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Abstract

The Frankenpredictor entry for the Championship Branch Prediction contest proposed
several new optimizations for branch predictors. The Frankenpredictor also assimilated
many previously proposed techniques. The rules of the contest were such that implemen-
tation concerns were largely ignored. In this context, many of the proposed optimizations
may not actually be feasible in a realizable predictor. In this paper, we revisit some of
the Frankenpredictor optimizations and attempt to apply them to conventional predictor
organizations that are more typical of what is described in the literature. In particular,
reinterpreting perceptron weights with non-linear translation functions and using different
sized tables with different widths of counters shows promise and is practical. The Franken-
predictor’'s branch history register update rules for unconditional branches also provide
improvements in prediction accuracy for gshare and path-based neural predictors with very
little implementation overhead.

1. Introduction

The need for accurate branch prediction algorithms for large-window, deeply-pipelined micropro-
cessors is well known. While much research has gone into branch prediction over the past two
decades, many algorithms have been difficult to compare due to differing benchmarks, architec-
tures and simulation infrastructures used by different research groups. The Championship Branch
Prediction (CBP) contest has provided a common ground to compare branch prediction algorithms.

The rules of the CBP competition limit the state storage requirements of the branch predictors,
but largely ignore any other implementation concerns such as latency, ease of pipelining, logic com-
plexity, impact on overall performance, and power. As a result, many of the techniques incorporated
into the final predictors may not be practical in a real predictor. This paper considématien-
predictorentry which contains many different ideas of varying impact [6]. We study the application
of the more practical techniques in isolation on conventional implementable branch predictors. This
allows us to quantify theealizablebenefits of the proposed techniques. The more promising candi-
dates could potentially be immediately implemented in the next generation of processors. We also
present the overall prediction performance of the complete Frankenpredictor.

2. Experimental Methodology

We use the same methodology for all results in this paper. Specifically, we used the branch predic-
tion framework distributed for the Championship Branch Prediction (CBP) contest with the twenty
distributed traces. We report the performance of branch prediction algorithms in thousands of mis-
predictions per instruction (Misp/Kinst), averaged (arithmetic mean) over the twenty traces. When-
ever possible, branch predictor configurations have been chosen to be close to 8KB.
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Figure 1: Prediction accuracy impact of interference mitigation techniques.

3. Combining Interference Avoidance and Interference Tolerance

In this section, we consider the parts of the Frankenpredictor that are designed to handle interference
due to a large number of branches mapping to a fixed number of pattern history table (PHT) entries.
In particular, we study gskew, agreement and the combination of the techniques.

3.1 Gskew-Agree

Many branch prediction algorithms employ simple tables of counters, typically indexed by a com-
bination of a branch’s address (program counter or PC) and the branch outcome history (the last
n taken/not-taken predictions). For most applications, the number of unique program ceunter
branch history pairs far exceeds the number of entries in the PHTs. As a result, unrelated branches
may collide in the table which results imegativeor destructive interference

The Frankenpredictor usesgakew-agredoranch predictor component that combines a gskew
predictor with an agreement scheme. The gskew predictor avoids interference by mapping potential
conflicting branches to different entries across three different tables [8]. This provides three different
predictions, from which a final prediction is made by taking the majority vote. Interference in one
table is not a problem because the other two tables do not suffer from the same interference. The
agreement approach uses a default predictiohias for each branch. The pattern history table
(PHT) entries then predict whether the branch outc@geeeswith the bias or not [11]. Two
branches that map to the same PHT entry with different outcomes would normally cause destructive
interference. If the biases are set correctly, the two branches would still map to the same PHT entry
in an agree predictor, but the entry would correctly predict “agree with bias” for both branches. In
this fashion, an agree predictor can tolerate interference by converting destructive interference into
neutral interference.

Figure 1 shows the performance of the different interference-mitigating techniques. The agree-
ment predictors are made with respect to a static prediction of backwards-taken/forward-not-taken
(BTENT) which means the default prediction is taken if the branch target address is lower (back-
ward) than the current program counter.
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Figure 2: Path-based neural predictor with non-uniform allocation of resources.

The impact of the agreement mechanism is less than the gskew technique. For a few applications
the agree mechanism actually performs better than gskew, and the average reduction in mispredic-
tions is 5.3%. For the majority of the traces, gskew is a far superior technique for dealing with
PHT interference, resulting in a 18.8% reduction in mispredictions. The combination of both gskew
and agree has a slightly positive effect on average (20.2% reduction), although there are some cases
where one of the individual techniques outperforms the combination.

3.2 Default Branch Bias

The results from Figure 1 show that augmenting a gskew predictor with the agreement technique
can provide a slight improvement in prediction rates. While the absolute improvement is not large,
the agree technique is still very attractive because it does not require the branch predictor to store
any additional state. The previous results use a BTFNT static branch prediction as the basis for
agreement. Unfortunately, the target direction may not be known until after the decode stage of the
pipeline. This forces the agreement technique to either use some other information that is readily
available at prediction time, or the technique can only be applied to seconaxevreidingbranch
predictors that occur in the decode stage [4]. We re-simulated the gskew-agree predictor using
different bits from the branch’s program counter to serve as the static prediction, but this approach
does not improve the prediction rates over a conventional non-agreeing gskew predictor.

4. Modifications to the Basic Perceptron

The Frankenpredictor incorporates a neural prediction component based off of the path-based neural
predictor [2]. The neural predictor uses a large table of weights, where the rows of the table cor-
respond to different branch addresses (PCs), and the columns correspond to different past branch
outcomes (bits in the branch history register). This section explores the impact of changing the
allocation of the total number of weights, the size of individual weights, and the interpretation of
the value of the weights.
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4.1 Non-Uniform Resource Allocation

A conventional neural prediction weight table provides the same number of weights for all branch
history bits considered. Typically, the most recent outcomes in the branch history register have the
greatest influence of the outcome of the current branch prediction. The inverse of this statement
implies that the older outcomes have less influence. The Frankenpredictor exploits this imbalance
in the importance of branch history bits by allocating more weights for recent history and fewer
weights for older history. For example, a 128-entry, 63-bit history neural table (8KB total) can be
reallocated such that the weights that correspond to the most recent history (15 bits + bias) receive
twice as many (256) entries, and the older 48 history bits receive only 85 entries (still 8KB).

The difference in the importance of older history bits and more recent history bits can be further
exploited. Since the older history bits tend to be less reliable, it makes sense to limit the influence
these weights have on the final outcome. To do this, the Frankenpredictor reduces the width of the
weights that correspond to older history. Reducing the width of the weights reduces the number of
bits required to implement the old-history table of weights. These bits can then be used to further
increase the number of weights used for the recent-history weights. Finally, both of these techniques
can be combined together to further reduce the amount of state spent on older branch history bits..

Figure 2 shows the prediction rates for the path-based neural predictor and variants that use
non-uniform resource allocation. Similar to the impact of the gskew and agree techniques discussed
in Section 3, the non-uniform allocation of the number and widths of weights has one dominant
technique and one minor technique. The non-uniform allocation of the number of weights has the
biggest impact, reducing the average number of mispredictions by 8.8%. The non-uniform weight
widths only reduce mispredictions by 2.0%. Using both a non-uniform number of weights and
weight widths, we can further increase the number of weights allocated to the recent branch history
outcomes. This results in an overall misprediction reduction of 9.6%.

4.2 Non-Linear Learning Functions

The perceptron learning algorithm uses a linear learning function. That is, the perceptron algorithm
update rule always increments or decrements its weights by a constant amount. Research in the ma-
chine learning field has shown that non-linear learning functions can converge on the critical feature
set (the set of strongly correlated branch history bits) faster than linear learning functions. For
features/history bits, a perceptron-based algorithm will m@ke) mispredictions to complete its
training. A technique such as the Weighted Majority algorithm which uses a multiplicative update
rule can converge with onl§ (log n) mispredictions.

To simulate the non-linear update of a perceptron’s weights, we use a weight translation function
to reinterpret the value of a weight. For example, a conventional perceptron with a weight of 18
contributes exactly 18 to the final summation. Considering the weight translation function illustrated
in Figure 3(a), the same weight value of 18 would only contribute 9 to the final summation. The
function shown in Figure 3(a) has a slow-start effect where branches with low amounts of correlation
contribute less to the overall summation. The extreme ranges of the function have much steeper
slopes, which provide a quick back-off effect that is beneficial to quickly unlearn correlations when
those correlations no longer hold. Figure 3(b) shows another weight translation function that has a
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Figure 3: Two non-linear weight translation functions.
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Figure 4: Accuracy impact of non-linear (NL) learning functions on conventional and non-uniform
(NU) resource path-based neural predictors.

greater concavity. The Frankenpredictor uses this “deeper” translation function for interpreting old
history weights.

We simulated the impact of the non-linear learning function shown in Figure 3(a) on the path-
based neural predictor. We considered both a conventional path-based neural predictor as well as one
that uses non-uniform resource allocation. The benefit of non-linear learning functions is dependent
on the resource allocation, as shown in Figure 4. For both predictors, the non-linear translation
functions provide an average misprediction decrease of about 1%. While this is not a very large
difference, non-linear learning functions can be easily incorporated into existing neural-predictor
design with no additional state. The use of a piecewise-linear translation function with convenient
slopes (the function shown in Figure 3(a) has slopes of 1, %mﬂich can be easily implemented
with shifts) can result in a relatively simple hardware implementation of this optimization.
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Figure 5: Accuracy impact of piecewise linear branch prediction.
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Figure 6: The impact of different branch history register update policies on unconditional branches.

5. Indices and Hashing
5.1 Piecewise Linear Prediction

Piecewise Linear (PL) perceptron branch predictors exploit the different paths that lead to the same
branch to predict otherwise linearly inseparable branches [3]. Like the PL perceptron, the Franken-
predictor incorporates a few bits of the current program counter into the path history. Figure 5 shows
the effects of varying the number of bits from the current branch address that are incorporated into
the branch path addresses. PN is the original path-based neural predictor,rarsdaRhiecewise

linear version that usdsg, n PC bits to distinguish betweendistinct paths. While this technique

is effective at reducing the misprediction rate, requiring the current branch address for each weight
makes the overall predictor very difficult to pipeline and hence compromises the implementability
of the path-based neural predictor.



DECONSTRUCTING THEFRANKENPREDICTOR FORIMPLEMENTABLE BRANCH PREDICTORS

5.2 Unconditional Branches

Typically, unconditional branches are less interesting for branch predictors because their outcomes
are always taken. The Frankenpredictor does not modify any of the counter/weight state on an
unconditional branch. Instead, the predictor makes modifications to the branch history register so
that later branches are aware that an unconditional branch had recently occurred. In particular, on
a subroutine call the Frankenpredictor shifts in eight zeros into the history register, on a subroutine
return the predictor shifts in eight ones into the history register, and on all other unconditional
branches such as indirect jumps it shifts in eight alternating zeros and ones (0x55). After shifting in
the 8-bit pattern, the predictor also hashes in the lowest eight bits of the unconditional branch’s PC.
The accuracy impact of the different unconditional branch updates of the branch history register
(BHR) varies depending on the predictor and the combination of updates. For example, Figure 6
shows that for gshare, any of the individual BHR updates resultsimcagasen mispredictions, but
the simultaneous application of all BHR updates provides a 4.9% reduction in mispredictions. The
path-based neural predictor behaves similarly with a 3.6% prediction improvement when all updates
are applied. The gskew and gskew-agree predictors are less able to make use of the unconditional
branch updates. The advantage of the unconditional branch update scheme is that it does not require
storing additional state. The disadvantage is that it requires knowledge of whether the branch is
unconditional or not, which may not be available until the decode stage if extra pre-decode bits are
not available in the branch target buffer (BTB).

6. The Frankenpredictor

6.1 Overall Hardware Organization

The high-level overview of the Frankenpredictor is a gskewed global history predictor [8] combined
with a path-based neural predictor [2]. At a high level, the organization of the Frankenpredictor is
very similar to the Desmet, Vandierendonck, De Bosschere predictor [1]. The gskewed component
provides capacity for traces with large working sets. The neural predictor provides the ability to
mine long-history correlations, and it also acts as the hybridization agent by using the gskewed
predictions as bits in its input vector.

Figure 7 shows the tables and logic of the Frankenpredictor. Note that the logic used to generate
the individual indices for all of the perceptron weight lookups is not illustrated (this is represented
by the example locations of weights). The three PHTs that comprise the gskew-agree component use
shared hysteresis bits as described by Seznec et al. [10]. The perceptron weights are partitioned into
three distinct tables with different numbers of rows (non-uniform allocation) and different weight
widths. Similarly, the oldest weights are interpreted with the translation function depicted in Fig-
ure 3(b) and the other weights use the function from Figure 3(a).

The Frankenpredictor incorporates the other optimizations discussed earlier in this paper such
as piecewise linear prediction and updating the branch history register on unconditional branches.
The Frankenpredictor also us8&ewed Redundant Indexifay the neural part of the predictor.

For each input bit in the neural predictor, we compute multiple indices into the perceptron table to
provide multiple weights for the input. This reduces the effects of negative interference because
even if two branches collide in one weight entry, it is unlikely that they will also collide in the
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Configuration Average Relative

Misp/Kinst | Increase

No BHR Update on Unconditional Branch  3.404 +10.30%

Linear Learning Only 3.198 +3.59%

Fuse Majority Only 3.196 +3.56%

No Skewed Redundant Indexing 3.160 +2.38%

No Agree (plain gskew) 3.132 +1.46%

No Pseudotag Bits 3.119 +1.04%

Pure Path History 3.103 +0.55%

No PC Bit-Shuffling 3.101 +0.48%

No Pseudo-target 3.091 +0.13%

No Synergistic Reinforcement 3.088 +0.05%
Base Frankenpredictor 3.086 —

Table 1: Misprediction rate impact due to omitting optimizations.

redundant weight. Redundant weights are costly in terms of hardware complexity because it requires
additional read/write ports for the weight table SRAM. The neural component fuses the predictions
made by the gskew-agree predictor (one each for the three PHTs and one for the majority vote)
by treating these values as additional bits in the perceptron input vector [7]. The perceptron input
vector includes two bits from the program counter, also knowpsasidotagnputs [9].

The Frankenpredictor also incorporates several minor “bit-twiddling” optimizations that impact
the indexing of various tables. We permute the eight least significant bits of the program counter
by performing a right barrel shift by two positions. When computing the direction (backward or
forward) of the branch target address for the purposes of determining the default BTFNT prediction,
we use the permuted program counter to compyiseaido-targetThe last optimization increases
the bias weight of the perceptron when the sign of the weight agrees with the prediction made by
the first gskew-agree PHT. The rationale behind this idesyoérgistic reinforcemetis that if both
the PHT prediction and the bias weight agree, then it is likely that the bias weight more accurately
reflects the true bias of the branch.

6.2 Accuracy

Figure 8 shows the per-trace misprediction rates for an optimized gshare, a global-local percep-
tron [5] that uses both global and local branch history, a global-local path-based neural predictor,
and the Frankenpredictor. For all but two traces, the Frankenpredictor mispredicts the least out of
the four predictors.

In the previous sections we applied specific optimizations to conventional predictors, whereas
we now show the results for a complementary set of experiments where we remove optimizations
from the Frankenpredictor. Table 1 shows the average misprediction rates for the Frankenpredic-
tor and configurations where certain Frankenpredictor features have been disabled. The table also
includes the relative increase in the average misprediction rate for disabling each feature.

The ten optimizations listed in Table 1 have varying impact on the average misprediction rates.
In particular, it is very important to update the branch history register on unconditional branches.
Not doing so causes a 10% increase in the misprediction rate. Similarly, omitting non-linear learning
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Figure 7: The Frankenpredictor. Indexing logic not shown.
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Figure 8: Prediction accuracy of three baseline predictors and the Frankenpredictor.
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functions, fusion of the outputs from the three gskew-agree PHTSs, and skewed redundant indexing
all result in a 2-4% increase in the misprediction rate. Leaving out agree prediction and the pseu-
dotag bits cause a smaller 1-2% increase in mispredictions, but on the other hand it makes sense
to include these optimizations because the hardware cost in terms of state, logic and complexity is
quite low. Except for synergistic reinforcement, the remaining optimizations are basically tweaks to
the hashing that have a relatively low impact on overall accuracy. The synergistic reinforcement is
very specific to the organization of the Frankenpredictor, and it has so little impact that the benefit
likely does not justify the additional logic required to implement it.

7. Conclusions

The Championship Branch Prediction competition provided a large amount of flexibility in design-
ing the prediction algorithms with respect to practicality for real hardware implementations. In this
paper, we revisit some of the optimizations of the Frankenpredictor to study how these techniques
affect more conventional prediction algorithms. Some of the optimizations are too complex, too spe-
cific to the Frankenpredictor, or provide too little benefit to be useful in general. Simple piecewise
linear translation functions may be realized with some simple logic consisting of not much more
than some shifters, multiplexers and other basic combinatorial logic. Non-uniform resource allo-
cation for the perceptron table of weights involves a straightforward reorganization of the SRAM
arrays. Our initial results indicate that these techniques provide a prediction accuracy benefit on
existing algorithms.
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