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Abstract

Continuing exponential growth in processor performance, combined with technology,
architecture, and application trends, place enormous demands on the memory system to
allow information storage and exchange at a high-enough performance (i.e., to provide
low latency and high bandwidth access to large amounts of information), at low power,
and cost-effectively. This paper comprehensively analyzes the redundancy in the infor-
mation (addresses, instructions, and data) stored and exchanged between the processor
and the memory system and evaluates the potential of compression in improving perfor-
mance, power consumption, and cost of the memory system. Traces obtained with Sun
Microsystems’ Shade simulator simulating SPARC executables of eight integer and seven
floating-point programs in the SPEC CPU2000 benchmark suite and five programs from
the MediaBench suite, and analyzed using Markov entropy models, existing compression
schemes, and CACTI 3.0 and SimplePower timing, power, and area models yield impressive
results.

1. Introduction

Performance, power consumption, and cost are probably the three most important pa-
rameters that drive computer system design today ranging from digital signal processors
(DSPs), application-specific integrated processors (ASIPs), and field programmable gate
arrays (FPGAs) to general-purpose processors and multiprocessors. While their relative
importance varies in these systems, all three parameters are recognized as important. Thus,
while performance is most important in high-end multiprocessors, performance/cost drives
the general-purpose processor market, and power consumption plays a more significant role
in embedded and wireless applications.
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All computer systems have three main subsystems: the computation system or the pro-
cessor core, the memory system, and the I/O system (comprising secondary storage I/O and
network I/O). The memory system has two main types of components: storage components
(including registers, one or more levels of caches, main memory) for storing information (pri-
marily instructions and data) and communication components (comprising I/O buffers, I/O
pads, and pins on the processor and memory chips, and on- and off-chip control, address,
instruction, and data buses) for communicating information (primarily addresses, instruc-
tions, and data) between the computation system and storage components and between the
storage components themselves.

1.1 Motivation

Increasing levels of device integration and continuing rise in clock frequency and die area
have resulted in an exponential trend for raw computation system performance enhance-
ment. Architectural advancements to exploit this raw performance potential have been made
in the form of increasing levels of bit-level (4-bit, 8-bit, 16-bit, 32-bit, 64-bit), instruction-
level (deeper pipelines, out-of-order, wide-issue superscalar and multiscalar), thread-level
(simultaneous multithreading), and processor-level (chip multiprocessor) parallelism [1].
Thus, there may be multiple processors on a chip, each of which may execute multiple
threads simultaneously, and each thread may be executed by a deeply pipelined, super-
scalar core clocked at a high frequency. Due to such dramatic increases in computation
system performance, there is an enormous pressure on the memory system to store in-
creasing amounts of information (instructions and data) and communicate this information
(addresses, instructions, and data) at a high enough bandwidth and low enough latency to
avoid performance bottlenecks.

To address the above problem, designers have continued to increase the number of I/O
buffers, pads, and pins, widths of buses, number of registers, number and sizes of caches, and
the size of main memory, in addition to improving their design. However, since interconnect
size does not scale as well as on-chip logic size, on- and off-chip buses, especially the latter,
have relatively higher capacitances and delays compared to on-chip logic. Further, there
are more stringent constraints on the clock speed at which external pins can be driven
compared to on-chip circuitry. Finally, DRAM bandwidth and latency are improving at
a slower rate compared to processor performance. All of this contributes to a growing
computation-memory system performance gap [2].

As noted above, storage components have increased in number and size in order to
reduce performance bottlenecks and hence are occupying larger and larger areas on chip.
Due to current technology scaling trends, communication components also occupy a greater
fraction of the chip area because interconnect size scales relatively poorly compared to
logic (transistor) size. Moreover, in interconnects, not only individual wire capacitances
contribute to power consumption, but more so do inter-wire capacitances between adjacent
bus lines due to tighter spacing between lines [3]. Consequently, increasingly more fraction
of the system power consumption and cost is due to the memory system compared to the
computation system [4]. Thus, the memory system is becoming an increasing bottleneck
as designers strive towards higher performance, cost-effective, and power-efficient system
designs.
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1.2 Scope and Contributions of this Work

Information redundancy—in the form of highly sequential address streams, repeated in-
struction sequences in both program code and dynamic instruction streams, and highly
predictable data values when programs frequently loop through data arrays—can be ex-
ploited to reduce the processor-memory bottleneck. By compressing information that is
stored or transmitted in the memory system, potentially higher performance (improvements
in bandwidth and latency of communication components and improvement in capacity of
storage components), lower power consumption, and cost benefits can be obtained; we refer
to architectures supporting such compression as compressed memory system (CMS) archi-
tectures. This paper evaluates different CMS architectures in terms of improvements that
they can provide. We consider all primary types of information (namely, addresses, instruc-
tions, and data) and all important storage and communication components at all levels of
the memory system hierarchy where such information is stored or communicated. For ad-
dresses, we consider the tag fields of instruction and data caches and instruction and data
address buses. For instructions, we consider the data fields of instruction caches, main mem-
ory executable code, and instruction buses. For data, we consider integer and floating-point
register files, data fields of data caches, and data buses.

We use Sun Microsystems’ Shade simulator [5] to collect traces for the various storage
and communication components. Our simulated processor-memory system consists of a su-
perscalar processor having a memory hierarchy with split instruction and data caches at
the first level (closest to the processor), a unified cache at the second level, and a main
memory. We collected register- and cache-data traces, and address, instruction, and data
bus traces by running the simulator on SPARC-V9 executables of eight integer and seven
floating-point programs from the SPEC CPU2000 benchmark suite and five programs from
the MediaBench suite. Analysis of these traces using Markov entropy models, existing com-
pression schemes, and CACTI 3.0 [6] and SimplePower [7] timing, power, and area models
shows excellent potential for compression in both storage and communication components
at all levels of the memory systems.

The organization of the remainder of the paper is as follows. Sec. 2 discusses CMS
architectures in detail. Sec. 3 provides an overview of previous work related to cache, mem-
ory, and bus compression. Sec. 4 describes the simulation environment, analysis tools, and
methods we used in our study. Sec. 5 presents detailed results from our analysis. Finally,
we conclude in Sec. 6.

2. Compressed Memory System Architectures

In this section, we discuss the opportunities for compression present in the memory system,
a useful way of classifying CMS architectures, and finally the benefits of CMS architectures
and the challenges to be overcome.

2.1 Opportunities for Compression

Compression of some source information consisting of a sequence of symbols is possible when
those symbols occur with non-uniform frequencies or likelihoods either in the source as a
whole or in any given portion thereof. This allows for the encoding of the more frequent or
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likely symbols with shorter codewords compared to the less frequent or likely ones, resulting
in an overall compression of the source. The three primary types of information that are
stored and communicated by the storage and communication components of the memory
system, respectively, are addresses, instructions, and data. All three of these inherently
possess significant amounts of redundancy as we explain next.

2.1.1 Address redundancy

Addresses are of two types: instruction addresses and data addresses. Both exhibit spatial
and temporal locality, meaning that the next instruction or data address to be issued by
the processor is not random, but likely spatially and/or temporally close to recently issued
addresses. Instruction addresses issued by the processor to the L1 cache are typically se-
quential, except when branches or jumps occur, and even then, the target addresses are
not typically very far away from the last address. This is the reason why many instruction
sets use PC-relative addressing with shorter-than-full-word-size offsets for branch and jump
instructions. Addresses issued by the L1 cache to the L2 cache correspond to misses in
the former and are more unpredictable compared to those issued by the processor to L1.
Similarly, addresses issued by higher levels (away from the processor) of the memory system
become increasingly unpredictable and hence more information-rich. Still, these addresses
do exhibit temporal and spatial locality, although to lesser extents. Data addresses issued by
the processor are also known to exhibit temporal and spatial locality because of scanning of
data arrays in loops, although to a lesser extent than instruction addresses. Like instruction
addresses, redundancies in data addresses are expected to decrease at higher levels of the
memory hierarchy.

As far as storage components are concerned, address information is primarily stored in
the tag fields of caches, the TLB, and page tables (and some registers, such as the PC and
the memory address register, but this is not much). Since tag fields store a portion of the
address (a portion of the instruction address in the case of instruction caches and a portion
of the data address in the case of data caches), they are expected to exhibit redundancy as
discussed above for addresses. Specifically, the tag fields correspond to blocks that have been
recently accessed and as such they should be temporally and spatially close. Note that since
the tag field is normally derived from the high-order portion of the address, it is expected
to possess a higher amount of redundancy than whole addresses, since the high-order end of
the address is where more redundancy lies due to the spatial proximity of addresses issued.
Similarly, the TLB and page tables which store address information (virtual and physical
page numbers) will have redundancies.

2.1.2 Instruction redundancy

Since instructions fetched correspond to instruction addresses issued by the processor, in-
structions exhibit the same temporal and spatial locality as instruction addresses. Further,
not all instructions, instruction sequences, opcodes, register operands, and immediate con-
stants are present equally frequently. Repetitions of instruction sequences, opcodes, regis-
ters, and immediate constants, and correlation between opcodes and registers and between
opcodes and immediate constants can be exploited. The reasons for the presence of such
redundancies are that all programs have certain basic characteristics, e.g., they have pro-
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cedures and procedure calls, they have branches every few instructions (typically every six
instructions), they use loops and if-then-else clauses, etc. Moreover, compilers used to gen-
erate object code do so based on a set of templates, which naturally lead to redundancies.
As discussed for addresses earlier, instruction traffic at higher levels of the memory hierar-
chy are likely to exhibit less temporal and spatial locality. However, since at higher levels,
the instruction traffic consists of larger blocks, more redundancy is present within blocks.
Similarly, in storage components, there is redundancy in the instructions stored in main
memory and instruction caches.

2.1.3 Data redundancy

Data fetched by the processor also exhibits temporal and spatial locality, although to a lesser
extent than instructions. However, there is extra redundancy present in the values of data
communicated by data buses and stored in registers, data caches, and main memory. For any
given type of data (character, integer, floating-point, etc.), not all values are equally likely.
For instance, many programs do not tend to use the entire range of integer values possible,
but rather the values used tend to be concentrated around certain values, especially, zero.
For such small magnitude two’s complement numbers, most high order bits of the data word
are likely to be either all zero (positive) or all one (negative) due to sign extension.

2.2 Classification of CMS Architectures

A CMS architecture will be effective only if it is adapted to the characteristics of the
source information it seeks to compress. Hence the degree of specialization of a compression
scheme is an important parameter that determines its effectiveness. In general, a compres-
sion scheme is designed to compress some new raw information based upon symbol statistics
or frequencies drawn from some known or typical data set. Depending upon how specialized
this data set is, five classes of CMS architectures, from the most specialized to the least
specialized, can be identified as described below. Note that in all cases, symbol statistics
are drawn from the same type of information (address, instruction, data) as the type of
information being compressed.

Block-specific architecture: In this case, symbol statistics used to compress a block of
information (e.g., a block in any cache or main memory or a word on a bus) are drawn
from the same block. Such a compression scheme utilizes the most specialized information
for compression, but it is likely to have the most complexity.

Memory-component-specific architecture: When in a CMS architecture symbol statistics
are drawn from the typical data set of a memory component and are used to compress
each block of that component, it is referred to as memory-component-specific. For example,
symbol statistics may be drawn from all the instruction addresses typically transmitted
over the L1-L2 instruction address bus and then used to compress each instruction address
transmitted over that bus.

Application-program-specific architecture: In this case, symbol statistics used for com-
pression of information in a memory component are drawn from the typical data sets found
in a given application program in all memory components that store or communicate infor-
mation of the same type.
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Application-class-specific architecture: In contrast to the previous case, here symbol
statistics are drawn from application programs that belong to the same class (e.g., integer-
computation-intensive applications or floating-point-computation-intensive applications),
rather than from one particular application program.

General architecture: In this case, symbol statistics used for compressing information in
a memory component are drawn from a broad range of applications meant to be executed
on a system and from all memory components that store and communicate the same type
of information. Here the compression scheme utilizes the most general type of statistical
information and is expected to provide some reasonable compression across a range of
applications.

It is possible to use different degrees of specialized statistical information to perform com-
pression in different parts of the memory system. Thus, for example, while application-class-
specific compression may be better for instruction stream compression, memory-component-
specific schemes may yield best results for address bus compression. Also, the compression
scheme can be static or dynamic, i.e., the statistical information used for compression can
be predetermined and fixed or it may change dynamically.

2.3 Benefits of CMS Architectures

Depending upon the state of the technology at the time of implementation and application
requirements, it may not be possible to use compression to advantage in all areas of the
memory system, although substantial direct or indirect improvements can be expected in
most areas of the system. As an example, using compression in on-chip or off-chip buses can
have multiple ramifications. The effective bandwidth of the system will increase as more
number of bits can be transmitted using the same number of bus lines. If the emphasis is on
reducing power, it may be possible to reduce the number of bus lines while maintaining the
same effective bandwidth, and this would result in power savings because fewer bits need
to be transmitted and because significant amount of power is consumed in the metal lines
of the chip. Similarly, a decrease in the number of bus lines will reduce the die area and
hence cost could go down significantly because cost varies as the fourth or higher power
of die area [2]. Application of compression in other areas like caches, registers, and main
memory have obvious benefits like increasing the effective storage capacity using the same
number of transistors or lowering power consumption and cost by using smaller number of
transistors that provide the same effective storage capacity.

Compression can also be used possibly to improve cache latency by, for example, storing
a portion of the information in cache in compressed form. Using the same number of transis-
tors, this modified cache will have more effective capacity and hence less effective miss rate
than a regular, fully-uncompressed cache. The latency of the uncompressed portion of this
modified cache will be comparable or better (due to its smaller size) relative to the regular
cache. Also, the miss rate of the former will be only slightly worse than the latter for larger
cache sizes. This is because, for larger caches, miss rate reduces very slowly as cache size
increases. The latency of the compressed portion of the cache will be more than the regular
cache, but it will be less than that of the next higher level of the memory hierarchy. As a
result, if there is a miss in the uncompressed portion of the cache, the compressed portion
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can be checked and if the required information is present, a slower access to the next higher
level of the memory hierarchy can be avoided.

2.4 Feasibility and Challenges

As a downside, any implementation of compression in the memory system will have over-
heads in extra area, latency, and power consumption due to the compression/decompression
logic. However, since the size, speed, and power consumption of logic (which will be used
to do compression/decompression) scale better than those of interconnect (which will be
used to communicate the information), these overheads will continue to decrease over
time. Also, the (area, latency, and power) overheads that can be tolerated for compres-
sion/decompression vary from one part of the memory system to another and from ap-
plication to application. For example, more compression/decompression latency overhead
can be tolerated at higher levels of cache and main memory than at lower levels. Simi-
larly, less latency overhead can be tolerated in higher performance systems than in non-
performance-critical systems. Depending upon the state of the technology, the location in
the memory system where compression is to be applied, and the application system re-
quirements, the compression scheme can be more aggressive (better compression, but more
compression/decompression overheads) or less aggressive (moderate compression, but less
compression/decompression overheads), i.e., the compression scheme, and hence its over-
heads, can be suitably regulated. For example, we have shown that dynamic cache-based
address bus traffic compression schemes like dynamic base register caching [8, 9] and bus-
expander [10], described later in Sec. 3.2, need only very small overheads—few hundred
bits of cache and typically only a fraction of one cycle access latency for these small com-
pression caches—to compress addresses [11]. Such specific estimation of the overheads of
compression and decompression is possible only with respect to a particular compression
scheme and architecture. Since we deal with a variety of memory system components for
which such accurate overhead analysis will be too time consuming, in this paper we focus
on the limits to which compression can be potentially exploited using Markov entropy mod-
els, some representative existing compression schemes, and accurate cache and bus timing,
power, and area models.

3. Related Work

Previous work in memory system compression has been done both in analyzing compress-
ibility and in the development of specific compression schemes for the memory system.
These include schemes for address, instruction, and data bus compression, program code
compression and compressed instruction set design for embedded systems, and main mem-
ory and cache compression. Related work in traffic optimization for low power using bus
encoding has also been reported. We briefly review previous research in these areas next.

3.1 Previous Analysis

In previous analytical research focusing on finding the potential for compression, separate
studies by Hammerstorm and Davidson [12] and Becker et al. [13] used entropy measures
to evaluate the compressibility of addresses in microprocessors. Wang and Quong analyzed
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the potential of instruction compression [14]. They evaluated the effect of instruction com-
pression on the average memory access time for various types of memory systems. Later,
compressibility of program code in different architectures on various operating systems was
investigated by Kozuch and Wolfe [15]. The potential of main memory compression was
studied by Kjelso et al. [16]. We presented a brief analytical study of compression focus-
ing on overall benefits for the memory system in [17] and a broader study in [18]. Apart
from analytical studies of compressibility of memory system components, specific compres-
sion schemes have also been proposed for various memory system components. We briefly
review them next.

3.2 Address, Instruction, and Data Compression

Park and Farrens presented a dynamic base register caching (DBRC) scheme for compressing
off-chip, processor-memory addresses in [8, 9]. In this scheme, the original address is split
into a higher order and a lower order component and the former is stored in a cache of
base registers. When a new address results in a base register cache hit, the index to the
base-register cache is transmitted on the bus along with the uncompressed lower order part
of the original address, thus resulting in compression. They found that by using a 16-bit
bus for a 32-bit microprocessor and the DBRC scheme resulted in only a miss rate of 2%
for the base register cache and most of the time memory addresses could be transmitted
using a 16-bit bus, thus achieving almost a 50% reduction in the number of pins. Citron
and Rudolph proposed a similar scheme, called bus-expander (BE), for address, instruction
and data bus compression [10]. They reported hit rates of up to 95% for their compression
caches [10]. Both these schemes focused on reducing costs and improving pin bandwidth for
off-chip accesses. Recent work by Citron studied the feasibility of using bus compression to
reduce the growing gate delay versus interconnect delay gap for long on-chip wires [19]. The
effectiveness of a BE-like bus compression scheme to reduce the switching activity (power
consumption) in off-chip data buses was studied by Basu et al. [20]. A more detailed analysis
of the effect of compression on bus power consumption and a comparison of DBRC and BE
for on- and off-chip address buses was presented by us in [11]. Also, recently Kant and Iyer
analyzed the performance and power benefits of using dynamic, cache-based compressed
address and data transfer mechanisms for server interconnects [21].

3.3 Code Memory Compression

Code memory compression schemes compress the text segment of an executable program
to reduce code size and thus save power and cost. Code memory compression schemes
can be divided into three categories. The first category, called code compaction schemes,
use compiler optimizations during embedded code generation to minimize sizes of parts
of code that are used frequently (e.g., by creating procedures). These are purely software
techniques and require no hardware support during run-time. Various code compaction
schemes have been reported in the literature [22, 23, 24, 25, 26]. The second category, called
code compression schemes, refers to techniques that minimize the size of the executable
code and require decompression to be done before the compressed code can be executed.
Among popular code compression schemes are compressed code RISC processor (CCRP)
[27], call-dictionary compression [28], software-managed dictionary compression [29], semi-
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adaptive Markov compression (SAMC) and semi-adaptive dictionary compression (SADC)
[30, 31], and IBM’s CodePack for PowerPC cores [32, 33]. Our previous work provides a side-
by-side comparison of the effectiveness of several popular code compression schemes on a
standard platform and set of benchmarks [34]. Code compression has also been proposed for
VLIW architectures [35, 36] and has been recently adopted in commercial VLIW processors
[37]. Simple instruction encoding schemes have also been proposed for low-cost, low-energy
embedded processors [38, 39, 40]. The third category of code memory compression schemes
is called compressed instruction sets; these are supported in popular RISC cores like ARM
and MIPS [41, 42].

3.4 Cache and Main Memory Compression

Memory is an important resource for both embedded and general purpose processors and
hence several memory compression techniques have been investigated. IBM’s Memory eX-
pansion Technology (MXT) [43] enables the microprocessor to interface with compressed
memory (C-RAM) [44] and provides fast hardware compression and decompression to enable
access to the memory without significant increase in latency. Selective cache compression
techniques [45], frequent value data caches [46], dynamic zero compression in data caches
[47], adaptive cache compression [48], and indirect-indexed caches for cache compression
[49] are some of the cache compression techniques that have been proposed for cache per-
formance and/or power improvements.

3.5 Bus Encoding

Bus encoding is an area of research that has major implications for low power design of
microprocessor systems. Encoding, although closely related to compression, is directed at
minimizing unwanted signal transitions in the information stream to reduce bus switching
energies during transfer rather than compressing the information itself. Various bus encoding
schemes for off-chip address buses like Gray code [50], bus-invert code [51], asymptotic-zero
(T0) code [52], and working-zone code [53] have been proposed and some of them have been
applied to data buses too [54]. Cheng and Pedram presented a good survey of many bus
encoding techniques in [55]. Most bus encoding schemes involve the use of a redundant line
that indicates if the current value on the bus is an encoded value or not. Some modified
address bus encoding schemes that do not require any redundant lines have been suggested
in [56]. More recently, bus encoding schemes have been proposed for on-chip buses taking
into account the effect of inter-wire capacitances that are especially important in deep sub-
micron designs [3, 57]. Apart from energy reductions, encoding schemes that reduce bus
delay and inter-wire cross talk have also been proposed [58, 59].

3.6 Relationship of Our Work to Previous Research

To our knowledge, this paper’s comprehensive analysis of the potential of compression when
applied to all parts of the memory system in the context of real-world benchmark programs
and using extensive simulations is the first of its kind. The purpose of this paper is not to
present specific compression schemes—which will be the subject of our future research—
but to estimate the extent of compression possible in various memory system components.
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Towards this end, we employ analysis methods and compression tools (such as Markov
models, SAMC, Gzip) to estimate the extent of compression possible and the improvements
in performance, power consumption, and cost that can be obtained. We present results for
all parts of the memory system using realistic timing, power, and area models (CACTI
3.0 [6] and SimplePower [7]). We also present results related to: (1) the compressibility of
original, exclusive-OR (XOR), and offset traces of instruction and data addresses; (2) the
effect of compression on cache access time, power consumption, and area; (3) the relationship
between compression ratio and bit fields and bit-field groupings; (4) the effect of application
class, degree of specialization, encoding and multiplexing, analysis tool, static vs. adaptive
compression, and multithreading; and (5) the relationship between information content,
compression ratio, and power consumption, among others.

4. Simulation Methodology

In this section, we first discuss the target system and the parts of the memory system where
we analyze the potential of compression. This is followed by a description of the simulation
environment and the tools and methods used in our analysis.

4.1 Target System and Simulation Environment

Our target system has a memory hierarchy consisting of 32 integer and 32 floating-point
registers, split instruction and data caches at the first level, a unified cache at the second
level, and a paged main memory. The first level caches are write-through, 16KB each, 4-
way set associative, and have a block size of 32 bytes. The second level cache is write-back,
256KB, 4-way set associative, and has a block size of 64 bytes. The default cache sizes
we use may seem conservative in comparison to many modern systems but, as we will
see later in Sec. 5.3.2, larger cache sizes generally improve compressibility. For our target
memory system configuration, we used a modified version of the cachesim5 cache analyzer
in SHADE5 [5] running on a SPARC-V9 platform to collect the run-time traffic (addresses,
instructions, and data) for benchmark programs. Cachesim5 simulates cache operation by
using address information and hence can be easily modified to collect address bus traces.
But we also needed to collect instruction and data block traces for our analysis. To facilitate
this, we augmented cachesim5 by creating an interface to map addresses to the appropriate
location in memory where the instruction and data blocks are located. This way, we were
able to collect the actual address, instruction, and data traffic between processor, caches,
and memory for our analysis.

We used benchmarks from the SPEC CPU2000 suite [60]. To capture the characteristics
of both integer and floating-point programs, we chose eight integer and seven floating-point
benchmarks randomly out of the 26 in the suite; we used only a subset of benchmarks
because, otherwise, simulation time would have been prohibitive–as it is, we used a shared
Linux cluster to get our results. For some experiments, especially when studying the effect of
workloads, we additionally used five benchmarks from the MediaBench suite [61]. We used
the -O2 optimization flag, which does basic local and global optimization to compile these
benchmarks. All executables were statically-linked, in which the procedures and libraries are
linked with the main program during compilation itself. We ran the benchmark programs
using reference input sets provided with the SPEC2000 suite and to limit the execution
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times of our simulations we used a methodology similar to the one described by Skadron,
et al. [62]. Their research shows that accurate simulation results can be obtained by avoid-
ing unrepresentative behavior at the beginning of a benchmark program’s execution and
by using a single, short simulation window of 50 million instructions. In our experiments,
we simulate (but do not collect results for) instructions before the representative segment
(warm-up window) and use a sampling window of 50 million instructions to collect our
results. The sizes of the warm-up windows are also different for different SPEC programs
[62]. The complete list of benchmarks we used and the warm-up window for each, given
in parentheses, is as follows: (1) SPECint benchmarks—gcc (221M), gzip (2576M), vortex
(2451M), parser (500M), crafty (500M), twolf (500M), mcf (500M), and vpr (500M); (2)
SPECfp benchmarks (500M for each)—applu, swim, wupwise, lucas, art, ammp, and equake;
and (3) MediaBench—jpeg, adpcm, gsm, ghostscript, and rasta. For MediaBench programs,
we used input sets provided on the MediaBench Website [61] and collected results for com-
plete execution of the benchmark.

4.2 Trace Collection

For communication components, traces were collected by saving each new value transmitted
on a bus (connected between two storage components or between the storage component
and the processor) and its corresponding timestamp in a file. Thus, we assume that bus
lines are held at previously transmitted values when the bus is idle.

For storage components, the following methodology was adopted to collect dynamic
traces and to ensure that the analysis done reflects average compressibility of the component.
In instruction caches, a block may be loaded into and be replaced from a cache multiple times
during the sampling window of the simulation. A load and the subsequent replacement of a
block correspond to a time period during which it is resident in the cache; this is known as
cache residence time (CRT) of the block. Since the time instant of a load that occurs before
the sampling window and that of a replacement that occurs after the sampling window are
not known, we ignore these time periods to avoid errors and consider only load-replacements
that occur during the sampling window. In a data cache, a data block in cache during the
sampling window can take on one or more values because of writes to it. Therefore, for
data caches, we consider all data block values (instead of data blocks) that occur and get
replaced during the sampling window.

Our trace files were created as follows. During the simulation, we keep a record of the
block address and CRT of each block that is loaded and replaced during the sampling
window. After simulation, we sort the blocks in decreasing order of CRTs and sum the
CRTs of all blocks to get the total CRT (TCRT). Then, starting from the first block, we
select blocks in the sorted list, in order, until the total residency time of selected blocks
becomes equal to 80% TCRT. Then we write, in random order, the actual contents of
these selected blocks a number of times, which is in proportion to each block’s CRT, into
a file to obtain the trace for our experiment. We use a random order to write the blocks
to avoid any optimistic first-order compression ratios that may be obtained if the blocks
were written in the order of their sorted residency times. For most of our cache compression
analysis experiments, we used both 80% and 90% TCRT traces and averaged the results
obtained from the two, instead of using a 100% TCRT trace because, the number of times
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each blocks needs to be written into the trace will be extremely large for some blocks and
this may result in a very large trace file. However, we used the 100% TCRT trace in a few
experiments where it was possible to do so. To analyze tag information stored in cache, we
used the higher order portion of corresponding instruction and data block addresses (since
tags are obtained from this portion) to create cache tag traces.

Adopting a similar methodology as above for register compression analysis, we consid-
ered the residency times of only those values that are loaded and replaced in a register during
the simulation window. Note that by considering the residency times of blocks as above,
both in the case of cache and register, the trace file we created reflects the average contents
of the cache/register. Hence the compression ratios obtained would be those expected from a
compression scheme that chooses encodings based on average symbol statistics, rather than
one where the choice changes dynamically as cache/register contents change. Therefore, the
compression ratios we report in our studies are, in this sense, not optimistic.

4.3 Trace Analysis

We analyze the potential for compression of a particular trace by measuring the following
two parameters. First, compression ratio, R, for any compression scheme is defined as the
ratio of the size of compressed information to the size of the raw uncompressed information.
We used various entropy measures and some available compression schemes to estimate the
information content or compression ratio possible for our traces. Second, transition ratio,
T , for the compressed information is defined as the ratio of the number of transitions that
occur when the compressed information is transmitted on a bus to the number of transitions
that occur when the original uncompressed information is transmitted on the same bus.

4.3.1 Compression ratios from entropy calculations

The entropy of a source denotes the average number of bits required to encode each symbol
present in the source. Thus, the lower the entropy value, the more compressible the source.
Entropy values can be computed for a source based upon various models—zero-information,
zeroth-order Markov, first order Markov, etc. Compression ratios based on these models
provide a theoretical lower bound for a particular trace. We describe these entropy models
and how we computed compression ratios from entropy values next.

Zero-information entropy: Given a source with symbol set s1, s2, . . . , sN , the com-
pressibility of a symbol in zero-information entropy is determined by its presence or absence
in the trace, irrespective of the number of times the symbol occurs in the trace. Thus, if
there are M unique symbols that actually occur in a trace out of N total unique symbols
that could occur, where M ≤ N , the zero-information entropy for the trace is H = log2 M ,
i.e., every one of the M symbols that actually occurs is represented by a unique log2 M bit
pattern.

Zeroth-order Markov entropy: Given that the source data has symbol set s1, s2, . . . , sN

and each symbol si occurs with probability p(si), the entropy for the symbol is − log2 p(si).
The zeroth-order Markov entropy of the source data is given by the following relation: H0 =
−Σ∀i[p(si)·log2(p(si))]. Whereas zero-information entropy reflects only the occurrence/non-
occurrence of symbols, zeroth-order Markov entropy reflects in addition the frequencies of
occurrence of symbols.
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First-order Markov entropy: In first-order Markov entropy, we consider the occur-
rence of a symbol si, the probability p(si) of that symbol’s occurrence, and the probability
p(sj |si) that the symbol is preceded by another symbol sj . The first-order Markov entropy
of a source is given by: H1 = −Σ∀i [p(si) · Σ∀j [p(sj |si) · log2(p(sj |si))]] . This means that in
a sequence of symbols if the current symbol is sj and the next symbol is si, this next symbol
si can be represented using − log2 p(sj |si) bits.

The symbols that we consider while measuring the entropy of any trace (address, in-
struction, data) correspond to aligned words in the trace, i.e., 32-bit words for addresses and
instructions and 64-bit words for data. In our compression analysis study, we use only the
low-order 32 bits of the actual 64-bit address in order to keep simulation times reasonable.
Doing so results in a pessimistic estimate of the actual address compression potential since
the high-order address bits have large amounts of redundancy due to the spatial locality
characteristics of addresses. Using the entropy values measured, the corresponding com-
pression ratio can be computed by taking the ratio of entropy times the number of symbols
(words) to the number of symbols (words) times the size of a symbol (32 for addresses
and instructions and 64 for data) in the original raw trace. Thus, for example, the average
zeroth-order Markov compression ratio over n benchmarks is:

RH0 =
∑n

i=1 H0 of tracei

n× Original wordsize
.

RH and RH1 are defined similarly.

4.3.2 Compression ratios from practical schemes

Some specific schemes to compress address, instruction, and data have also been proposed
recently. We used some of these schemes to measure compression ratios and obtain an
estimate of efficiency obtainable with practical schemes.

Instruction and data block compression scheme: Semi-adaptive Markov com-
pression (SAMC), a compression algorithm based on arithmetic coding combined with a
precalculated Markov model, was proposed by Lekatasas and Wolf for code compression
[63]. We used the SAMC executable, obtained from the authors, to compress instruction
and data blocks with the following parameters: block size equal to L1 or L2 cache block size
depending on the memory level where the compression is applied, Markov model of depth
32 and width 256, and bits-per-probability of 4. The average SAMC compression ratio over
n benchmark traces was calculated as follows:

RSAMC =
∑n

i=1 Size of compressed instruction or data tracei∑n
i=1 Size of original tracei

.

A point to note is that the SAMC algorithm is a block-based compression algorithm and
hence average compression ratio for an individual block of that size is reported as the output.

Address compression scheme: Two techniques, dynamic base register caching (DBRC)
and bus-expander (BE), have been proposed to compress addresses that are transmitted
on buses [8, 10]. Both schemes use a small fully associative cache at the sending end for
compressing addresses and decompress them using registers at the receiving end. In our
analysis, we use BE to compress address streams. The average address compression ratio
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over n benchmark traces is defined as follows:

RBE =
∑n

i=1 Size of compressed address tracei∑n
i=1 Size of original tracei

.

Data compression scheme: Gzip is a widely used GNU utility for compression in
UNIX systems. It uses Lempel-Ziv (LZ77) dictionary compression algorithm which replaces
strings of characters with single codes. Gzip does not do any analysis of the information
source. Instead, it just adds every new string of characters it sees to a table of strings.
Compression occurs when a single code is output instead of a string of characters. Since
Gzip uses an algorithm based on bytes, good compression ratio is achieved on text files.
We used Gzip on address, instruction, and data streams to provide an idea of compression
achieved using a widely-used text compression utility. The average Gzip compression ratio
over n benchmark traces is defined as follows:

RGzip =
∑n

i=1 Size of compressed tracei∑n
i=1 Size of original tracei

.

4.3.3 Transition ratio

For CMOS technology, power consumption on a bus line is directly related to the switching
activity on it as bits are transmitted one after another over it. We use a methodology similar
to the one used in SimplePower [64] to calculate the switching activity of a given bus when
information is transmitted across it. They calculate the average probability of a transition
for each bit of the bus and find the total average probability across all bits, which is a
measure of the per-input switching activity of the bus in bits [7]. Thus, the ratio of bus
power consumption for two traces using the SimplePower model is equal to the ratio of
the number of transitions for those two traces. We define average transition ratio over n
benchmarks for compressed traces as follows:

TC =
∑n

i=1 No. of transitions in compressed tracei∑n
i=1 No. of transitions in original tracei

.

When estimating TC , we used BE as the compression scheme for address traces and
SAMC for instruction and data traces.

5. Results and Discussions

For communication components, we performed experiments on traces of address, instruction,
and data traffic between the processor and memory for all three levels (processor-L1 cache,
L1 cache-L2 cache, and L2 cache-main memory) for each benchmark and calculated the zero-
information and zeroth- and first-order Markov entropies, and SAMC compression ratio in
each case and, in some cases, we also calculated the Gzip compression ratio. We investigated
the compression potential of storage components other than registers by calculating zero-
information and zeroth- and first-order Markov entropy values, RSAMC , and RGzip. For main
memory, we calculated these values for the text segment of the statically-linked executable
code. For registers, we performed only zeroth-order Markov analysis. The reason we did not
do a first-order Markov analysis for registers is because a compression scheme that exploits
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first-order behavior will need to represent the current value in a register in a manner that
depends upon the previous value. Since a register has only one word, storing the previous and
current values, even in compressed form, is unlikely to yield much compression. Moreover,
if register compression is attempted, the compression scheme needs to be simple enough not
to affect access latency by more than a little.

To keep the number of simulations reasonable and at the same time be able to study a
number of parameter variations, we consider certain default settings as follows. We consider
the default architecture to be memory-component specific as described earlier in Sec. 2.2.
Also, in the default case, for our communication component analysis experiments, we con-
sider demultiplexed buses, in which case there are separate buses for instruction address,
data address, instruction, and data. In some cases, we consider a multiplexed bus, with one
‘address’ bus carrying both instruction and data addresses and one ‘data’ bus carrying both
instructions and data. Also, the default memory level for which we report most of our results
is between L1 and L2 caches. The default word size considered as a symbol size in Markov
entropy calculations is 32 bits for address and instruction, 64 bits for data, and 20 bits for
tag field (see Sec. 4.3.1 for an explanation regarding why we use 32-bit instead of the actual
64-bit address). For entropy analysis, in most cases, first-order Markov provides the best
results and the performance of zeroth-order Markov is also better than zero-information.
We present these three entropy results in most of our plots. In the experiments that we
describe next, we summarize results in plots by averaging over all 15 (8 INT and 7 FP)
benchmarks or by showing averages for INT, FP, and MediaBench programs separately for
specific components. We calculate the average compression ratios as mentioned earlier in
Sec. 4.3.2.

5.1 Overall Memory System Analysis

We investigated how compression ratio and power consumption vary across memory system
components, namely, registers, caches, main memory, address bus, instruction bus, and data
bus. The compression ratio is indicative of the extent to which performance enhancement
or cost savings can be realized. Fig. 1 presents an overview of our analysis. We observe
that communication components are in general more compressible than storage components
(considering H1 values which provide the best lower bound for entropy). Among storage
components, we observe that the ordering from the most to the least compressible is L1
I-cache data field, L1 I-cache tag field, main memory, and registers. This is to be expected
since instructions that are stored in the data fields of I-cache and tag field that corresponds
to the high-order portion of the instruction address carry significantly higher amounts of
redundancy than main memory or registers.

Among communication components, the ordering, from the most to the least compress-
ible (again considering H1 values), is instruction bus, data bus, and address bus. A possible
explanation for the higher redundancy in the data bus compared to address bus is that a
lot of the data blocks transmitted may contain small magnitude numbers that have lots of
either 0 or 1 bits. Further, it is observed that the volume of data read traffic (data blocks
sent from L2 to L1) is far greater than the write traffic (data blocks sent from L1 to L2),
which means that the same blocks may appear in the data bus traffic often without any
changes, and this also increases the redundancy. This also explains why data traffic shows
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Figure 1: Overall Memory System Analysis: Compression ratio variation across memory sys-
tem components. Communication components are in general more compressible than
storage components when first-order entropies are considered.

the best compressibility in zero information and zeroth-order analysis. We also observe that
the ordering of the communication components in terms of power savings after compression
(from most to least savings) is as follows: address bus, data bus, and instruction bus.

5.2 Register Compression Analysis

For register compression, we performed zeroth-order Markov analysis over all 32 integer reg-
isters and 32 single-precision floating-point registers in our target architecture. In SPARC-
V9, all integer registers are 64 bits each and the single-precision floating-point registers are
32 bits each [65]. The floating-point register file (FPRF) uses aliasing , i.e., some register
names overlap. For example, in the 32 single-precision register set, the lower half of the 32
double-precision register set, and the lower half of the 16 quad-precision register set overlay
each other. Considering the total number of registers in our analysis and keeping track of
all values stored in them for large samples (50 million instructions) would have been com-
putationally intractable. Hence, we study only instructions that manipulate registers in the
single-precision FPRF.

Fig. 2 shows the zero-information and zeroth-order compression ratios for each register in
the integer and floating-point register files. Considering average values, we find that floating-
point registers are more compressible than integer registers. The following observations can
be made from the plots.

Integer register compression: The average zeroth-order integer register compression ratio
across all 32 registers, excluding register r0, is 0.169. We observe that integer registers r1-
r7, r14, r15, r30, and r31 show potential for more compression than the rest. This can be
attributed to the register windowing employed in the SPARC register architecture: r1-r7
correspond to the most often used ‘global’ set of registers that are more likely to be used by
a program to store data; hence they show higher compression potential. Registers r14, r15,
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Compression Ratio Variation Across Integer Registers
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Figure 2: Compression Potential of Storage Components – Register Compression Anal-
ysis : (a) Average register compression analysis for 32 integer registers. (b) Average
register compression analysis for 32 single-precision floating-point registers.

r30, and r31 have dedicated use as stack, frame, temporary, and return-address registers,
respectively, and are also likely to be used more frequently than others. But, it may be
argued that many integer registers can potentially contain pointer values1 (32-bit addresses
of other locations where data is actually stored) that can take large values and hence may
be poorly compressible. But, there is indeed a lot of redundancy present in pointers because
they point to roughly a similar region in memory (since they are dynamically allocated).

1. Pointers in SPARC-V9 are 32 bits. A simple C program using the sizeof(void *) functions will reveal
this.
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Hence many of their high-order bits will be the same resulting in higher redundancy and
potential for compression.

Floating-point register compression: The average zeroth-order floating-point register
compression ratio we observe for the 32 single-precision registers in SPARC-V9 is 0.161
(excluding registers f16-f29 that were all unused). Note that, as opposed to integer regis-
ters, a symbol size of 32 bits was used here to calculate entropy because only single-precision
operands were considered. The substantial underutilization of the register set—13 out of 32
were not used by the benchmarks at all—can be explained by the fact that these may have
been used as double or quad-precision registers which were not considered in our analysis.

In summary, our results show that although there is good amount of variation in com-
pression ratio across registers, no register (INT or FP) has an average H0 compression
ratio exceeding about 0.35, which implies registers can, on average, be compressed to about
one-third of their original size using a very good zeroth-order compression scheme.

5.3 Cache Compression Analysis Across Different Memory Levels

In this subsection, we analyze the compressibility of L1 and L2 caches. First, we explore
the potential for instruction cache and data cache compression in separate experiments.
Then, we investigate the effect of change in cache parameters (cache size, block size, and
associativity) on compression. Finally, we estimate the benefits of cache compression in
terms of improvement in cache access times, reduction in power consumption, and reduction
in area.

5.3.1 Instruction and data cache compression

Fig. 3 shows results for compression ratios calculated using zero-information, zeroth-order,
and first order Markov entropies for instruction and data caches. To limit the running times
and memory required for this analysis, we used a smaller sample size of 20M committed
instructions to collect a 100% TCRT trace. The methodology for cache trace collection was
explained earlier in Sec.4.2.

Comparing instruction and data caches, we observe that data caches are more com-
pressible. One reason for this could be the presence of data blocks with uninitialized values
(mostly zeros) that add to redundancy. Comparing between L1 and L2 caches, it would be
expected that L1 cache will be more compressible, if both L1 and L2 blocks are dynami-
cally compressed with the same scheme, due to the following reason. L1 cache contains a
more frequent symbol set (of instructions or data) and the L2 cache, in addition to storing
the contents of L1, also contains additional symbols (instructions or data) that are rela-
tively infrequent. This is observed to hold in the case of instruction cache, but for data
caches we observe that L2 is more compressible than L1, albeit slightly (by about 3% or
less). One possible explanation is that, since data is more dynamic in nature compared to
instructions, blocks in L1 cache tend to be replaced more frequently. This tendency may
have been aggravated by a small L1 data cache size (16KB). Both these factors result in a
more dynamic mix of data in the L1 cache trace making it less compressible. As we will see
later in Sec. 5.3.2, increasing cache size from 16KB to 32KB could have resulted in better
compression for L1 D-cache. In contrast, due to the larger size of the L2 cache (256KB),
data blocks tend to stay longer and thus the L2 data cache trace is more compressible.
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Figure 3: Compression Potential of Storage Components – Cache Compression Anal-
ysis: Average instruction and data cache compression analysis for L1 and L2 caches.

On average, for instruction caches, we observed a zeroth-order Markov compression ratio
of about 0.23 and a first-order Markov compression ratio of about 0.04. This means that,
theoretically, we could reduce instruction cache sizes by about 4 to 25 times by applying
cache compression methods or store that much more information in the same area.

5.3.2 Compression ratio and cache parameters

We also investigated the sensitivity of cache compressibility to cache parameters, namely,
cache size, block size, and degree of associativity and its relationship to access time, power
consumption, and area. All experiments in this set were done on L1 instruction cache
resident blocks using 80% and 90% TCRT traces; results are reported as the average of
the two. From Fig. 4(a), we find that the compression potential of cache first increases and
then decreases with increasing cache size. For the range that we studied, cache compression
potential is maximum for a 32KB cache. A larger cache has more relatively infrequently
occurring blocks than a smaller one, and that explains its lower compressibility. However,
even for large caches, the compression ratio is very good.

In general, compression ratio improves when we increase block size as shown in Fig. 4(b).
This is because a larger block has more spatially close instructions than a smaller one, and
so, for the same cache size, increasing block size increases the number of instructions that
are related to each other, and a smaller block size leads to more block boundaries where
interruptions in related instructions occur. We also performed experiments to test the impact
of varying cache set associativity on compression and we found that it has negligible impact
on compression ratio.
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Figure 4: Compression Potential of Caches: (a) Cache Compression and Cache Size:
With increasing cache size, compression ratio first improves and then deteriorates some-
what. (b) Cache Compression and Block Size: With increasing block size, compres-
sion ratio generally improves. Cache associativity has negligible impact on compression
ratio.

Cache Type Compression Access Time Total Energy Tag Area Data Area
Method (ns) (% redn.) (nJ) (% redn.) (cm2) (% redn.) (cm2) (% redn.)

L1 Uncompressed 1.27 – 1.68 – 0.0011 – 0.0116 –
L2 Uncompressed 1.73 – 3.06 – 0.0051 – 0.1291 –
L1 I-cache Zeroth-order 1.23 3.30 1.58 6.18 0.0006 43.75 0.0063 45.57
L1 D-cache† Zeroth-order 0.75 40.96 0.57 68.85 0.0002 79.46 0.0017 84.61
L1 I-cache† First-order 0.75 40.96 0.57 68.85 0.0002 79.46 0.0017 84.61
L1 D-cache† First-order 0.73 42.15 0.57 66.10 0.0002 82.14 0.0016 86.24
L2 Zeroth-order 1.30 25.06 1.88 38.55 0.0011 77.24 0.0254 80.26
L2 First-order 1.23 28.60 1.72 43.67 0.0002 95.53 0.0017 98.61

Table 1: Access Time, Energy Consumption, and Area of Caches: Cache parameters ob-
tained using the CACTI 3.0 model. Entries marked with a † use a direct-mapped organi-
zation for the compressed cache.

5.3.3 Cache compression and cache access time, energy consumption, and
area

To estimate the effect of compression on other parameters like access time, power consump-
tion, and area of the tag and data arrays, we used the CACTI 3.0 model for a 0.18 micron
SRAM cache implementation [6]. Table 1 gives values of these parameters for L1 and L2
caches. Here, we compare a normal uncompressed cache with a smaller (by compression ra-
tio) compressed cache having the same effective storage capacity. Both caches have similar
parameters, such as block size and set associativity, but the compressed cache has fewer
blocks (compression ratio times the number of blocks in the corresponding normal uncom-
pressed cache). In some cases, however, the size of the compressed cache was too small (due
to the compression ratio being very small) to use a set-associative mapping in CACTI 3.0.
In those cases, we used a direct-mapped cache implementation. We observe that with tag
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and data field compression in the compressed cache, access times can be reduced by about
41% (29%) and power consumption by about 66% (44%) on the average for L1 (L2) levels
w.r.t. normal uncompressed caches with the same effective capacity.

5.4 Compression and Transition Ratios Across Individual Buses

5.4.1 Zeroth order and first-order redundancies in all buses

Fig. 5(a) shows compression and transition ratio results for demultiplexed buses at all three
levels. We observe that the RH and RH0 values are similar across all levels. Based on RH1

values, instruction address is most compressible and data address least, except for L2-M,
where data is most compressible.

5.4.2 Original, XOR, and offset address trace compression

Since instruction and data addresses are known to exhibit spatial redundancy to different
degrees, it would be expected that the XOR of consecutive addresses will have a lot of
zeros (especially at the high-order bit positions) and that the offset values for consecutive
addresses will have small magnitudes. Note that computing bitwise XOR of two n-bit ad-
dresses requires constant time and little hardware and offsets can be computed in O(log N)
time using a carry-lookahead tree adder. However, XOR traces have a power disadvantage.
Every bit transition in the original trace will cause two bit transitions in the XOR trace,
except when consecutive transitions occur in the original trace (not likely), in which case
there will not be any transition in the XOR trace. To study the compressibility of original,
XOR, and offset address traces, we evaluated their zero-information, zeroth-order, and first-
order Markov compression ratios; these are shown in Fig. 5(b). Since instruction addresses
occur at some very frequent offsets (typically an instruction word), the zero-information
and zeroth-order Markov compression ratios for instruction address offset traces is the best
and even the XOR trace has better compressibility than the original trace. However, when
considering first-order Markov compression, the original trace provides the best compression
and the offset trace the worst. This is expected since, given an offset, the next offset value
can vary depending upon the instructions being executed at the time. However, given an
instruction address, the next instruction address can be easily predicted. In the case of data
addresses, XOR and offset traces do not necessarily give better compression ratios due to
more variation in data addresses issued.

5.5 Compression Ratio and Bit Fields

In this experiment, we consider eight consecutive bit fields (from high to low order: F7,
F6, . . . , F1, F0) corresponding to each nibble for instruction and data addresses. For 64-bit
data, we consider four consecutive bit fields (F3, F2, F1, and F0) corresponding to each
half-word (16 bits). For 20-bit I-cache tag, we consider five fields each a nibble wide. For
32-bit instructions, we consider six fields (F5, F4, F3, F2, F1, F0 of widths 2, 5, 6, 5, 9,
and 5 bits, respectively) based on the field boundaries of the most common instruction
format (J-Format) in SPARC-V9 architectures. In the experiments under this subsection,
the symbol size for compression corresponds to the above-mentioned bit field sizes. We
generated individual bit-field traces for data addresses and instruction addresses at the
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Figure 5: Compression Potential of Communication Components: (a) Zero-information
and zeroth- and first-order compression ratios for various buses at different levels of the
memory system hierarchy. (b) Compression ratios for original, XOR, and offset address
traces for various address buses.

P→L1 level, instructions and data at the L1→L2 level, and tag field of L1 I-cache and then
analyzed each trace by doing zeroth and first-order Markov analysis. We also considered
three different representations for each bit-field stream in addresses: original (raw), XOR-
encoded, and offset-encoded. The motivation for studying these address representations was
described earlier in Sec. 5.4.2.

From the results shown in Figs. 6 and 7, we observe that compression ratio varies across
bit-fields and the variation differs for each type of traffic. In general, across all types of
information, we observe that compressibility improves from low to high order bit fields,
except in the case of instruction bus traffic. Comparing data addresses and instruction
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Figure 6: Compression Ratio and Bit Fields—Data and Instruction Addresses: (a) Varia-
tion of compression ratio across data address bit-fields. (b) Variation of compression ratio
across instruction address bit-fields. In both (a) and (b), higher order bit fields show best
compression.

addresses (Figs. 6(a) and (b)), we observe the following. First, instruction addresses are
more compressible than data addresses. Second, zeroth- and first-order compression of bit-
fields yield more returns in instruction addresses than in data addresses. Third, offsets
and XORs of instruction addresses are more compressible with higher-order compression
schemes.
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Figure 7: Compression Ratio and Bit Fields—Instruction, Data, and Tag: (a) Variation
of compression ratio across instruction bit-fields. (b) Variation of compression ratio across
data bit-fields. (c) Variation of compression ratio across tag bit-fields.

5.6 Compression Ratio and Bit-Field Groupings

In the previous subsection, we investigated the compressibility of individual bit fields in a
word. In this subsection, we evaluate the compressibility of an entire word based on different
groupings of bit fields. For this analysis, we considered five bit-field groupings for addresses
that are indicated in the top right corner of Fig. 8(a): Group-1 (G1) consists of 8 nibbles
with each compressed separately, Group-2 (G2) consists of a most significant byte followed
by 6 nibbles, Group-3 (G3) comprises a most significant part of 12 bits followed by a byte
and then two nibbles, Group-4 (G4) consists of a most significant half-word, a byte, and
then a nibble, and finally Group-5 (G5) considers the whole word as a symbol. In a similar
vein, the bit-field groupings that we considered for instruction, data, and cache tag fields
are shown in Fig. 8(b). The entropy value for the entire word is equal to the sum of the
entropies for the individual bit-fields.

For addresses only, we considered original, XOR-encoded, and offset-encoded values
for compression separately. We observe the following from the results shown in Fig. 8.
In general, for any type of information, the more the number of bits in the higher order
field, the better the overall compression ratio. When we consider the whole word as a
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Figure 8: Compression Ratio and Bit-Field Groupings: Variation of compression ratio across
different bit-field groupings. (a) Address buses. (b) Instruction and data buses and cache
tag fields.

symbol (G5 for addresses and G4 for others), the best compression ratio is obtained. In
the case of instruction addresses, we find that XOR-encoded and offset-encoded values, in
most cases, perform worse than original values for zero-info and first-order compression.
However, for zeroth-order compression, these perform substantially better than original
values. This is because the same XOR or offset values repeat for different combinations of
original addresses, thus resulting in higher zeroth-order compression.
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5.7 Compression Ratio and Power Savings for Different Workloads

Results for experiments reported in previous subsections were averaged over all benchmarks.
In this experiment, we compare the compression potential and power savings due to com-
pression of different workloads: integer, floating-point, and embedded. The results of this
experiment are shown in Figs. 9(a) and (b) for SPEC CPU2000 and MediaBench programs,
respectively.
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Figure 9: Application Class Analysis: Compression ratio and power savings variation across
different application classes (a) Desktop/workstation class workloads (SPEC CPU2000
INT and FP programs). (b) Embedded workloads (MediaBench programs).

The following observations can be made for desktop/workstation class workloads rep-
resented by the SPEC CPU2000 benchmark programs. As seen earlier in Sec. 5.2, for this

26



A Limit Study on the Potential of Compression

type of workload, data in floating-point registers are more compressible than data in inte-
ger registers. For program instructions (stored in I-cache data field and main memory and
transmitted on instruction bus) and addresses (in I-cache tag field and instruction address
bus), we observe that the information for the FP application class is more compressible
than the INT application class. We also see that the FP data sent over the data bus is more
compressible than the INT data sent over the same bus. This may be because the FP data
blocks sent from L2 to L1 (in the event of an L1 D-cache miss) may contain many unused
FP words that are set to zero giving rise to redundancy of information. We also observe
that for communication components, FP programs give better power savings than INT pro-
grams. For embedded workloads, represented by MediaBench programs, compressibilities
are intermediate between integer and floating-point programs.

5.8 Compression Ratio and Degree of Specialization

In this experiment, we investigate how varying degrees of specialization of the compression
scheme affect compression ratio. We set up five different types of specialization as mentioned
in Sec. 2.2. In the benchmark-specific architecture, the compression scheme is specific to each
benchmark, but same for all blocks and memory components. For this, symbol statistics
used for compression of any trace are determined by analyzing symbols from all memory
components. In the application-class-specific case, symbol statistics for various components
for a subset of benchmarks, the training benchmarks, for each application class (INT or
FP) are determined and then these statistics are used to compress components for the
remaining test-benchmarks in the same application class. To limit the simulation time and
memory required for this study, we limited the sample size used for trace collection to 10M
instructions. Here, we show separate results for INT and FP.

We observe from results in Fig. 10 that with the degree of specialization decreasing, the
compression ratio deteriorates. But we observe that compressibility with a general compres-
sion architecture is slightly better than an application-class-specific architecture although
the former is less specialized than the latter. The general case that we considered here is very
similar to the application-specific-class and the only difference is that it draws statistics from
all application classes combined. Since the number of distinct application classes considered
in our analysis is only two (INT and FP classes–MediaBench programs can be considered
to be in the INT class), the general case does not result in worse compression than the
application-specific class. For the first four cases, first-order Markov performs better than
zeroth-order Markov. But in the application-class-specific case, it is the opposite. This is
because for symbols that occur in both test benchmarks and training benchmarks, symbols
are compressed according to statistics in training benchmarks in zeroth-order Markov, but
if their preceding symbols do not occur in training benchmarks, the symbol is left uncom-
pressed in first-order Markov and this results in worse compression for first-order Markov.

5.9 Compression Ratio and Multithreaded Execution

In a multithreaded system, if a shared (address, instruction, or data) bus is used across
different threads, compression and transition ratios may be different compared to single-
threaded systems. We simulated the effect of k-way multithreading by merging address,
instruction, or data traces from k different benchmarks and creating a single trace (address,
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Figure 10: Degree of Specialization and Degree of Multithreading Analysis: (a) Com-
pression ratio variation with degree of specialization. (b) Compression ratio variation
with the degree of multithreading.

instruction, or data) by ordering the references according to their timestamps. We report
results for first-order compression, which is the best as observed from earlier experiments,
and transition ratio in Fig. 10(b) for the multithreaded trace. With multithreading, we
expect that, because of intermingling of traffic from different threads, more transitions
will occur. The results shown in Fig. 10(b) suggest that this is somewhat true, although,
transitions often do not increase by much when the degree of multithreading is increased
from one to five. Multithreading also does not seem to have a perceptible impact on first-
order compression ratios.
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5.10 Power Savings Due to Compression, Encoding, and Both Combined

Some experiments above demonstrated that power savings can be achieved with compression
alone. We wanted to investigate if bus encoding, compression, or both applied together
decrease power consumption further. So, we conducted experiments for the three cases and
the results are shown in Fig. 11(a). We found that by using compression and encoding
together, we could achieve the best power savings. In fact, on the average, compared to the
reduction in transitions due to encoding alone, compression reduces transitions by further
7.5% and compression followed by encoding reduces transitions by further 15%. Thus, a
scheme that combines both compression and encoding can provide the best benefits in
terms of energy efficiency.

Effect of Encoding, Compression, and Compression-
Encoding on Transition Ratio
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Figure 11: Communication Component Analysis Considering Bus Encoding and Com-
pression: (a) The extent of power saving due to encoding, compression, and compres-
sion and encoding combined. Compression followed by encoding shows best results. (b)
The effect of information content of a trace on its power consumption.
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In another experiment, we investigated the effect of information content on the power
consumption of a particular trace when it is transmitted on a bus. To study this, we grouped
all bus traces that we used (address, instruction, and data traces) according to their first-
order compression ratio (information content). We used first-order compression ratio since
it has the lowest value for all traces and hence it represents the lower bound for compression.
Traces with compression ratios in the range (0, 0.1] were placed in one group, those in (0.1,
0.2] in another, and so on until the last group which had traces with compression ratios in the
range (0.9, 1.0]. After grouping the traces, we calculated the average number of transitions
for each group (total number of transitions in all traces in a group divided by the number of
traces in the group) for the original, compressed, encoded, and compressed-encoded versions
of the traces in the group. Then, we normalized this number using the trace with the highest
number of transitions in each group. We also calculated the mean of the compression ratios
of traces in each group. Finally, we plotted the normalized average transitions for each
group against the mean compression ratio; the plot is shown in Fig. 11(b). It shows that,
for a given trace, the number of transitions increase with information content, although, for
a given information content (compression ratio), the compressed-encoded and compressed
traces cause fewer transitions.

5.11 Other Issues

5.11.1 Power Savings and Bus Multiplexing

The default bus in our experiments was the demultiplexed bus, and so we also wanted
to know how multiplexing affects power consumption. As mentioned earlier, a multiplexed
address bus means that both instruction and data addresses are carried on the same bus.
Similarly, a multiplexed data bus means that both instructions and data are carried on
the same bus. We compared multiplexed and demultiplexed address and data buses and
obtained results as shown in Fig. 12(a). While multiplexing an address bus slightly im-
proves both the address compression ratio and power savings, it degrades both in a data
bus by a non-negligible amount. This shows that there is sufficient redundancy in multi-
plexed address streams whereas it is not true for combined data/instruction streams. For
data/instruction buses, the degree of specialization of the compression scheme on demulti-
plexed bus is higher than multiplexed bus. On demultiplexed bus, compression is specific to
each trace (instruction, data from L1 to L2, data from L2 to L1, etc.), but on the multiplexed
bus, the compression scheme is used for all content on the bus consisting of instruction and
data traffic (both directions). This also accounts for lesser compression and power savings
on the multiplexed data/instruction bus. Thus, in spite of multiplexed traffic on address
buses, benefits can be obtained but the same is not true for data buses.

5.11.2 Compression Ratio and Analysis Tool

SAMC, an arithmetic compression scheme, does not approach the entropy bound, but pro-
vides a decent compression ratio of 0.48–0.59 as shown in Fig. 12(b). Among available
compression tools, SAMC performs much worse than the commonly used text compression
utility Gzip, that uses dictionary compression methods. It is also noticeable that there is
a wide gap (almost an order of magnitude) between the theoretically achievable compres-
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Effect of Bus Multiplexing on Transition Ratio
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Figure 12: Other Issues: (a) Compression and transition ratio variation with multiplexed traffic.
(b) Compression ratio variation across different compression measures and tools.

sion bound (zeroth and first-order entropies) and that achieved by existing compression
techniques such as SAMC or Gzip.

6. Conclusion

In this paper, we presented a comprehensive analysis of all three primary types of in-
formation (addresses, instructions, and data) stored and transmitted by the storage and
communication components, respectively, at various levels of the memory system hierarchy.
The analysis was done in terms of the compression ratio possible, which in turn reflects the
amount of performance (storage capacity and bandwidth) and to some extent cost improve-
ments attainable using compression. Our analysis was done on programs from the SPEC
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CPU2000 integer and floating-point and MediaBench suites. We have shown that a substan-
tial amount of information redundancy exists in every component of the memory system,
such as registers, tag and data fields of caches, main memory (storage components) and
also in address, instruction, and data buses (communication components). We should note
here that our results represent theoretical limits on compression possible and that practical
schemes will only achieve a fraction of these limits. However, as noted earlier in Sec. 5.11.2,
the compressibility achieved by current schemes is an order of magnitude or more away
from these limits.

Some important results from our analysis are as follows. We observed that information
stored in the memory system can be compressed to at least 39% of its original size with
ideal zero-information compression schemes and to about 31% with ideal zeroth-order com-
pression schemes. Information transmitted in the memory system through buses was found
to be more compressible on the average. We found that by compressing tag and data fields,
cache access times can be reduced by about 41% (29%) and power consumption by about
66% (44%) on the average for L1 (L2) levels w.r.t. normal uncompressed caches with the
same effective capacity. Also, both tag and data areas of caches can be substantially reduced
by compression. Other conclusions from our analysis are as follows: (1) Among storage com-
ponents, data caches were more compressible compared to instruction caches, and cache size
and block size affected compression ratios; (2) among communication components, the level
of the memory hierarchy where the component is present, different bit fields, and bit-field
groupings play a part in determining the amount of compression that is possible; and (3)
compression ratio also depends on the degree of specialization of the compression scheme.
We also studied the compressibility of original, XOR, and offset instruction and data address
traces, the effect of application class, encoding and multiplexing, analysis tool, static vs.
adaptive/dynamic compression, multithreading, and the relationship between information
content, compression ratio, and power consumption.
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