO (hopMain3Ma
tepmononepoit AuHaMMkH (TILM). YucieHHele pacyeThl NMPOBEAEHBI il KOM-
nayuz-snep '2°Sn u 2°8Pb. Benmunna 'Y GHICTPO pacTeT ¢ pOCTOM TEMIIEPATYPBI.
O6cyxnatorca npuuuHbl 3toro 3addekra. IToaxon KPM-TIII cpasHuBaetcs
C IPYTHMH MOAXOAAMH, NPENJIOXEHHBIMU paHee.

PaGora BrinonHeHa B JlaGoparopuu Teopetnyeckoi ¢usuku um. H. H. Boro-
mo6osa OHSIN.

Coobmenne O6beqMHEHHOTO MHCTHTYTa SAEPHBIX McciegoBanui. ly6Ha, 2002

Storozhenko A. N. et al. E4-2002-196
Temperature Dependence of Spreading Width
of Giant Dipole Resonance

The Quasiparticle-Phonon Nuclear Model extended to finite temperature with-
in the framework of Thermo Field Dynamics is applied to calculate a temperature
dependence of the spreading width I'* of a giant dipole resonance. Numerical cal-
culations are made for 12°Sn and 2°*Pb nuclei. It is found that I'* increases with 7.
The reason of this effect is discussed as well as a relation of the present approach
to other ones, existing in the literature.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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