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1 Introduction

The word ACCURACY (from Lat. accuratus — made with taking

care of) has several definitions:

- the freedom from errors;

- property of a human statement to be adequate to truth;

- degree of conformity of a measurement to a true value, i.e to a stan-

dard or to a model,;

which are reflected on its synonyms: exactness, correctness, precision.

Staying more in the EOLSS context we would rather consider the case of
measurements distinguishing direct and indirect measurements. Di-

rect measurements are accomplished either by counting the number of
some events within a given time interval (as for instance, for Geiger

counter), or by comparing a measured object with a standard, i.e. its

accuracy can be evaluated quantitatively in units of a minimal scale

factor. However in contemporary sciences and technologies direct mea-

surements inhere in the lowest level of a procedure of more sophisticated "
indirect measuring of an observable phenomenon. Such phenomena are

described, as a rule, by theoretical models with given quantitative char-

acteristics of parameters. Thus indirect measurements suppose to be

a subject of calculations that leads to the problem of the accuracy es-

timation from the set of measured values. This problem is caused not

only by a complexity of a functional dependence connecting a chosen

model, its parameters and measurements, but mainly, due to errors of
latter. These errors are inherent in any measurement, direct or indirect,

regardless of the thoroughness, with which the measurements have been

done. The accuracy of parameters in question is inversely proportional

to those errors. Therefore they have to be classified according to their

sources and analysed in order to be decreased as much as possible.
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There are several types of errors distinguished depending either on
their sources - such as instrumental and model errors, or on their
statistical behaviour - such as bias and random errors.

Instrumental errors appear due to inevitable distortions introduced
to the measurements by various misadjustments of a measuring de-
vice while its construction or by misalignments of its parts. Such er-
rors can be observed in the process of a special calibration procedure,
when an especially designed standard object is measured. Results of
these calibration measurements are then handled to be compared with-
well known features of the standard. Such calibration data handling
has twofold goals: (1) to evaluate and approximate distortions of the
measuring device in order to compensate them mathematically; (2) to
determine a functional transformation from the scales of measuring de-
vice to the standard coordinate system. From mathematical point of
view calibration problems belong to the more general class of unfolding
problems described below.

Model errors are specific for hierarchical, indirect measurements and
can often result in more serious errors in interpretation of experimen-
tal data. As soon as one tries to describe a certain phenomenon by a
functional dependence on measured data and some parameters, then
the choice of the type of function and values of its parameter can ap-
pear critical in verifying of such a description. We include here also
errors of the method implementation, such as errors of approximation,
rounding-up and discarding of expansion members of the higher order
of smallness. A typical example of such model errors appears when
one tries to approximate observations of an unknown dependence by a
polynomial. A wrong choice of this polynomial degree leads to an un--
avoidable approximation error. It is just the error of the wrong model
and results usually in a dramatic accuracy loss.

However, all the errors listed above are developed in statistics of
observations and, therefore, each of them can be classified statistically
either as a bias (systematic) or as a random error.

The systematic errors are caused by factors acting identically during
the whole measuring process. The easiest example is weighing with a



wrong weights. It would always give you a wrong result unless you
weigh a well-known standard weight, i.e. you make a calibration of
your balance by calculating the difference between the previous biased
measurement and the a priori known weight of your standard. Then
you can weigh any object and obtain its correct weight by adding that
difference to the result of this biased weighing, which is, in fact, an
example of the alignment transformation.

The random errors are varying even for completely identical con-
ditions of measurements depending on many occasional reasons which
influences can not be taken into account in advance. We do not consider
here rough blunders of measurements that usually can be avoided by
a careful experiment design or be eliminated later by a corresponding
cut-off procedure.

Thus depending on the measurement process of any experiment.
some of errors listed above must be taken into account in order to
improve the accuracy of measurements by a correct choice of statistical
procedures embodying data handling algorithms.

2 Mathematical formalism

In mathematical formulation we have a set of measurements (a sample)
T1,T2y...,Tp (1)

to be processed statistically to extract the maximum of useful infor-
mation related to the explored phenomenon with an acceptable level
of accuracy. If our sample consists of equally distributed, independent
random variables, then the first problem is usually to estimate their
mean value and variance. More sophisticated problem is to estimate
either the cumulative distribution function of our sample or its prob-
ability density function (p.d.f.). Depending on the nature of data and
our a priory knowledge it can be done by several ways.



2.1 Distribution-free methods

If the type of the sample distribution is unknown, one of distribution-
free methods can be applied to estimate the sample mean value and
even the distribution law of our sample. Theses methods are usually
based on the order statistics z(;) obtained from (1) by reordering the
sample in ascending order, so that z(;) < z(3) < ...,< z(n) and the
ordered measurements z(;) are called the order statistics. In particular,
one of those statistics, namely z(,/2) named the median is a good
estimation of the distribution mean value.

The empirical probability distribution function of the order statistics
defined as

0 T < I(1)
Fu(z) =1 i/n z4) <z <z - (2)
1 T ST

can serve as a good estimation of the sample distribution law, which
accuracy is increased asymptotically with growing of n. That allows to
determine the type of the sample distribution by some of distribution-
free goodness-of-fit test in order to apply afterwards one of paramet-
ric methods described in the next subsection. :

2.2 Parameter estimation

In a parametric case the type of the sample distribution is known and
the problem is to estimate its parameters. Given the sample (1), estima-
tion consists in determining either a value (so-called point estimation)
or an interval most likely including the unknown parameter value in
question (interval estimation).

2.2.1 Point estimators

Both terms: estimation and estimator are often used. There is minor
difference between them: the first one is every so often denoted the
process or the procedure of the parameter estimation whereas the sec-



ond one is more often denoted the specific function of the sample data
which is used for parameter estimation. We shall use both terms.
Estimators are constructed as functions of our sample data and,
therefore, are random values, which accuracy related properties can
be expressed in probability terms only: its mean value, variance and
a probability of a big deviation from the estimated parameter. Thus.
having chosen an estimator, one can consider its goodness in terms of

following basic properties:
e consistency,

e unbiasedness,
o efficiency,
e robustness.

An estimator is called consistent if its estimates converge towards the
true value 6 of the unknown parameter as the number n of measure-
ments increases. The convergence is understood ¢n probability, i.e. given

any € and any 7, 0, is a consistent estimator of 8 if an IV exists such
that

P(l6,— 0] >¢) <n
for all n > N. One of the most widely known estimator of the center

of the sampling distribution is the arithmetic mean of the sample data
(we call it further the sample mean)

z:%;m. (3)

Its consistency follows from the famous law of large numbers for the
majority of distributions. Although as a function of random measure-
ments the sample mean is a random variable, it is more precise than
any of these measurements, since its variance is in y/n times smaller.

It should be borne in mind that there are distributions for which
the law of large numbers is incorrect and the arithmetic mean is incon-
sistent estimator for these distributions. As an example, consider the
probability density function of the Cauchy distribution

1

p(-’E) = m,

—00 <z <00. (4)



Both the mean value and the variance do not exist for the Cauchy
distribution.

Denoting by E the mathematical expectation of a random variable we
define the bias b of the estimator 6, as the deviation of its expectation
from the true value 6,

bn () = E (6, — 6o).

Thus, an estimator is unbiased if for all n and 6,

A

ba(B,) = 0

or

E(ﬂn) = 00.
Let us take as an example such an important characteristic of any
distribution as its variance, i.e. the expectation of squared deviations
of a random variable from its mean

ol = E(z — E(z))%

Calculating the sample variance one should replace the unknown value
of the distribution mean by its statistical analog, i.e. the sample mean
(3) that gives

1 n

5 == (z:— 1), (5)

n =1

which is, in fact, an estimation of the variance of our sampling distri-
bution. However the replacement we made introduces a bias in this
estimator. As it is easy to calculate, its expectation is equal to

E(S}) = —02 =0~ -0
n

that means we have the bias term o2 /n. The estimator (5) is consistent.
and the presence of the small bias is not important when the sample
size n is very large, but for small n we have to correct our estimator to
make it unbiased

. 1 N
Sg:n——l. l(xi—z).

n
1=



Two above properties are important, but not enough to describe a
goodness of an estimator. Since it is a random variable, its precision
can be evaluated in terms of its variance. For instance, from two above
mentioned consistent estimators of the distribution center, namely the
median and the arithmetic mean of the sample data, the second one has
its variance smaller than for the median (in the majority of cases, when
the variance of the sampling distribution does exist). The arithmetic
mean can be clearly considered as the more efficient estimator than the
median.

Thus in general, the efficiency of an estimator is determined by its
variance: as it is smaller as more efficient is this estimator.

The estimator robustness means it should be independent of the dis-
tribution, or insensitive to departure from the assumed distribution. It
such a sense the median is more robust estimation for the sample dis-
tribution center than the sample mean (3), especially for distributions
like Cauchy distribution (4) one having no mean value at all.

More detailed consideration of robust estimates is given in section’
3 below.

Choosing a good estimator one can note a conflict between efficiency
and robustness requirements. It is typical situation when one wants to
choose an estimator which must meet all requirements stated above and
even some more needed to satisfy such a realistic demands as minimum
computer time or a simplicity in understanding and, in general, mini-
mum loss of scientists’ time. To find a compromise one must establish
an order of importance between these requirements taking into account
statistical and other merits, like cost or time (urgency of completing a
research). In frames of our present considerations we focus ourselves
further on statistical merits.

From this standpoint one of the most powerful statistical methods
for estimating parameters is the mazimum likelthood method (MLM)
invented by R.Fisher (1912). Suppose for the sample (1) we know a
probability density function f(z,®) common for each z; with unknown



parameter vector © = (01, ,Tm)i Then so-called likelihood func-

tion n
=T p(). (6)

is the density function for obtaining this sample if © is fixed. The MLM"~
consists in finding an estimate of parameters ©, which maximizes L(©).
Since the maximum of L is also the maximum of In L, it is easier to
maximize the latter function by solving the likelthood equations

dIn(L(6))

26, =0,k=1,2,....m (7)

in order to obtain the likelihood estimation ©. Its remarkable properties
as asymptotic consistency, efficiency and normality are proven.

Now one can easily find MLM-estimates for a known sample distri-
bution.

Example 1. The Gaussian distribution

f550,0) = ——ex (—(—1—)—) 0

27 202

For the sample (1) taken from a normal population one obtains
In(L(a,0)) = —nln(o) + In(27™?) — 02 Z 9)-
The solution of the likelihood equations gives two MLM-estimates

:—Zx,, Zn: i —a)?, (10)

n i=1

:Iv—‘

which we already had before.

Example 2. The Poissonian distribution. It is a discrete distri-
bution of the random variable taken value equals to a whole positive
number k with the probability

pi= e (11)



For the sample kq,...,k, one has

n

In(L(A)) = —An + In(}) ; ki +In ([[1 (kl,-)!> . (12)

The solution of the likelihood equation gives the estimate of the param-
eter A

2.2.2 Interval estimators

Each of point estimators discussed above gives us a value intended to es-
timate an unknown parameter. As it was pointed out, these estimators
are random by their nature, but obtaining a value we don’t feel that its
randomness is concealed and it could deceive about its accuracy or a
probability of being close enough to an unknown parameter. Therefore
experimenter prefers to use the estimators that include explicitly the
range
0a S 0 S eba

which contains the true value 6, with probability 8. Given a measure-
ment r from a p.d.f. f(z|0) with a known parameter 6, the probability
content § can be calculated as

f=Pla<z<b) = /f(:c|0)dz. (13)

However in our case we have an unknown parameter and too large arbi--
trariness in choosing the interval borders a and b. It would be better to
choose an interval which has minimal length among all intervals [6,, 6;]
with the same probability 8. Such intervals are called confidence inter-
vals for 6 with probability 3. Since the parameter § is unknown, one has
to take a different variable z = z(z,6), a function of the measurement
z and the parameter 8, but such that its p.d.f. is independent of the
unknown 6. If it can be found, we can re-express Eq.(13) as a problem



of interval estimation: given 3, find the optimal range [6,,0;] in 6-space
such that

P(8, < 8, < 6;) = B. (14)

It is better to explain this scheme on a particular example of the con-
fidence interval for the mean of normally distributed sample data with
the cumulative distribution function

B(z) = oxjﬁ_z, exp (-%) dt. (15)

When both distribution parameters ¢ and ¢ are known one can calcu-

late B from (13):
_ b—u a—u
'B—(I)< o )_(I)( o )

However when y is unknown (but ¢ is known), one can instead calculate
the probability # that some of functions of our measurements, say the
sample mean Z, lies in an interval that includes its unknown mean. Let
us take a symmetrical interval [u — ¢, + ¢|]. Then

pte

B=Pp—c<z<p+ec)= : /exp(~w) dt =

o*\/ 27 20**
u—c

S5 -e (2 o

where for the sample mean ¢* = o/4/n. We can now invert the prob-
ability statement in (16) in order to take the form of the statement
(14):

B=P(Z—c<pu<z+c).

As it is known in the case of the normal distribution, one can obtain
B = 0.95 if the constant ¢ is chosen as

c=1960"=1960/y/n.



2.3 Evaluation of dependencies

Now we consider more complicate set of two-dimensional observations

(Z1,91), -5 (Tns Yn) (17)

which we want to describe by a known function f embodying our model
assumption by means of parameters in question 64, 80,,...,60,,. It gives
us the following system of equations

Vi + e = f(zi;01,02,...,0n), 1 =1,2,...,n, (18)

where e; are the errors of measurements., which supposed to be ran-
dom variables all with the zero mean values and common distribution
function F,(z); n is a number of measured points.

For the easiest 2D-case the equations (18) can be considered as the
set of residuals between the measured points and a curve to be fitted
to them by varying the vector © (6,8, ...,0,):

&=y — f(z;0),1=1,2,...,n. (19)

where z; is a given abscissa of the ¢-th measurement y;.

2.3.1 Least squares and maximum likelihood

The least squares method (LSM) was independently invented by
C.F.Gauss (1805) and A.Legendre (1809) and it consists in minimizing
of the sum of squares of those residuals (19)

zf;( (2:0))’ (20)

in respect to unknown parameters. Since S(©) is a quadratic function
of its arguments, its minimum is reached when all 85/30, = 0;k =
1,2,...,m hold. This system of equations is especially simple in the
mostly used case of the linear regression:

f(z:;0 Zq&] (z:)-0; + e, t=1,...,n, (21)



where ¢,(-) is known set of m linearly independent basic functions (e.g.
1,z,z%,...,2™); ¢; - an accidental measurement errors; §; are as above
unknown regression parameters (j = 1,... ,m) which should be esti-
mated by use of our data sample. Then the equation system for pa-
rameter estimations becomes linear. It called the normal system of
equation.

Optimal properties of LSM curve fitting follow from the fact that
LSM is a particular case of the more general maximum likelihood me-
thod. As in section 2.2.1 under the assumption that all residuals
(19) are independent random variables with zero mean and a common
p.d.f. p(e) one has the probability of occurring of our particular sample
€1, €2,..., €y, is equal to likelihood function

n

1(8) = [T ole). (22)

Then we choose as the likeliest estimation of parameters the value of @
in which (22) has its maximum. The solution of the likelihood equation
d1n(L(0))

=0,k=1,2,...
20, 0, ,2,...,m (23)

gives the likelihood estimations ©. Under the crucial assumption of
normality of the p.d.f. in (22), i.e.

ple) = —exp (—20) , (24)

e
oV 2T
one immediately has that MLM converts to LSM. Since

in(1(6) = 1n (T e ) = 3
i=1 =1
the logarithmic likelihood function becomes equal to
n_ (g2
—% ; (%) + const ,

which has its maximum exactly at the same point where (20) has its
minimum. This implies that all above-mentioned good properties of a
LSM-estimation are valid only if the normality assumption holds.
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2.3.2 Measurements with different accuracy

Again we assume that the errors of measurements are distributed nor-
mally about zero, i.e.

yi = f(2i;0) + e;, E(e;) =0, E(ef) = 0% = 1/w;.
The LSM requires
S =3 wie! => min. (25)
i=1
The terms in the sum of squares are now weighted by the reciprocals of

the variances. We explain details of S minimization for the linear case
(21) with ¢;(z;) = I~ in the following notations

2
1 =y =7 ..., 2 Y1 0,
1 z, z? zy y 0
5 ..y ZTY 2 1
X = . . . . . 3 y = . > 0 = .
2
1 z, zz ..., z Yn 0,

Defining also the weight matrix

w1 0
W2

W =
0 Wy,
we can rewrite (25) in its matrix form as
L=¢TWE,

where £ = Y — X O. Then the solution of the normal system of equa-
tions becomes
| ©=XTWX) ' XTWY

It gives us estimations of all m + 1 parameters of our fit. Their covari-
ance matrix is

cov(®) =C = (XTWX)™
It contains squared errors of parameters on its diagonal, but since those
parameters are correlated, one can obtain also covariances of i-th and
J-th parameters as the element ¢;; of this matrix.



3 Robust approach

Actually, the crucial normality assumption is very often violated due to
contamination of the measurements by points of noise or background.
Then due to quadratic view of the functional S in (20) the contribution
to it of any sample point-outlier could seriously disturbs the estimations
of parameters that causes a dramatic loss of accuracy. To calculate
correct values of parameters one should use only the measurements
from a close vicinity of the fitted function f(z;®). All others should
have much less impact or be completely negligible. This idea can be
implemented by attributing special weights to each of measurements.
Values of these weights must decrease with the growth of residuals ¢;, i.e.
of the distance from the fitted curve. This approach named robust, i.e.
resistive to contamination, has been proposed by P.Huber (1972). Let
us take as an example a linear regression dependence (21) to expound
how to find the best way to process the noisy data by such a robust
approach.

We describe the contaminated distribution of measurement errors-
e; by J.Tukey’s gross-error model

fle)=(1—=8)-ple) +B-h(e), (26)

where § is a parameter of contamination, p = N(0,02) is the Gauss
distribution (24), and h is some long-tailed noise distribution. Using
the maximum likelihood method

N
L=1]] f(e;) = max
i=1

we obtain the following system of non-linear equations

; w; - (Yz‘ - i b5t (z:) - 91') ~¢;(zi) =0 (27)

with some optimal weights w; depending on relations of p and h distri-



butions

w; = : : (28)
2 h(e:

1— ,H (e“)

Taking p(e) from (24) and h(e) to be uniform and equals o = hg for.
distinctness one obtains the optimal weight function as

1+e¢

Wopt (€) = oo (;—2) (29)

with the constant
hofo/2m
€= e
1-p

These weights are non-linear functions of parameters in questions.
Therefore an iterative procedure was elaborated, in which the weights
are recalculated on each iteration in accordance with the new values of
parameters. This procedure is referred as re-weighted LSM (RWLSM).
A polynomial expansion of these optimal weights up to the fourth order
leads to the approximation

w(t):{ (1—(t/cT)2)2’ if |t|<er (30)

0, otherwise.

We obtain, in fact, the famous Tukey’s bi-weights which are easier to-
calculate than optimal ones. It is also recommended to choose the
cutting parameter ¢y = (3+4)o. If there is no a prior: information one
can initiate the iterations with w§0) =1.

The parameter o should be also recalculated on each iteration

}:w(k—u (e(_k—l))z
o) = | 2 (31)

Zw‘(k_l)

Following P.Huber one can consider this procedure as descending M-
estimate. Thus the robust approach allows to handle data accurately
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even in presence of contamination, but if one is sure that data to be
processed are free from background, noise or other contaminating fac-
tors, then there is no need to use any RWLSM-procedure, since the
LSM is proven to be the most efficient method in this case.

4 Resolution of digitized signals

It should be noted, however, at this point that the situation with real
measurements in majority of contemporary physical, chemical or bi-
ological experiments is much far from the idealized models described .
above. Almost any modern measuring device is a quite sophisticated
physical apparatus, which registers results of measurements in a dis-
crete form after a digital procedure. In order to improve the resolution
and accuracy of such detectors, they are designed as granular structures
consisting of an array (raster) of cells (pads). Therefore if a signal to
be detected looks like a single thin peak after being registered it would
be smeared by the measuring device between several adjacent cells and
then it is discretized in a view of a histogram, which dimension depends
on experimental data. An accidental measurement error is added to
each histogram bin during registration. Additionally, background noise
gives also its contribution to every cell of our device raster.

The basic problem is: to reconstruct the original signal position
and its other parameters (its amplitude or the volume under its surface,
its half-width etc) from the registered histogram. Depending on its
formulation this problem can be solved in either non-parametric or
parametric ways.

4.1 Non-parametric approach

The first non-parametric approach also named the unfolding problem
is applied when the parametrization of the problem is unknown. Tak-
ing one-dimensional case for simplicity one can present a measurement
result as one-dimensional histograms {F;} for ¢ = 1,2,...,n. which
bin sizes and centers we denote correspondingly as A; and z;. These



measured values are distorted by the detector influence and spoiled by
noise. We assume that the values of the random function F; = F(z;)
are independent at different z; and they do not contain systematical
errors. Let us denote by K(z,y) the instrumental or the point spread
function of our detector. In the most cases it is symmetrical and de-
pends only on the difference of its arguments, i.e. K(z,y) = K(z — y)
as, for instance, a Gaussian

K(s) = exp (“22252)

with o, usually supposed to be a known constant. Then one can, in
principle, reconstruct the original signal in question f(z) as a solution
of the system of following integral equations of the first kind

I,’+A/2

Ez/K(w—y)f(y)dyz / K(z-y)f(y)dy, i =1,2,...,n. (32)

:C;—A/?

The finite size A of the detector granularity can be expressed as the

function h(z)

1, |z|<A/2

h = ’ - 33
(=) {0, o > A/2. (33)
It allows to take into account the signal distorsions due to the his-
togramming process of the experimental data storing. Its influence
can be expressed mathematically by convolution of the point spread

function K(s) with the granularity function h(z) giving the modified
instrumental function

Ki(s) = /h(s —r)K(r)dr. (34)
Therefore the system (32) is transformed to
F; = F(z;) = / Ky (; — z)f(z)dz. (35)

Due to discreteness of our model the integral equation system (35) is
reduced to the system of algebraic equations suitable for implementing



by computer
m
Y P;G;=F,1=12,...,n, (36)
7j=1
where G; = f(y,) are unknown variables and
Pij = Ki(zi — y5) - (Y541 — ¥j)- (37)
Unfortunately in most cases the system (36) is ill-posed, i.e. it has
no solution at all since its right-hand side is a random vector and the
system matrix P;; is practically degenerated. However as it can be
proved, when one looks for a solution on a compact set, the problem can
be solved for a sufficiently wide class of kernels including the convolution
Kl(S).
In the case of Gaussian distribution function of input data the log-
arithmic likelihood function may be written as
1 n (E _ S)Z
L= —5 > ~———, + const, (38)

i=1 g;

where o? are the noise variances at the i-th experimental point and the

values of S; are defined by the formula

m
Sz' = ZRka, T = 1,2,...,n.
k=1
The sought maximum of the likelihood function L can be calculated
by by means of an iterative procedure. As it has been proved by
E.L.Kosarev (1993), this procedure converges to the maximum of the
likelihood function (38).

E.L.Kosarev has also shown (1990) that the resolution obtained rea-
ches the possible theoretical limit. Such a limit for close signals follows
from the well-known Shannon’s theorem for the maximum speed of the
data transmission via the channel having a noise. The resolution of
any linear device with the instrumental function K(z) can be defined
as the effective width of this function, i.e.

D = 7 K*(z)dz, (39)



providing the normalizing condition at the origin K(0) = 1.

The resolution of spectral devices can be improved in comparison
to D using the modern techniques for solving integral equations, thus
superresolution is achieved. We define the superresolution factor
as the ratio of D to the separation 6 between two narrow lines which
can be recovered after the deconvolution procedure

SR =D/6 . (40).

We should remind that according to the well-known Rayleigh’s defini-
tion of resolution é = D, so in this case the superresolution factor is
SR = 1. When the resolution is improved mathematically, SR > 1.
The improvement is always limited by noise. At zero noise an exact
solution of Eq.(35) can be found, which corresponds to an infinite su-
perresolution. :

The highest possible superresolution factor is closely related to the
Shannon theorem on the highest possible transmission rate of informa-
tion through a noisy channel. When a spectrum is not parametric, i.e.
the function we sought for cannot be described by a simple formula
with a few parameters, the limiting superresolution factor is

1
SR = 3 log,(1 + E,/Ey). (41)

Here E, and F,,
(o0}
E, = / F?*(z)dz, E, = no®,
— 00
are the signal energy and the noise one. Here n is the number of ex-
perimental data points, and ¢? is the variance of input noise. If the

signal-to-noise ratio is expressed in decibels dB = 10log(E,/E,), the
approximate expression for the superresolution limit is

SR ~ dB/10. (42)

The computer program package RECOVERY was described, which can
reach the Shannon superresolution limit.



4.2 Parametric approach

The second parametric approach is well-known as parameter fitting.
It is obvious that parametric methods must be more accurate than
non-parametric ones, since the parametrization itself brings an essential
information related to processed signals. Even such a general knowledge
as the signal symmetry is enough to apply the easy-to-calculate center
of gravity (COG) method for estimation of the signal centroid:

Eai,jcﬁ,- Z:ai,jgj
i J

xT frmand y = ——
cog Z az',j cog E a'i,j ?
g J

(43)

where a; ; is 2D histogram presenting a detector response to the current
signal, Z;,g; are the middle points of the corresponding bins. The high
speed and universality of this method made it the most popular for the
majority of discrete detectors, unless the signal overlapping due to the
high occupancy in many of modern experimental systems. It occurs
when the probability of two and more signals to be overlapped is high
enough.

Therefore more elaborated methods based on LSM robust modifi-
cations are developed by G.Ososkov (1997). Due to the problem of
non-linearity they are iterative, so the COG solution can be used as an
initial approximation. A multiparametric model of a signal obtained as
a superposition of two gaussian peaks with different positions and am-
plitudes is used. Corresponding problem of non-linear LLSM functional
minimization is solved there by a paraboloidal approximation method.
As one more example of successful applications to the same problem
of the close signal resolution, a method using wavelet transforms can
be also pointed out. There are a great number of such examples of
successful solutions of signal recovery parametric problems in different
fields. All these methods have various degree of accuracy depending on
the noise or contamination level, but from statistical point of view all
they intend, as the matter of facts, to provide various estimations of
parameters.



Thus a question arises: is there a limiting accuracy and how to reach
it?

4.3 Cramér-Rao lower-bound for accuracy

For the sake of simplicity let us consider a model of estimating of the
single signal location parameter z, from a sample of » measurements:

yi = AY(zi — 20) + &, 1=1,2,.,n.
Here v (z) is the signal shape, A is its amplitude, and a random noise
&; has the Gaussian distribution N(0,0) , i.e.
2

1 g2
€i)de; = ex [_ d }dai,
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where different noise sample units are assumed to be (for a simplic-
ity again) independent and non-correlated: €;&; = 026;;. Applying the
standard maximum likelihood method for estimating the signal ampli-
tude A and location parameter z, one has to maximize the likelihood -~
function of the sample

-1 ! " R U

L= iZIP(Ez) = ( o ) exp[ 5o ;Ez ] _
1" |

B ( 270 ) ¢ p[ T2 ;[y, — A (z; — m0))? ]

It reduced to maximizing the logarithmic likelihood function
1 & 2
l=1InL = const — Py > i — AY(zi — z0))* .
0" i=1

According to the Cramér-Rao inequality for unbiased estimates one has

1

[ (Z)]

D(zo) >



Here, as usually, the symbol E denotes the mathematical expectation
obtained by various random realizations of ; for » = 1,2,...,n. Taking
the partial derivatives with respect to the parameter z, one obtains the
following formula for the Cramér-Rao lower-bound for the accuracy
of the signal location parameter z, under condition of the negligible
correlation between zo and A

o? 1
D(zo) Az Z": [ P (zi — zo) 1°° (44)
im1 (92:0

This final formula is valid for arbitrary shapes of the signal ¢(z) and
arbitrary ratio between the characteristic scale D of the function ¥ (z)
and the bin size A (the latter can be treated as the distance between
measured points).

Let us consider two limiting cases. In the first one when A < D, the
Eq.(44) can be approximated by substituting of the sum in denominator
by the corresponding integral

SE[ME L] (%)
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Here A denotes the histogram bin size. Computing the corresponding
integral for the signal shape ¥(z) = exp(—(z/D)?) one obtains eventu-
ally the formula

o’ 1 o DA
P e ey T
i=1 on 2
and its approximate estimation
o VDA o

If 0/A =5%,D =4, A =1, one has ézy ~ 0.1, i.e. 10 times better
than bin size.

22



In the second limiting case both characteristics scales D and A are
approximately of the same size

D~ A.
In this case the approximation Eq.(45) is not valid and one should
compute explicitly the sum in the denominator of the Eq.(44).
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5 Glossary

» Bias
Bias b(f) in statistical terminology is determined as the deviation of
the mathematical expectation E of some estimation Ty of a parameter
6 from the true value of this parameter

b(6) = E(Ty) — 0.
If 5(f) = O then the estimation Ty is unbiased.

e Distribution function
Distribution function (often: cumulative distribution) F(t) of some
random variable x is determined as the probability P of the event that
x <t
F(t)=P(x<t), —oo<t<oo.

The function F(t) is non-decreasing and continuous from the left.

e Error
Error ¢ of a measurement z of some value zg is usually determined as
deviation of the result of the measurement z from the value of zg

£=1x — xp.

There are two kinds of errors: random and bias and both are essential
as a contribution to the final accuracy of measurements. There is a
lower limit of any accuracy achievable by data handling based on the
Cramér-Rao theorem.

e Estimation

Estimation is in a general case a function f of measurements z1,...,z,
and it is therefore a random variable. The value of this function
f(z1,...,2n) is an estimation of unknown characteristic - the latter one

can be a set of parameters or a distribution function.

o Least squares
Least squares is a parameter estimation method which consists of
minimizing the sum of squared deviations of the data y;,7 = 1,...,n of



the measurements from some function y(z;ay,...,am) of z-coordinate
to be fitted by a proper choice of unknown parameters ay,...,an

n
S=> (v —y(zi;a1,-..,am))* => min.
i=1
If measurements y;, 7 = 1,...,n have the Gauss distribution the Least

Squares Method (LSM) is a particular case of the Maximum Likeli--
hood Method (MLM).

Likelihood

Likelihood function
L(t|0) = L(tl, - ,tn|€1, ce ,ﬁm)

is determined as the probability that measurements z1,. .., r, are taken
fixed values t1,...,¢,. This definition is valid only for discrete vari-
ables z;. In continual case one must replace ’probability’ to ’probability
density’. According to the MLM one can find the values of unknown
parameters 4, ..., 0, by maximization of the likelihood function in the
m—dimensional parameter space {8}, k = 1,...,m. The arguments of
the likelihood function

ti=xz;,1=1,2,...,n
are considered as fixed while the maximization process.

Parametric method
Parametric method is in fact the MLM when one looks for some -
unknown parameters 6y,...,60, from measurements zi,...,z, under
the condition that number of parameters

m < n.

If the last inequality does not hold, the parametric method can some-
times result in inconsistent estimations.

Resolution
Resolution (sometimes denoted as resolving power) is determined



for any linear registering device (e.g. a spectrometer in optics) with the
instrumental function K(z) as

D= / K*(z)dz,

—00

providing the normalizing condition K (zo) = 1 where zg is the abscissa
point where K (zo) = max. The resolution of a registering device can be
improved in comparison with D by applying the modern techniques for
data treatment, thus superresolution can be achieved.

Robust approach
Robust approach is a way of statistic estimation design to be less
sensitive to disturbance of the basic hypotheses concerning the data
and contaminating noise.

Sample

Sample of the size n is a set of elements
z;, 1= 1,...,n

randomly chosen from a general population, i.e. another set of elements

{&} of infinite size with the distribution function F(&). According to this

definition elements z;, ¢ = 1,...,n are equally distributed, independent

random variables. It should be mentioned that experimentalists prefer
» »

usually to say: ”data” instead of ”sample”, ” measure” instead of ”draw
a sample”, and ”observable space” instead of ” general population”.

Statistics

Statistics in context of this article is the one of two connected parts of
the mathematical science ” Probability theory and mathematical statis-
tics”. Mathematical statistics is more ’experimental’ science with com-
parison of a probability theory, because we have to draw information
from the experimental data. We can consider problems of both theories
as direct and inverse.
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Ocockos I'. A., Kocapes E. JI. E5-2001-273
JIOIyCKH ¥ TOYHOCTb IPU H3MEPEHHSAX

Ha ocHoBe Teopuy BEpOATHOCTEH U MaTEMAaTHYECKON CTaTUCTUKHU U3JIaraloTcs
METO/bI ONpPENENIEHUs TPeeNbHO JOCTHXUMON TOYHOCTH u3MepeHuil. O6cyxna-
I0TCS HEMapaMeTPUYECKUE M NapaMETPUYECKHE METOMbI, TOUCYHBIC U HHTEpBasIb-
HBIE OLIEHKM HEM3BECTHBIX NapaMeTpoB. IIoKa3aHO COOTBETCTBHE MEXIY METOIOM
MaKCHMAaJIbHOTO IPaBIONOAOOHS U METOAOM HaWMEHbIUMX KBaaparoB. Crenuanb-
HbII pasfieNl MOCBAIIEH POOACTHBIM OLEHKaM M cHoco0aMm paspeuieHus OIH3KUX
ouuppoBaHHbIX curHanos. IlokaszaHo, kak HepaBeHCTBO Kpamepa—Pao onpenenser
HMXHIOIO TPaHUIly TOYHOCTH M3MEPEHHH.

Pa6ota BemonneHa B Jlabopatopuu MHGOPMAUHOHHBIX TexHomoruit OUSIH.

Ipenpunr O6BENMHEHHOTO MHCTHTYTA SAEPHBIX HccaenoBanuit. dy6Ha, 2001

Ososkov G. A., Kosarev E. L. E5-2001-273
Limits and Accuracy in Measurements

Methods of determination of the limit attainable accuracy in measurements are
expounded on the basis of the probability theory and the mathematical statistics.
Distribution-free and parametric methods, point and interval estimations of the un-
known parameters are discussed. The connection between maximum likelihood
method and least squares method is shown. A special section is devoted to robust
estimations and to resolution of digital signals. It is demonstrated how
the Cramer—Rao inequality determines the lower-bound for the accuracy of mea-
surements.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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